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Background: Thymoquinone (TQ) is a safe nutrient isolated from the seeds or volatile oil

extract of Nigella sativa. In addition to its benefits in glucose regulation, TQ improves

feeding disorders in diabetic animals. Glucagon-like peptide-1 (GLP-1) analogs improve

glycemic control and ameliorate obesity or hyperphagia. Therefore, the present study aimed

to investigate the role of GLP-1 in TQ-induced anorexia.

Method: Type 2 diabetes was induced in rats by nicotinamide and streptozotocin injection.

TQ was orally administered to diabetic rats at different doses for 45 days. Following TQ

treatment, changes in serum glucose levels, GLP-1 concentration, body weight, food intake,

and water intake were determined. To further explore the interaction between GLP-1 and TQ,

the inhibitor of dipeptidyl peptidase 4, sitagliptin and the GLP-1 receptor antagonist exendin

9–39 (Ex 9–39) were separately administered to TQ- or vehicle-treated diabetic rats.

Results: TQ treatment attenuated hyperglycemia and reduced hyperphagy and water intake

in streptozotocin-induced diabetic rats in a dose-dependent manner. Moreover, TQ treatment

elevated plasma GLP-1 levels compared to those in control rats. The effects of TQ were

enhanced by treatment with sitagliptin and reduced by the injection of Ex 9–39 into the brain.

In contrast, similar treatment with another antioxidant (either ascorbic acid or

N-acetylcysteine) produced the same anorexic effect as TQ without changing the plasma

GLP-1 levels in diabetic rats. Therefore, TQ attenuated hyperphagy while increasing plasma

GLP-1 levels and had antioxidant-like effects.

Conclusion: TQ increased endogenous GLP-1 levels to reduce hyperphagy in diabetic rats.
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Introduction
Thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone, TQ) is a widely used

ingredient isolated from the seeds and volatile oil extract of black cumin (Nigella

sativa).1 TQ is recognized as a safe nutrient, particularly when given orally to

experimental animals.2 TQ elicits many effects,3 including immunomodulatory,

anticancer, antidiabetic, antioxidant, anti-infertility, and anti-inflammatory activities

and protects the liver, heart, and nervous system.

TQ exerts ameliorative and therapeutic effects on diabetic animal models,4,5

which could reduce hepatic glucose production.6 In the clinic, the hypoglycemic

and hypolipidemic effects of black cumin in patients suffering from diabetes and

metabolic syndrome have been reported.3 Additionally, TQ did not cause adverse

effects on renal or hepatic function in diabetic patients.7 Therefore, TQ has been

recommended as a food adjunct for diabetes.8 Interestingly, food intake was also

reduced in diabetic animals following TQ administration.9 However, no report has
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examined the mechanism(s) of the TQ-induced improve-

ment of eating disorders in patients with diabetes.

Glucagon-like peptide-1 (GLP-1) is a gut hormone

derived from the preproglucagon gene that is synthesized

and released by intestinal L cells.10 GLP-1 and GLP-1 recep-

tor expression was decreased with chronic hyperglycemia.11

Clinical study showed that GLP-1 exhibited a statistically

significant decrease in type 2 diabetic compared with control

subjects.12 The intraperitoneal (IP) injection of GLP-1

decreased food intake in rodents.13,14 This finding is consis-

tent with clinical reports that diabetic patients treated with

GLP-1 or its stable receptor agonist progressively lose

weight.15 Additionally, activation of the GLP-1 receptor

(GLP-1R) in the central nervous system (CNS) was impli-

cated in the regulation of food intake,16 mainly in the

hypothalamic arcuate16 and paraventricular and supraoptic

nuclei.17 The central administration of GLP-1-(7-36) amide

inhibited food and water intake in rat.18

Changes in food and water intake due to GLP-1 modula-

tion are similar to the effects of TQ. However, whether the

effects of TQ on feeding behaviors in diabetic rats are

mediated by GLP-1 is unknown. Therefore, the present

study aimed to clarify these effects using type 2-like diabetic

rats. First, we established a new model of type 2-like diabetes

as described previously30 using the same doses of inducing

agents except the change in fasting time. Then, three protocols

were performed in the present study. The first experimental

design aimed to confirm the effectiveness of TQ as a previous

report31 in the new model. Therefore, we used the same

treatment period of 45 days. Otherwise, similar to a previous

report18, the results were effectively obtained in TQ-treated

animals within 4 weeks, which was applied to the second

experimental design. Finally, the role of the antioxidant-like

effect was investigated in the third experimental design. Two

antioxidants were used to treat for 45 days as that in the first

experimental design. Changes in GLP-1 were then compared

to clarify the role of antioxidant in the present study.

Materials and methods
TQ (purity >98%) and exendin 9–39 (Ex 9–39) were

obtained from Sigma Aldrich Chemical Co. (St. Louis,

MO, USA). Sitagliptin phosphate (Merck, Cramlington,

Northumberland, UK), which inhibits dipeptidyl peptidase-

4 (DPP-4) (Sigma Aldrich), was dissolved in normal saline.

Animals
Male Sprague-Dawley (SD) rats (a total of 120) weighing

250 to 280 g were obtained from the National Laboratory

Animal Center (Taipei, Taiwan). in the animals used for all

experiments were maintained under anesthesia with 2%

isoflurane to minimize suffering. The experimental proto-

cols were approved by the Institutional Animal Ethics

Committee (105,051,901) of the Chi-Mei Medical

Center. All experiments conformed to the Guide for the

Care and Use of Laboratory Animals as well as the guide-

lines of the Animal Welfare Act. No mortality was

observed in the experimental rats in the present study.

The generation of diabetic rats
To induce type 2-like diabetes, as described previously,19

rats were given an intravenous injection of streptozotocin

(STZ, Sigma-Aldrich) at 65 mg/kg (dissolved in 5 mmol/l

citrate buffer, pH 4.5) 15 mins after the IP injection of

230-mg/kg nicotinamide (NA, Sigma-Aldrich) dissolved

in normal saline. Prior to induction, the rats were fasted

for various times, as shown in the “Results“ section. Then,

the rats were given 5% dextrose instead of water on the

first day of induction to avoid hypoglycemia. Fasting

blood glucose levels were examined after 7 days. The

rats were considered to be diabetic once they exhibited

a plasma glucose level of no less than 200 mg/dL, along

with polyuria and other diabetic features.

Experimental protocols
Experimental design-1

The rats were randomly divided into five groups as follows

(n=6): group 1: normal control, group 2: diabetic control,

group 3: diabetic rats receiving TQ 25 mg/kg, group 4:

diabetic rats receiving TQ 50 mg/kg, and group 5: diabetic

rats receiving TQ 100 mg/kg. Rats in the normal control

group and the diabetic control group were given an equal

volume of normal saline. The administration of drugs or

vehicle was carried out once daily for 45 days as described

previously31 by oral gavage for the rats in all groups. The

initial and final body weights of the rats in each group

were recorded. Additionally, changes in daily food and

water intake were measured at the end of the experiment.

Experimental design-2

In this section, the role of GLP-1 in mediating the effects

of TQ was investigated. Rats were randomly assigned to 7

groups as follows (n=6): group I: normal control rats,

group II: diabetic control rats (vehicle treated), group III:

diabetic rats that received the oral administration of TQ

(50 mg/kg/day), group IV: diabetic rats that received the

oral administration of TQ (50 mg/kg/day) and the ICV
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injection of Ex 9–39 (50 µg in 2 µL), group V: diabetic

rats that received the oral administration of vehicle and the

ICV injection of Ex 9–39 (50 µg in 2 µL), group VI:

diabetic rats that received the oral administration of TQ

(50 mg/kg/day) and sitagliptin (5 mg/kg/day), and group

VII: diabetic rats that received the oral administration of

vehicle and sitagliptin (5 mg/kg/day).

The TQ treatment course in each group lasted 4

weeks.20 The rats in group III received the ICV injection

of Ex 9–39 to block GLP-1 receptors in the brain21 30

mins before TQ administration during the final week of

treatment. The rats in group VI were orally treated with

5 mg/kg/day sitagliptin to inhibit the GLP-1 metabolic

enzyme (DPP-4)22 1 hr before the oral administration of

TQ daily for the last 2 weeks of treatment. The initial and

final body weights of the rats in each group were recorded.

Similarly, the daily food and water intake were measured

before the end of the experiment.

Intracerebroventricular (ICV) injection

To understand the interaction between TQ consumption and

GLP-1 receptor signaling in the CNS, the ICV infusion of

Ex 9–39 was performed to block CNS GLP-1 activity.23 The

rats were anesthetized with a mixture of isoflurane in oxygen

(2%) and placed in a Kopf stereotaxic instrument equipped

with blunt ear bars. The stereotactic coordinates were

2.2 mm posterior to the bregma at a 7.5-mm depth from

the dura mater and in the midline following the guide.24 The

recovery period was at least 1 week; only rats that had

regained more than 90% of their presurgery body weight

were used in subsequent experiments.

The infusion cannula (22-gauge) attached to PE-10

tubing was inserted into the guide cannula and extended

0.5 mm beyond the guide. A 10.0 μL Hamilton syringe

was used to manually deliver saline or the tested agent

over a 2-min period following our previous method.25 The

infusion cannula was kept in place for an additional 1 min

following infusion.

Collection of blood and the estimation of

biochemical parameters

Blood samples (200 μL) from fasting rats were collected

from the tail vein under isoflurane anesthesia23 at the end of

the feeding protocol. Then, the plasma was immediately

separated by centrifuging at 13,000 rpm for 10 mins at 4°C.

All samples were stored at −80°C until their analysis. The

glucose levels were evaluated using a reagent from a glucose

kit (Biosystems SA, Barcelona, Spain). Plasma insulin levels

were determined using a rat insulin ELISA kit (Mercodia,

Uppsala, Sweden). Insulin resistance was calculated using

the homeostasis model assessment (HOMA-IR) method.

HOMA-IR was then calculated as fasting glucose (mmol/L)

× fasting insulin (μU/mL)/22.5.26 The GLP-1 levels were

estimated using a commercial ELISA kit (Millipore).

Measurement of body weight and food and water

intake

At the beginning and end of the study, the rats in each

group were weighed using an electronic balance. Food

intake and water intake were measured daily. Food intake

was determined by measuring the difference between the

preweighed food and the weight of the remaining food in

the hopper and spilled food after 24 hrs. Water intake was

measured by recording the quantity of water remaining in

the feeding bottle.

Administration of antioxidants to examine their

effects on feeding behaviors in diabetic rats

In an attempt to exclude the effects of antioxidants on the

amelioration of diabetic like phenotypes, we administered

two antioxidants, ascorbic acid (vitamin C)27 and

N-acetylcysteine (NAC),28 to diabetic rats. The diabetic

rats received ascorbic acid (1 g/kg)29 or NAC (0.5 g/kg)

orally every day for 45 days, which was similar to the TQ

treatment period. Then, feeding behaviors and plasma

glucose or GLP-1 levels were determined as described

above.

Statistical analysis
The results are indicated as the means ± SDs of the indicated

sample number (n) in each group. To investigate the effect of

fasting time on glucose levels and insulin levels during

induction of diabetes in rats and the changes in the body

weight before and after TQ treatment with different dosage

for 45 days, we conducted a two-way ANOVA, followed by

Tukey’s post hoc comparison. The rest of the results were

compared using one-way ANOVA with Tukey’s post-hoc

test. The statistical analysis software SPSS 21 was used.

A P-value of 0.05 indicated significance.

Results
Effect of fasting time on the blood sugar

response in diabetic rats
In the present study, we compared the plasma glucose levels

of diabetic rats that had fasted for various times.

Hyperglycemia was more marked in diabetic rats with short
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fasting times than in diabetic rats with long fasting times

(Figure 1A). Similarly, the insulin concentration was also

significantly different after 8–10 hrs of fasting (Figure 1B).

Therefore, diabetic rats that had fasted approximately 8–10

hrs were used as the model in the present study.

Effects of TQ on feeding behaviors and

body weights of diabetic rats
The increased plasma glucose levels in diabetic rats were

reversed by TQ treatment in a dose-dependent manner

(Figure 2A). In the diabetic group, insulin sensitivity was

markedly reduced, as revealed by increased HOMA-IR. TQ

treatment decreased the HOMA-IR score compared with

vehicle group (Figure 2B). The body weights at the begin-

ning were similar in all groups. The body weights of diabetic

rats in the control group were markedly reduced during the

study period compared to those of rats in the normal control

group. However, TQ treatment did not affect the body

weights of diabetic rats (Figure 2C). Moreover, food and

water intake were markedly increased in the diabetic rats

compared to those in the normal control group. TQ

decreased food (Figure 2D) and water intake (Figure 2E)

in STZ-induced diabetic rats in a dose-dependent manner.

Mediation of GLP-1 in TQ-induced

hypophagia in diabetic rats
The ability of TQ to lower blood glucose levels was attenuated

by the administration of Ex 9–39 in diabetic rats (P<0.05;

Figure 3A). Additionally, the pretreatment of diabetic rats with

Ex 9–39 reduced the TQ-induced increase in plasma GLP-1

levels (P<0.05; Figure 3B). The sitagliptin+TQ group showed

a greater decrease in blood glucose and a marked increase in

plasma GLP-1 levels compared to those in the TQ- or

sitagliptin-treated groups (Figure 3A and B). In addition, TQ

ameliorated polydipsia and polyphagia in diabetic rats; these

effects were inhibited by Ex 9–39 treatment. In the presence of

sitagliptin,22 the effects of TQ on food intake and water intake

were increased (Figure 3C and D). In particular, the blood

glucose level, GLP-1 concentration, food intake, and water

intake of diabetic rats administered Ex 9–39 were no different

than those of rats in the vehicle-treated group.

Effects of antioxidants on feeding

disorders in diabetic rats
TQ exerts antioxidant-like effects.20 Similar to the effects

of TQ, hyperglycemia was attenuated in diabetic rats that

received NAC or ascorbic acid (Figure 4A). However,

plasma GLP-1 levels were not modified by NAC or ascor-

bic acid (Figure 4B). Furthermore, changes in food intake

(Figure 4C) and water intake (Figure 4D) were increased

after the administration of these antioxidants in diabetic

rats. Therefore, the role of endogenous GLP-1 in antiox-

idant-induced anorexic effects appears unlikely.

Discussion
TQ is the active principal ingredient in black cumin and

has been recommended as a food adjunct for the manage-

ment of diabetes.8 The present study found that TQ ame-

liorated feeding disorders in diabetic rats through

endogenous GLP-1 activity.

Regarding the T2DM, many animal models have been

developed and the model induced by nicotinamide with

streptozotocin (NA-STZ) has widely been used.30–32 NA-

STZ rats are induced easily and quickly with a marked

change in insulin, while hyperglycemia and hypoinsulinemia

disorders meet the criteria for T2DM.33,34 But, the original

NA-STZ model showed a hyperglycemia less than 198 mg/
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dL in rats.30 Therefore, researcher(s) changed the dose of NA

or STZ during the induction of model for a higher plasma

glucose in animals.35 In the present study, we demonstrated

an alternative method without the change in NA or STZ dose

as original report.30 To compare the effects of fasting period,

we arranged for the rats to undergo fasting for various time

periods during the induction of diabetes using the NA- or

STZ-induced diabetic model,30,36 which was generated

exactly as described in the original report.30 Fasting is

usually used to minimize competition between STZ and

glucose for low-affinity glucose transporter 2 on β cells.37

The starvation period may also potentiate NA to protect β-
cells against the cytotoxicity of STZ.35 Our results indicated

that a short fasting time elevated the plasma glucose level in

NA-STZ rats, reaching a level (>260 mg/dl) near that of the

model induced by low doses of STZ alone.19 Therefore, we

used this model in the present study. However, the degree of

IR was not conducted, although the changes in HOMA-IR

were significant. HOMA-IR is widely applied in clinical

practice, but it remains questionable in animal research.19

Therefore, the degree of IR in this model should be investi-

gated in the future.

Chronic treatment with TQ attenuated hyperglycemia

and ameliorated feeding disorders in a dose-dependent

manner in NA-STZ rats. It confirmed the results of

a previous report38 involving the 45-day oral intake.

Additionally, it was also similar to a previous

report.39,40 Rats in the diabetic group showed

a significant increase in HOMA-IR,38 and treatment

with TQ in NA-STZ diabetic rats decreased the HOMA-

IR. However, the decreased body weights observed in

diabetic rats were not reversed by TQ. Diabetes is

traditionally diagnosed by a severe loss in body weight,

which appears primarily due to the unavailability of

carbohydrates as an energy source41 or the resultant

dehydration of the plasma fluid compartment.42 Recent
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research has indicated that TQ improved islet revascu-

larization and alleviated metabolic and hepatorenal dis-

turbances in STZ-induced diabetic rats.43 In addition,

TQ treatment also had a beneficial effect on glucose

tolerance and insulin sensitivity in a diet-induced obe-

sity mouse model of type 2 diabetes.5

Ex 9–39 specifically blocks the GLP-1 receptor (GLP-1R),

and it may inhibit the function of GLP-1 in the

hypothalamus.44 The direct injection of Ex 9–39 into the

brain changed eating behaviors in satiated rats.45 The injection

of Ex 9–39 blocks the cerebral GLP-1R23 and was used to

investigate the effects of TQ. After diabetic rats were
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administered Ex 9–39, the positive effects of TQ on both food

intake and water intake were markedly reduced.Moreover, the

effects of TQ on feeding disorders were enhanced in diabetic

rats that received sitagliptin to inhibit DPP-4, a GLP-1-inacti-

vating enzyme.46 The effective dose of sitagliptin adminis-

tered was in accordance with previous reports.22,47

Additionally, the plasma GLP-1 level was markedly increased

in diabetic rats that received sitagliptin compared to that in

control rats. Therefore, the effects of TQ were mediated via

endogenous GLP-1.

It was recently demonstrated that TQ exerts antioxidant-

like effects.24 The antioxidant effect of TQ in cells might

interact with the mitochondrial respiratory chain.48 TQ pre-

vented diabetic induced cardiomyopathy via decrease of the

cardiac malondialdehyde levels and significantly increased

cardiac total superoxide dismutase.49 To determine the role

of these potential antioxidant effects in the anorexic response

to TQ, we compared the effects of two antioxidants in diabetic

rats. Consistent with previous reports, the effects of the estab-

lished antioxidants ascorbic acid27 and NAC28 were com-

pared. Consistent with a previous report,43 the two

antioxidants attenuated hyperglycemia and improved hyper-

phagia and water intake behaviors in diabetic rats. These

effects were the same as those of TQ, with the exception that

plasma GLP-1 levels were not influenced by NAC or ascorbic

acid treatment. Antioxidants may ameliorate glucose home-

ostasis to improve disorders in diabetic rats.50 Therefore, the

mediation of the anorexic effects of TQ treatment via endo-

genous GLP-1 is not entirely due to its antioxidant-like effects.

Taken together, our results suggest that GLP-1 is released by

TQ in the peripheral tissues and that it may reach the feeding

center of the brain. The finding that the central administration

of exogenous GLP-1 induced a marked reduction in food and

water intake is consistent with previous findings in rats.18

Therefore, TQ likely ameliorates feeding disorders via endo-

genous GLP-1, at least in part.

Conclusion
In summary, we demonstrate that TQ treatment increased

endogenous GLP-1 levels to ameliorate commonly observed

feeding disorders in type 2-like diabetic rats. TQ is suitable

for further development for the clinical treatment of obesity.
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