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Background/Aims: The tumor-suppressive functions of interferon regulatory factor 6

(IRF6) in some tumors have been preliminarily established, but its pathogenesis and under-

lying molecular mechanisms in breast cancer, the most common malignancy in women,

remains poorly understood.

Methods: Pairs of typical breast cancer cell lines (high- and low-aggressive) in addition to

27 breast cancer tissue samples and 31 non-cancerous breast tissues were used to investigate

the expression level of IRF6 and Lentivirus-mediated gain-of-function studies, short hairpin

RNA-mediated loss-of-function studies in vivo and in vitro were used to validate the role of

IRF6 in breast cancer. Next, we performed RNA-Seq analysis to identify the molecular

mechanisms of IRF6 involved in breast cancer progression.

Results: Our findings showed that IRF6 was downregulated in highly invasive breast cancer

cell lines but upregulated in poorly aggressive ones. Functional assays revealed that elevated

IRF6 expression could suppress cell proliferation and tumorigenicity, and enhanced cellular

chemotherapeutic sensitivity. To identify the molecular mechanisms involved, we performed

a genome-wide and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in breast

cancer cells using RNA sequencing of gene expression profiles following the overexpression

of IRF6. Genome-wide and KEGG analyses showed that IRF6 might mediate the PI3K-

regulatory subunit PIK3R2, which in turn modulated the PI3K/AKT pathway to control

breast cancer pathogenesis.

Conclusion: We provide the first evidence of the involvement of IRF6 in breast cancer

pathogenesis, which was found to modulate the PI3K/AKT pathway via mediating PIK3R2;

indicating that IRF6 can be targeted as a potential therapeutic treatment of breast cancer.
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Introduction
Breast cancer is the most common malignancy affecting women, with an increasing

worldwide incidence, and fatal to ~600,000 women annually.1,2 It is a highly hetero-

geneous disease, and based on gene expression studies, breast cancer can be divided

into several clinically relevant molecular subtypes: luminal A (ER+and/or PR+,

HER2-) and B (ER+ and/or PR+, HER2+), HER2+ (ER+ and/or PR+, HER2+),

and basal-like (ER- and/or PR-, HER2-).3,4 Basal-like breast cancer has been defined

as triple negative breast cancer (TNBC) where the epithelial-to-mesenchymal
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transition (EMT) can be increased compared to non-TNBC

tumors,5 with a frequent exhibition of P53 mutations (80%)

and a loss of retinoblastoma (RB1) and BRCA1. Patients

with basal-like breast carcinomas are at an increased risk for

metastasis and relapse, which is incurable and the leading

cause of female mortality.6–8 Numerous studies have shown

that the luminal subtypes have better differentiated tumors

and the best prognosis compared to other subtypes.8–10,36

IRF6 is a developmental transcription factor and

a member of the IRF family of transcription factors.

There are 9 members of the IRF transcription factor family

(IRF1-9), but unlike the other members, IRF6 is not

involved in interferon (IFN) gene expression.11–13 The

human IRF6 gene maps to chromosome 1q32.2 and

encodes transcriptional factor proteins.13,14 IRF6 has

been found to regulate embryonic craniofacial develop-

ment and epidermal maturation, which are related to the

lamination, scalding and keratinization of the epidermis

during embryonic development.13,14 Further, it can initiate

a switch between keratinocyte proliferation and differen-

tiation, thereby regulating the balance between the differ-

entiation and proliferation of epidermal stem cells.15,16

Gene mutations in IRF6 can lead to popliteal pterygium

syndrome and van der Woude syndrome.17,18 The syntro-

phicloss of terminal differentiation is due to the hyperpro-

liferative epidermis, which causes the fusion of soft tissue

in the craniofacial region.13,17,19 In the process of embryo-

nic facial maturation, IRF6 regulates the formation of

facial morphology by promoting epidermal cell apoptosis

in addition to regulating cell-cycle-dependent proliferation

and differentiation.20,21 In addition, deficiencies or muta-

tions of IRF6 cause heterauxesis of the embryo, which do

not occur with the other 8 members of the IFN family. As

such, IRF6 is closely involved in the differentiation and

proliferation of embryonic stem cells.

The evolutionarily conserved phosphatidylinositol

3-kinase (PI3K)-signal transducer, an activator of protein

kinase B (AKT) and mammalian target of rapamycin

(mTOR) signaling pathway mediate the cellular responses

to cytokines and growth factors. Earlier studies have

shown that the PI3K/AKT pathway is crucial for intracel-

lular signaling that are involved in growth control and

homeostasis maintenance in various cells and tissues.

Dysregulation in the PI3K/AKT signaling is significantly

associated with tumorigenesis22–24,45 and altered responses

to a variety of breast cancer therapies.23,25,26

It has been reported that p85β, which is encoded by the

gene PIK3R2, is the major isoform of the regulatory

subunit of PI3K,27,28 and the PI3K/AKT pathway can be

activated by p85β.29,30 Despite these findings, evidence

regarding the association between IRF6, p85β and PI3K/

AKT in human breast cancers remains inconclusive.

The downregulation of IRF6 has also been seen in

squamous cell carcinomas,11 nasopharyngeal carcinomas

(NPCs),31 colon and rectal cancer32 and breast cancer.33–35

Notably, elevated IRF6 protein levels can inhibit tumor

malignancy and is associated with good prognosis in

NPCs, but the role of IRF6 in the oncogenesis of breast

cancer has not been fully elucidated.

On the basis of existing medical literature, for this

present study, we hypothesized that IRF6 would show

tumor-suppressive functions in breast cancer and we

thereby attempted to clarify the mechanisms altering the

IRF6 expression in breast cancer pathogenesis. We utilized

RNA-Seq to assess the differences in the genomic expres-

sion profiles in MDA-MB-231 cells between vector con-

trol cells and those bearing overexpression of IRF6. Our

results provided a comprehensive assessment of the key

genetic changes in response to IRF6 overexpression at the

cellular level via transcriptomics.

The findings of this study indicate that IRF6 is down-

regulated in highly malignant human and mouse breast

cancer cell lines. Also, the modulation of the expression

of IRF6 in breast cancer cell lines demonstrated the poten-

tial to alter cell proliferation ability. To confirm these

observations, various in vitro and in vivo studies were

conducted. RNA-Seq identified several cellular pathways

modified by the overexpression of IRF6. In all, this study

provides the first comprehensive evidence of the key

genetic changes in response to IRF6 overexpression

which has been found to regulate the PI3K/AKT pathway

via downregulating PIK3R2 in the pathogenesis of human

breast cancer.

Materials and methods
Cell lines and cell culture
Human and mice breast cancer cell lines were maintained

with 5% CO2 at 37°C in Dulbecco modified Eagle med-

ium (GIBCO USA) supplemented with 10% fetal bovine

serum. MCF-10A was grown in DMEM/F12 (GIBCO

USA) with 5% horse serum (GIBCO, 26050070), 100

U penicillin/streptomycin (MDbio, P003-10 g, S007-25

g), 20 ng/mL EGF (SIGMA, SRP3027), 20 ng/mL insulin

(Beyotime, P3376), 100 ng/mL cholera toxin (MCE, HY-

P1446), and 0.5 μg/mL hydrocortisone (MCE, HY-
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N0583). All the cells were purchased from ATCC and the

culture period did not exceed two months.

Cell proliferation assays and

colony-formation assays
Colorimetric MTS assays (Promega; G3582) were per-

formed to determine the growth and viability of the breast

cancer cells, as previously reported.34,35 Briefly, 800 cells/

well were treated in a 96-well culture plate (Corning) in

triplicate. After various times post-seeding, then harvested

the parallel culture plates, and added 20 μL MTS solution

(promega, G3580) to each well. Then, the solution was

incubated for 3 hrs and the optical density value was

determined at 490 nm.

For the colony formation experiments, 500–800 cells/

well were bred in a 6-well plate (Corning). The culture

medium was changed every 3days. After 10–13 days, the

resulting colonies were gently washed with PBS, fixed in

paraformaldehyde for 10 mins at room temperature and

stained with 1% crystal violet. Only the colonies that

included more than 50 cells were considered. All experi-

ments were independently conducted at least thrice.

Quantitative real-time PCR
Gene mRNA levels were determined by real-time PCR.

Total RNA of breast cancer cells were extracted using

Trizol reagent (Invitrogen, 15596018, CA, USA), and

were reverse-transcribed using a RevertAid First Strand

cDNA Synthesis Kit (Thermo, K1622). GAPDH was used

as the normalization gene. The mRNA levels of the genes

were reckoned as two power values of ΔCt (the Ct of the

GAPDH minus the Ct of the target gene). The sequences

of the PCR primer are listed in Table S1.

Immunoblotting analysis
Western blotting was performed according to the previously

described standard method.15 The primary antibodies used

were anti-IRF6 (abcam, ab132057), caspase-3 (CST, 9662),

cleaved-caspase3 (CST, 9661), p85β (abcam, ab137815),

mTOR (abcam, ab32028), p-mTOR (abcam, ab109268),

AKT1 antibody (CST, 9272), p-AKT (CST, 4058),

GAPDH (proteintech, 60004–1-Ig), anti-rabbit, anti-mouse

peroxidase-conjugated secondary antibodies (proteintech).

Plasmid transfection assays
Plasmid construction was performed according to pre-

viously described standard method.36 In brief, human full-

length IRF6 cDNAs were cloned and linked into

pcDNA3.1. MDA-MB-231 cells were treated at 1×105

cells/well in a 6-well plate, 0.5–2 μg plasmid DNA and

the empty vector plasmid were transfected using X-treme

GENE HP DNA transfection reagent (Roche,

6365779001) according to the manufacturer’s instructions.

Lentiviral transduction studies
Lentivirus-expressing IRF6 shRNA were produced to

structure stable IRF6 knockdown cell lines. Two more

effective shRNA sequences (shRNA plasmid DNAs pur-

chased from Obio Technology; the TRC numbers for the

IRF6 sh1 and sh2 plasmids are Y3667 and Y3668, respec-

tively) were selected for the following research.

Lentiviruses were generated by 293T cells with the

shRNA using the X-tremeGENE HP DNA transfection

reagent (Roche). Forty-eight hours after transfection, the

harvested infectious lentiviruses were filtered through

a 0.45 µm filter (Millipore, GLQ025), transduced with

lentiviruses IRF6 shRNA and control shRNA, and selected

with 2 μg/mL puromycin (SIGMA, A1113803) for 5–7

days. The efficiency of the IRF6 knockdown was analyzed

using real-time PCR and immunoblotting.

Lentiviral plasmids were co-transfected with Lenti-pac

HIV mix (Genecopoeia, LT003) and EndoFection mix

(Genecopoeia, LT003) into 293T cells to establish the

IRF6 stable overexpression MDA-MB-231 cell line.

A homologous vector carrying a Flag sequence was used

as the control. Cells were transfected with lentiviruses

IRF6 or vector. Stable cell lines were selected in 2 μg/
mL puromycin for 5–7 days and the IRF6 overexpression

efficiency was confirmed by RT-qPCR and

immunoblotting.

Sphere culture
Sphere culture was performed as previously described.37

The cells were seeded on a 6-well ultra-low attachment

plates (800 cells/well). Serum-free DMEM-F12 medium

with epidermal growth factor (20 ng/mL) was added in

addition to basic fibroblast growth factor (20 ng/mL,

GIBCO, PHG0264) and 2% B27 (GIBCO, 17504044).

The cells were then cultured for 7 days. The experiments

were performed at least thrice.

Animal assays
Female BALB/c athymic mice, age 3–4 weeks, were pur-

chased from Beijing Vital River Laboratory Animal

Technology Co., Ltd. For the tumorgenicity experiment,
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BALB/c nude mice were randomly separated into three

groups, 5 per groups. Cells were suspended in 100 µL

DMEM, in 50% Matrigel (BD Biosciences, 356230),

then injected subcutaneously into the right or left axillary

area of each mice. Their tumor diameter was measured

twice every week after apparent tumor formation. The

animal experiment was terminated after 1month. All ani-

mal experiments were conducted based on the regulation

of The Research Animal Resource Center of Sun Yat-Sen

University.

RNA extraction, library construction, and

sequencing
Total RNA from cultured cell lines was extracted using

Trizol reagent (Invitrogen). RNA samples with an OD

260/280 nm ratio more than 1.8 were chosen to use for

deep sequencing.

The purity, concentration, and integrity of total RNA

were verified using Nanodrop, Qubit 3.0, and Agilent 2100

Bioanalyzer. The rRNA was removed, and mRNA was

enriched using mRNA Capture Beads (Thermofish,

61012). Using VAHTSTM DNA Clean Beads to select

and purify the cDNA library products, the RNA sequen-

cing analysis was performed using Illumina HiSeqXTen.

Sequencing data analysis
Clean RNA-Seq data were analyzed based on the follow-

ing standard protocol.38 The clean reads were acquired by

removing reads including adapter and reads including

unrecognized-ploy-N and poor-quality reads from the

raw data. We then calculated the duplication, GC-content

and Q30 level of the clean reads. Clean reads with high-

quality were mapped to the NCBI (National Center for

Biotechnology Information), UCSC, Ensembl reference

genome sequence using Hisat2. Only with a perfect

match or just one mismatch reads were further analyzed.

Known genes expression were evaluated by fragments per

kilobase of transcript per million fragments mapped

(FPKM) during the different samples.

Differentially expressed genes (DEG) and

KEGG analysis
DESeq R package was used to analyze the DEG. The DEG

cutoff values were selected as the fold changevalue ≥1.5
and the corrected p-value≤0.05. T Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways enrichment was

implemented using the KOBAS server.39

Statistical analysis
In this study, all data analysis were represented as mean

±SD. Statistical analyses were performed using SPSS (ver-

sion 17) software under the student’s t-test (two-tailed)

between any two groups of data. The Pearson correlation

was used to evaluate the relationship between RNA-Seq

and RT-qPCR value. p<0.05 was considered significant

difference.

Results
IRF6 expression is elevated in breast

cancer tissues and breast cell lines
In previous studies, MDA-MB-231 and MDA-MB-468

were shown to have higher invasive and self-renewal

abilities, whereas MCF7 had poorly aggressive abilities

and MCF10A was a normal breast epithelial cells.36,40 To

investigate the role of IRF6 in breast cancer, the expres-

sion of IRF6 was assessed in different breast cells lines

using RT-qPCR, agarose gel electrophoresis, and immuno-

blotting analyses. Decreased IRF6 mRNA and protein

levels were observed in MDA-MB-231 cells compared

with the levels seen in immortalized normal breast epithe-

lial cells, MCF10A, and poorly aggressive cells MCF7

(Figure 1A–C). Also, IRF6 mRNA expression was detect-

able by RT-qPCR in 27 breast cancer and 31 non-

cancerous breast tissues. The expression levels of IRF6

were relatively lower in the breast cancer tissues than in

the non-cancerous breast tissues (Figure 1D). Therefore,

we hypothesized that IRF6 could play an important role in

breast cancer progression.

Regulation of IRF6 expression affects

growth in breast cancer cells in vitro and

in vivo
To explore the role of IRF6 in breast cancer cell prolifera-

tion, we generated transiently transfected MDA-MB-231,

then IRF6 mRNA and protein expression levels were con-

firmed by RT-qPCR and immunoblotting, respectively

(Figure 2A). We observed that the transient overexpression

of IRF6 in MDA-MB-231 cells resulted in decreased cell

proliferation (Figure 2B) and cell colony formation

(Figure 2C).

We then transfected MCF7 with shRNA (IRF6 sh1 and

sh2) and negative control shRNA (scramble) and the IRF6

expression levels were confirmed in it using RT-qPCR and

immunoblotting, respectively (Figure 2D). We observed

Xu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Cancer Management and Research 2019:115560

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


that the IRF6 suppression resulted in increased breast

cancer cell growth (Figure 2E) and cell colony formation

(Figure 2F).

The tumorigenesis ability of MDA-MB-231 cells

in vivo was reduced when IRF6 was overexpressed

(Figure 2G). When 1×106 cells in 100 μL DMEM contain-

ing 50% Matrigel were injected into the left and right

axillary areas of nude mice, the MDA-MB-231-IRF6

cells group demonstrated a slower growth rate as com-

pared to the vector control cells (Figure 2H and I). From

these data, we can conclude that in vitro and in vivo IRF6

overexpression has an inhibitory effect on breast cancer

cell proliferation.

IRF6 enhances dose-dependent sensitivity

to cisplatin (CDDP) and suppresses the

tumorigenicity
Cisplatin is the first-line chemotherapeutic drug for breast

cancer patients in clinical practice.41 When comparing the

colony formation assays ofMDA-MB-231 cell colonies with

that of vector control cell colonies, we found that the

transient overexpression of IRF6 could substantially reduce

the number of cisplatin-treated (0.5, 1, 2 µg/mL) (Figure 3A).

Moreover, IRF6-overexpressing cells showed lower cleaved

caspase-3 levels upon cisplatin treatment but higher caspase-

3 levels than the vector cells in a time-dependent manner;

further confirming that IRF6 confers sensitivity to cisplatin

(Figure 3B). However, opposing effects can be found in

IRF6-knockdown cell lines (Figure S1A and B). These data

highlight the important role of IRF6 in causing cisplatin

resistance in MDA-MB-231 and MCF7 cell lines.

Additionally, we found that the number of mammospheres

generated by IRF6-overexpressing cell lines was signifi-

cantly lower than that generated by the vector control cells

(Figure 3C). To further explore the role of IRF6 in breast

cancer growth, in vivo serial dilutions of MDA-MB-231

vector cells or IRF6 overexpression cells were subcuta-

neously injected into nude mice, all the mice were observed

twice every week until the formation of palpable tumors.

When 1×106 cells were injected into the nude mice, both

the IRF6 overexpression cells and the vector control cells

developed tumors at a similar rate (5/5). When the injected

cell numbers were reduced to 5×105, 5 mice inoculated with
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vector cells demonstrated tumor growth while only 3 mice in

the IRF6-overexpressing group exhibited tumor growth (3/5)

(Figure 3D), suggesting that IRF6 expression is associated

with tumorigenicity or tumor-initiating capacity in vivo.

RNA-Seq and KEGG analysis reveals IRF6

downregulates the expression of the

PIK3R2 gene, a PI3K regulatory subunit

that is comprehensively involved in many

cancer-related signaling pathways
We assessed the expression and evaluated the significance

of DEGs between vector control and IRF6-overexpressing

cells. A total of 642 DEGs were identified between vector

and IRF6-overexpressing cell line using non-supervised

clustering analysis; as illustrated by the expression pat-

terns in Figure 4A, and 26 were found to be significantly

dysregulated genes with log2 ratios >1 and q-values<0.05

were identified (Figure 4B). The descriptions of these

genes are shown in Table S2. Notably, the red outline

indicates the gene PIK3R2 (p85β), which is a PI3K reg-

ulatory subunit. The PI3K pathway can regulate various

biological activities, including cellular proliferation and

survival.42 PI3K-mediated production can trigger

a signaling pathway cascade that leads to the activation

of AKT and several of its downstream targets. To calculate

the RNA-Seq data reliability as well as further validate the

DEG patterns, 5 genes were randomly selected and

assessed using RT-qPCR (Figure 4C). Pearson’s correla-

tion analysis demonstrated that the RNA-Seq data were
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Figure 2 Regulation of IRF6 expression affects growth in breast cancer cells in vitro and in vivo. (A and D) Transient suppression and overexpression of IRF6 in breast

cancer cells were determined by RT-qPCR and immunoblotting analysis, GAPDH was used as the normalized control. (B and E) Cell proliferation was measured by the MTS

assay with 1% FBS culture medium. (C and F) Colony formation assays were performed following the overexpression or suppression of IRF6; representative photos and

a quantification chart of cells stained with 1% crystal violet are shown. (G) Subcutaneous injection of IRF6-overexpressing cells and vector control cells into nude mice. (H)

The growth curve shows MDA-MB-231 growth suppression following IRF6 overexpression in vivo. (I) The total tumor weights were lower following injection with IRF6-

overexpressing cells than injection with vector control cells. Student’s t-test, data represent the mean±SD; *p<0.05, **p<0.01, ***p<0.001.
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positively correlated with RT-qPCR data (Pearson’s

r2=0.9774, P=0.0015), suggesting the high reliability of

the RNA-Seq analysis. At the same time, we also found

that in the top 20 KEGG pathways of the DEGs that were

significantly enriched, PIK3R2 participated in most of the

cancer-related and biological activity signaling pathways,

such as regulation of actin cytoskeleton, cholinergic

synapse, toll-like receptor signaling pathway, pancreatic

cancer, insulin signaling pathway, and so on. Especially

the phosphatidylinositol signaling system, which also con-

tains the PI3K/Akt signaling pathway. (Figure 4D). These

results are similar to those of previous study,11 implying

that PIK3R2 is a probable checkpoint for the activation of

various malignancy signaling pathways. Hence, here, we

mainly analyzed the potential contributions of the IRF6-

mediated PIK3R2 in breast cancer.

IRF6-mediated PIK3R2 expression

modulates PI3K/AKT pathway activity in

breast cancer pathogenesis
PIk3R2 mRNA expression was detected in 31 non-cancerous

and 27 breast cancer patient tissue samples by RT-qPCR. The

expression level of PIK3R2was remarkably higher in the breast

cancer tissues than in the non-cancerous breast tissue samples

(Figure 5A), and therewas an inverse relationship between IRF6
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and PIK3R2 levels in the primary breast cancer tissues (r=

−0.4228) (Figure 5B). At the same time, we also demonstrated
that theMDA-MB-231 cell line had higher endogenous expres-

sion levels of p-AKTandCD44proteins than theMCF7cell line

(Figure 5C), further showing that the AKT signaling pathway

was activated and in MDA-MB-231 cell lines compared to the

counterpart cell line. Subsequently, we measured the protein

expression levels of p85β, p-AKT, AKT, p-mTOR, and

mTORusingWestern blot analysis of cell lineswith the transient

overexpression and suppression of IRF6 (Figure 5D). MDA-

MB-231 cells transfected with IRF6 plasmids at different con-

centrations showed substantially decreased expression of p85β,
p-AKT, and p-mTOR in a dose-dependent manner. Meanwhile,

we found that the protein expression levels of p85β, p-AKT, and
p-mTOR were increased in IRF6 knockdown cells. These data

collectively demonstrate an inverse relationship between IRF6

and p85β, p-AKT and p-mTOR. Therefore, we hypothesized

that IRF6 might mediate PIK3R2 expression to regulate the

PI3K/AKT pathway, subsequently triggering a signaling cas-

cade leading to the activation of downstream targets. Thus, we

used increasing doses of an AKT inhibitor (LY294002) that is

a cell-permeable, potent and a specific PI3K inhibitor to act on

theATP-binding site of the enzyme (Figure 5E). LY294002was

found to also inhibit non-homologousend-joining repair through

the inhibition of DNA-PK catalytic subunits.43 MDA-MB-231

cellswere treatedwithLY294002, andwe found that the number

Figure 4 RNA-Seq and KEGG analysis revealed IRF6 downregulates the expression of the PIK3R2 gene, a PI3K regulatory subunit that is comprehensively involved in many

cancer-related signaling pathways. (A) Non-supervised clustering of all DEGs. The heatmap represents the mRNA K-means clustering of log10-transformed expression value

differences between IRF6-overexpressing and vector cells. Red represents increased expression, and blue represents reduced expression. (B) Gene expression profiling was

performed on IRF6overexpressing and vector cells lines. Here presentation of part of the distinctly upregulated and down-regulated genes in IRF6-overexpressing cell lines

relative to the vector cell lines. Red, the gene has increased expression in IRF6-overexpressing cell lines compared to the vector cell lines. Blue, the gene has decreased

expression. The red box indicates the gene PIK3R2 (p85β). (C) A scatter diagram including RNA-Seq and RT-qPCR data from correlation analysis including 5 genes: IRF6,

PIK3R2, NR3C2, CST2, FOXP2. Pearson’s analysis, r2=−0.9774; p=0.0015. (D) Pathway analysis showed that 20 pathways were dramatically enriched; the numbers for each

pathway were based on Fisher’s exact test, indicating the fold enrichment. The red outline box indicates that the gene PIK3R2 (p85β) participated in the corresponding

pathway, such as regulation of actin cytoskeleton, cholinergic synapse, toll-like receptor signaling pathway, and phosphatidylinositol signaling system. The blue outline box

indicates the phosphatidylinositol signaling system, which contains the PI3K/Akt signaling pathway.
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of the mammospheres generated were lower than those of the

control group (Figure 5F and G), implying that the suppression

of endogenous AKTactivity can block tumor self-renewal.

To further confirm whether the effect of PI3K/AKT on

cancer progression is through the IRF6-mediated pathway,

we treated MCF7 cells with suppression of IRF6 and

negative control shRNA (scramble) with increasing doses

of LY294002. Specifically, we found that the percentage of

spheroid formations was inhibited more obviously in the

IRF6-suppression group compared with negative control

counterparts (Figure 5H and I). These results further

demonstrated that the activation of the PI3K/AKT

signaling pathway via the upregulation of p85β by the

inhibition of IRF6 expression could enhance a dose-

dependent sensitivity to LY294002.

Discussion
The transcription functions of IRFs family are activated by

the phosphorylation of regulatory serine/threonine residues

and acts to promote protein–protein interactions involving in

the IAD and CTD.44 It is well known that phosphorylation

mainly occurs in serine-rich region of the C-terminus, which

plays an auto-inhibitory effect in a non-phosphorylated state

by blocking the protein–protein interactions.45 These
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phosphorylation events trigger the re-organization of the

CTD such that it no longer serves as an autoinhibitory

function.46 The precise study has demonstrated the IRF6

C-terminal serine-rich region can cause a similar auto-

inhibitory effect, and the IRF6 IAD is both necessary and

sufficient for an interaction with maspin and that the inclu-

sion of the C-terminal serine-rich region abrogates this

interaction.33 Additionally, M.Q. Kwa et al have also

shown that the phosphorylation of Ser413 and Ser424

induces IRF6 activation through RIPK4.47 There was one

study which reported that nonsense mutations (eg, p.

Ser424X) may abolish RIPK4-mediated IRF6 activation in

Van der Woude syndrome.48 Furthermore, these nonsense

mutations not only promote IRF6 degradation but also pre-

vent the activation of IRF6 by RIPK4.47 However, the trans-

activator functions of IRF6 and the initiating signal for IRF6

activation still need to be further investigated.

In this study, we confirmed that IRF6 is downregulated in

highly invasive breast cancer cells. Conversely, IRF6 is upre-

gulated in poorly aggressive breast cancer cells. Functional

studies revealed that elevated IRF6 expression suppressed cell

proliferation and the tumorigenicity, enhanced cell chemother-

apeutic sensitivity. Therefore, our findings suggest that IRF6 is

a viable therapeutic target in breast cancer.

The PI3K/AKT pathway has been described as having an

important effect on tumor development.49 PIK3R2 is a PI3K

regulatory subunit, and PIK3R2 genes encode p85β regulatory
subunits. PI3K consists of p110α/p85β, and p85β mediates

p110 translocation to receptors at the cell membrane;50

augmented p110α/p85β levels lead to maximal PI3K activa-

tion, showing that p85β possibly modulates p110α activation

in a distinct manner.50,51 p85β expression augments PIP3

levels and activates the PI3K effector PKB1/2 in the absence

of a stimulus, triggering downstream AKTsignaling cascades.

Nonetheless, in the absence of a stimulus, p85β alone and

p110α/p85β together induce moderate PI3K activation, sug-

gesting that p85β regulates malignancy progression.50

In the present study, the suppression of IRF6 resulted in the

upregulation of PIK3R2, thus enhance the PI3K/AKTsignaling

activation, which was always accompanied by increased levels

ofmTOR.However, the results from theoverexpressionof IRF6

showed that these changes were reversible. More importantly,

using RNA-Seq analysis, we found that PIK3R2 participated in

most of the cancer-related and biological activity signaling path-

ways, such as the phosphatidylinositol signaling pathway and

mTOR signaling pathway, strongly implying that PIK3R2 is

a checkpoint in the activation of various malignancy signaling

pathways. Additionally, the ability of these cells to form spheres

was notably decreased when IRF6-knockdown cells were trea-

ted with the PI3K/AKT-specific inhibitor LY294002, further

demonstrating that the PI3K/AKT signaling pathway plays

a key role in the process of tumor self-renewal. However, until

now there has been no study conducted that illuminates the

mechanisms of IRF6 involved in breast cancer development.

In this study, we demonstrated for the first time that IRF6

may play an important role in breast cancer pathogenesis via the

mediation of PIK3R2. The novel findings are summarized in

Figure 6, which unveil a possible relationship between IRF6
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Figure 6 Schematic depiction. Schematic representation of IRF6-mediated PIK3R2 expression modulation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase

B (AKT)/mammalian target of rapamycin (mTOR) pathway.
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and PIK3R2. PIK3R2 function as an important role in the

activation of PI3K/AKT pathway and once upregulated the

IRF6 expression releases its inhibition of the PIK3R2 element

and consequently decreases the PIK3R2 levels, and subse-

quently regulate the activation of the PI3K/AKT pathway as

involvement in breast cancer pathogenesis, such as tumor pro-

liferation, chemoresistance, and so on. However, whether IRF6

directly binds to PIK3R2 remains to be elucidated, and the

mechanisms of how IRF6-mediates the inverse regulation of

PIK3R2 requires further investigation.

Conclusion
We have shown that the re-expression of IRF6 can restrain

PIK3R2 expression and regulate the PI3K/AKT pathway

to involve breast cancer pathogenesis. Collectively, these

experiments on IRF6 levels revealed an important role of

IRF6 in the suppressing of the progression of breast cancer

and could, therefore, serve as a potential therapeutic target

for breast cancer treatment.
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Table S1 The sequences of the PCR primer are listed

GENE Primers

IRF6 F:5’-AGAGAAGCAGCCACCGTTTGAG-3’

R:5’-GATCATCCGAGCCACTACTGGA-3’

PIK3R2 F:5’-ATGGCACCTTCCTAGTCCGAGA-3’

R:5’-CTCTGAGAAGCCATAGTGCCCA-3’

NR3C2 F:5’-AAATCACACGGCGACCTGTCGT-3’

R:5’-ATGGCATCCTGAAGCCTCATCC-3’

CST2 F:5’-TGTGCCTTCCATGAACAGCCAG-3’

R:5’-TAGGAGGTGGTCAGTGTGACTC-3’

FOXP2 F:5’-TGGATGACCGAAGCACTGCTCA-3’

R:5’-TGGGAGATGGTTTGGGCTCTGA-3’

GAPDH F:5’-AAGGTCATCCCTGAGCTGAA-3’

R:5’-TGACAAAGTGGTCGTTGAGG-3’
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