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Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the
immune destruction of islet B cells. Gene expression in peripheral blood mononuclear cells
(PBMCs) could offer new disease and treatment markers in T1DM. The objective of this study
was to explore the coexpression and dynamic molecular networks in PBMCs of T1DM patients.
Methods: Dataset GSE9006 contains PBMC samples of healthy volunteers, newly diagnosed
T1DM patients, TIDM patients after insulin treatment, and newly diagnosed type 2 diabetes
mellitus (T2DM) patients. Weighted correlation network analysis (WGCNA) was used to
generate coexpression networks in TIDM and T2DM. Functional pathways in highly corre-
lated modules of TIDM were enriched by gene set enrichment analysis (GSEA). We next
filtered the differentially expressed genes (DEGs) and revealed their dynamic expression
profiles in TIDM with or without insulin treatment. Furthermore, dynamic clusters and
dynamic protein—protein interaction networks were identified. Kyoto Encyclopedia of Genes
and Genomes pathway enrichment analysis was developed in dynamic clusters.

Results: WGCNA disclosed 12 distinct gene modules, and distinguished between correlated
networks in T1IDM and T2DM. Two modules were closely associated with TIDM. GSEA
showed that the immune response and response to cytokines were enriched in the TIDM
highly correlated module. Next, we screened 44 DEGs in newly diagnosed T1DM compared
with healthy donors, and 71 DEGs in 1-month and 97 DEGs in 4-month insulin treatment
groups compared with newly diagnosed TIDM. Dynamic expression profiles of DEGs
indicated the potential targets for TIDM treatment. Moreover, four molecular dynamic
clusters were analyzed in newly diagnosed and insulin-treated T1DM. Functional annotation
showed that these clusters were mainly enriched in the IL-17 signaling pathway, nuclear
factor-xB signaling pathway, and tumor necrosis factor signaling pathway.

Conclusion: The results indicate potential drug targets or clinical efficacy markers, as well
as demonstrating the underlying molecular mechanisms of T1DM treatment.

Keywords: type 1 diabetes mellitus, dynamic molecular networks, coexpression networks,
peripheral blood mononuclear cells

Introduction

Type 1 diabetes mellitus (T1DM) is a major form of diabetes affecting public health
around the world. The incidence of TIDM is increasing worldwide, and TIDM can
affect people at any age, but mostly occurs at a young age.' TIDM is an auto-
immune disease caused by the immune destruction of islet B cells. The body’s
immune system attacks P cells, which leads to a deficiency of insulin secretion. The
causes have still not been fully elucidated. Insulin injection is the most common
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and effective solution to maintain the blood glucose level
for patients with TIDM. Islet transplantation has been
proven to restore long-term endogenous insulin production
in TIDM patients,” but the lack of human islets limits this
treatment method.

Immunotherapy is expected to attenuate immune
responses against B cells.> However, so far, there are no
effective clinical immune-based therapies to prevent and
reverse TIDM.* Several studies have used gene expression
profile analysis to explore the pathological mechanisms and
potential treatment of diabetes.”” Islet-infiltrating immune
effectors and metabolic derangements in TIDM could be
sampled in peripheral blood mononuclear cells (PBMCs).*
It has been reported that PBMCs are suitable for the assess-
ment of immunological markers in TIDM.’ Dynamic
alterations in key genes in PBMCs after insulin therapy
may offer new insights into T1DM treatment, among
other things. Several studies have focused on the roles of
PBMCs in TIDM, using bioinformatic analysis.®'%'?
However, the differences in coexpression networks in
PBMCs of TIDM and type 2 diabetes mellitus (T2DM),
as well as the dynamic molecular networks during insulin
treatment of TIDM, have not been fully elucidated.

In the present work, coexpression networks of dataset
GSE9006 were analyzed to reveal differences between
TIDM and T2DM. Functional pathway enrichment of
highly correlated modules in TIDM was then analyzed
by gene set enrichment analysis (GSEA). Differentially
expressed genes (DEGs) in newly diagnosed and insulin-
treated T1DM patients were filtered to elucidate the poten-
tial key genes in TIDM treatment. Furthermore, we
explored the dynamic networks of altered DEGs after
insulin treatment. The results provide potential drug tar-
gets and clinical efficacy markers for TIDM treatment.

Materials and methods

Microarray and data processing

Microarray dataset GSE9006,° containing 117 PBMC
samples from 2—18-year-old children, was obtained from
the Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/) database in the National Center for
Biotechnology Information. The samples were acquired
from 24 healthy volunteers, 43 newly diagnosed T1DM
patients, 19 1-month (1M) and 19 4-month (4M) follow-up
T1DM samples after insulin treatment, and 12 newly diag-
nosed T2DM patients. Gene expression was detected
based on the GPL96, HG-U133A Affymetrix Human

Genome U133A Array platform. Raw data (CEL files)
were processed by a robust multichip average algorithm
for background correction, normalized using the quantile
normalization method.

Construction of coexpression networks

by weighted gene correlation network
analysis (WGCNA)

WGCNA was applied to reveal the weighted correlations
between genes and clinical features, as previously
described.>'* We used the WGCNA package in R to perform
weighted correlation network analysis of all genes of healthy
samples, and newly diagnosed T1DM and T2DM patients in
GSE9006. The appropriate soft threshold power was auto-
matically calculated. Here, the power of =6 was selected to
ensure a scale-free network. Gene modules in different colors
were generated by hierarchical clustering dendrograms, and
the module structure was visualized by topological overlap
matrix plots. The correlation coefficients between each mod-
ule and clinical trait were analyzed, and were referred to as
module eigengene significances. The module eigengene is
defined as the first principal component of a given module. It
can be considered as being representative of the gene expres-
sion profiles in a module.

Gene set enrichment analysis (GSEA)
GSEA was applied on the highly correlated modules iden-
tified by WGCNA to explore mRNA functional pathways
in TIDM samples. GSEA software (version 3.0; Broad
Institute, Cambridge, MA, USA) was used. The annotated
gene set ¢5.bp.v6.2.symbols.gmt was chosen as the refer-
ence gene set. A false discovery rate (FDR) <0.25,'
enrichment score >0.6, and gene sets >15 were set as the
cut-off criteria.

Classification of DEGs in TIDM and

insulin treatment samples

DEGs in newly diagnosed TIDM vs control, and newly
diagnosed vs insulin-treated T1DM were analyzed based
on the limma package in R. Statistically significant DEGs
were defined with an FDR <0.05 and log,fold change
>0.585 as the cut-off criteria.

Dynamic analysis of DEGs by Short

Time-series Expression Miner (STEM)
STEM software (version 1.3.11; Carnegie Mellon
University, Pittsburgh, PA, USA) was used for the analysis
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of DEGs' dynamic expression profiles.'>'® DEGs were
sampled at four stages: normal, newly diagnosed T1DM,
and after 1 month (1IM) and 4 months (4M) of insulin
treatment for TIDM. DEGs in newly diagnosed T1DM vs
control, and newly diagnosed vs insulin-treated T1DM were
uploaded and normalized by STEM. The STEM clustering
method was chosen, the maximum number of model pro-
files was set to 20, and the maximum unit change in model
profiles between time-points was set to 2. The significance
level at which the number of genes assigned to a model
profile differed from the expected number of genes assigned
was set to 0.05, with Bonferroni correction. The rest of the
parameters retained their default values.

Identification of dynamic clusters during

insulin treatment

The Cytoscape (version 3.6.1; The Cytoscape Consortium,
New York, NY, USA) plugin DyNetViewer'’ was used to
provide the construction, analysis, and visualization of
dynamic protein—protein interaction networks. For dynamic
module analysis, three groups, ie, newly diagnosed, 1M and
4M insulin-treated T1DM, were included. A time-course
protein interaction networks algorithm was applied to con-
struct networks, and the threshold was set to 7. The
Molecular Complex Detection clustering algorithm was
used to analyze clusters of dynamic networks. The degree
cut-off was set to 5, maximum depth to 100, and K-core to 2.

Functional pathway annotation

The gene functional annotation of Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment was analyzed by
the Cytoscape ClueGO plugin'® for highly correlated mod-
ules and dynamic modules. Pathway-like visualization was
created by the CluePedia plugin.'® The ClueGO plugin
was set as follows: the kappa-score threshold was set to
0.4 and the P-value to 0.05, with the two-sided hypergeo-
metric test and Bonferroni stepdown.

Results

Coexpression gene networks in newly
diagnosed T1DM and T2DM patients

To screen significantly enriched coexpression networks of
T1DM patients and distinguish between correlated networks
in TIDM and T2DM, WGCNA was carried out to disclose
highly correlated gene modules. In total, 24 healthy samples,
43 newly diagnosed T1DM, and 12 newly diagnosed T2DM
patients in the microarray dataset GSE9006 were included in

this analysis. After data processing, a total of 13,434 probes
was obtained. The sample dendrogram and clinical trait heat-
map of GSE9006 are shown in Figure 1A. Five clinical
features, namely T1DM, T2DM, age, sex, and initial pH, are
shown for 79 samples from GSE9006 (Figure 1A). Thus, 12
distinct gene modules were identified by the hierarchical clus-
tering dendrogram according to the gene expression profiles
(Figure S1A). The color row shows the module assignment
determined by the dynamic tree cut in R. A topological overlap
matrix plot was generated by calculating the correlation matrix
of gene expression (Figure S1B). Branches in the hierarchical
clustering dendrograms correspond to modules. Modules are
displayed in the color bars below and to the right of the
dendrograms. Light colors indicate low topological overlap,
and high coexpression interconnectedness is indicated by pro-
gressively darker red. Eigengene adjacency heatmaps were
applied to identify and display the module correlations
(Figure 1B). To elucidate significant associations between
modules and clinical traits, module—trait relationships were
analyzed. The results showed that TIDM was positively cor-
related with the purple module and negatively correlated with
the magenta module (Figure 1C). T2DM was negatively cor-
related with the purple module and positively correlated with
the magenta module.

The genes in the magenta module were mainly
enriched in thermogenesis and viral carcinogenesis
(Figure 1D), while the genes in the purple module were
mainly enriched in proteasomes (Figure 1E). These results
indicate opposite module correlations between T1DM and
T2DM. We found that the black module was associated
with the relaxin signaling pathway, insulin secretion, and
pancreatic secretion (Figure S2A); the blue module was
associated with complement and coagulation cascades,
phototransduction, pathways in cancer, olfactory transduc-
tion, the PI3K-Akt signaling pathway, microRNAs in
cancer, and neuroactive ligand-receptor interaction
(Figure S2B); the pink module was associated with hepa-
titis B, toxoplasmosis, and leishmaniasis (Figure S2C); the
green module was associated with lysosomes, ribosomes,
and glycolysis/gluconeogenesis (Figure S2D); the tan
module was associated with apoptosis, mRNA surveil-
lance pathway, fluid shear stress, and atherosclerosis
(Figure S2E); the brown module was associated with
autophagy, RNA transport, apoptosis, ribosome biogenesis
in eukaryotes, and mismatch
the

Staphylococcus —aureus

repair (Figure S2F);

green—yellow module was associated with

infection, natural killer cell-

mediated cytotoxicity, osteoclast differentiation, the
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Figure | Correlation of modules and clinical traits. (A) Cluster analysis of samples and clinical features. In the TIDM, T2DM, sex, and initial pH rows, the red
color represents TIDM, T2DM, male, and initial pH <7.3 samples, respectively. In the age row, the red color intensity is proportional to higher age. The gray color
represents no data for initial pH. (B) Interactions among different gene coexpression modules. Red represents a positive correlation and blue represents
a negative correlation. (C) Module-trait associations. Each row corresponds to a module eigengene and each column to a clinical trait. Each cell contains the
corresponding correlation in the upper line and the P-value in the lower line. Red represents a positive correlation and blue represents a negative correlation. The
different shades of red and blue represent the significance of the difference. (D, E) Gene annotation enrichment analysis of KEGG pathway in magenta module (D)

and purple module (E).

Abbreviations: TIDM, type | diabetes mellitus; T2DM, type 2 diabetes mellitus; KEGG, Kyoto Encyclopedia of Genes and Genomes.

tumor necrosis factor (TNF) signaling pathway, apoptosis,
transcriptional misregulation in cancer, cytokine—cytokine
receptor interaction, and necroptosis (Figure S2G); the
turquoise module was associated with aldosterone synth-
esis and secretion, the cyclic adenosine monophosphate
(cAMP) signaling pathway, the calcium signaling pathway,
and olfactory transduction (Figure S2H); the yellow

module was associated with herpes simplex virus-1 infec-
tion, spliceosomes, endocytosis, and protein processing in
the endoplasmic reticulum (Figure S2I); and the red mod-
ule was associated with Fc-gamma-R-mediated phagocy-
tosis, lysosomes, primary immunodeficiency, ribosomes,
hematopoietic cell lineage, and the T-cell receptor signal-
ing pathway (Figure S2J).
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GSEA of highly correlated modules in

TI1DM patients

To explore the functional pathway enriched in T1DM highly
correlated modules, GSEA was conducted to search the Gene
Ontology (GO) biological process in the magenta and purple
modules. As a result, nine functional gene sets were enriched
in the magenta module, while no gene sets met the cut-off
criteria in the purple module (Figure 2). The nine functional
gene sets were upregulated in TIDM PBMCs, and mainly
focused on immune response, locomotion, cell motility,

Enrichment plot: GO_LOCOMOTION

Enrichment plot:

regulation of cellular component movement, cellular com-
ponent morphogenesis, movement of cell or subcellular
components, regulation of protein complex assembly,
response to cytokines, and ion transmembrane transport.
The genes included in these gene sets are listed in Table 1.

Identification of DEGs in newly diagnosed

and insulin-treated T1DM patients
T1DM patients were divided into three groups: newly diag-
nosed TIDM patients, and 1M and 4M insulin-treated
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Figure 2 Enrichment plots of Gene Ontology biological process pathways in magenta module.
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patients. To elucidate the altered genes after insulin treat-
ment, we filtered the 44 DEGs in newly diagnosed TIDM
patients compared with healthy donors, and 71 DEGs in the
IM and 97 DEGs in the 4M insulin-treated groups com-
pared with the newly diagnosed group without insulin treat-
ment, respectively (Figure 3A). DEGs in module 1 were
changed in newly diagnosed T1DM vs the control group,
IM insulin-treated and 4M vs newly diagnosed T1DM
group. DEGs in module 2 were changed in newly diagnosed
T1DM vs the control group, and 1M insulin-treated vs the
newly diagnosed TIDM group. DEGs in module 3 were
changed in newly diagnosed T1DM vs the control group,
and 4M insulin-treated vs the newly diagnosed T1DM
group. We found that eight DEGs in module 1 were included
in three groups, while two DEGs in module 2 and 11 DEGs
in module 3 were included in only two groups (Figure 3A).
IFI44L in module 2 and TUBBI in module 3 were down-
regulated in T1DM, and upregulated by 1M or 4M insulin

treatment, respectively. The remaining DEGs in modules
1-3 were all upregulated in T1DM, and downregulated
after IM and/or 4M insulin treatment (Figure 3B). The
expression of DEGs in modules 1-3 is displayed in
a heatmap (Figure 3C). Our results imply that these DEGs
may be appropriate drug targets and clinical therapeutic
markers for TIDM.

Dynamic expression analysis of DEGs in
newly diagnosed and insulin-treated
TIDM patients

For further investigation of potential drug targets or treat-
ment markers in TIDM, we next analyzed the dynamic
expression profiles of DEGs in Figure 3A. STEM software
can easily determine and visualize the behavior and trends in
gene expression in different periods.'® In total, 20 expression

behaviors were enriched, and each box corresponds to
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Figure 3 Classification of DEGs in TIDM and insulin-treated patients. (A) Venn diagram showing the DEGs in different groups. (B) DEGs in modules 1-3. (C) Heatmap of
DEGs in modules 1-3. Red indicates upregulation and blue indicates downregulation.
Abbreviations: TIDM, type | diabetes mellitus; Con, control; DEG, differentially expressed gene; IM, | month; 4M, 4 months; ns, not significant.
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a different temporal expression model profile (Figure 4A).
These 20 profiles were generated independently of our data
by STEM. Then, each DEG in our study was assigned to the
model profile to which its time series matched most closely,
based on the correlation coefficient. We considered that
profiles with two expression behaviors were meaningful in
T1DM treatment. The first trend was that genes increased in
the newly diagnosed T1DM period compared with control,
and then decreased at 1M or 4M treatment, as in profiles 13
(Figure 4B), 14 (Figure 4C), and 16 (Figure 4D). The second
trend was that genes decreased in the newly diagnosed
T1DM period compared with control, and then increased
at IM or 4M treatment, as in profile 12 (Figure 4E). The
results indicate that genes in these profiles could be potential
targets for TIDM treatment and as clinical markers.

Dynamic cluster analysis during insulin

treatment in TIDM

To elucidate the functional pathway involved in insulin
treatment of T1DM, dynamic cluster attributions from
newly diagnosed, 1M and 4M T1DM PBMCs were ana-
lyzed. The clusters that represented highly interconnected
regions at different stages were defined as important mod-
ulators in the corresponding period. Altogether, four mole-
cular cluster were identified for insulin treatment in T1IDM
(Figure SA-D). According to the dynamic cluster attribute
of modularity, clusters 1 and 2 contributed to newly diag-
nosed T1DM, cluster 3 contributed to the 1M insulin treat-
ment period, and cluster 4 contributed to the 4M insulin
treatment period (Figure 5E). For functional pathway
enrichment of the dynamic clusters in each period, KEGG
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is the profile ID, and the number in the bottom left corner is the gene number of this profile. The colored profiles (13 and 14) indicate that a statistically significant number
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pathway enrichment was applied by ClueGO. Clusters 1
and 2 of the newly diagnosed T1DM period were mainly
enriched in the IL-17 signaling pathway (Figure S5F).
Cluster 3 of the 1M treatment period was mainly enriched
in the IL-17 signaling pathway, amphetamine addiction,
nuclear factor-xB (NF-xB) signaling pathway and leishma-
niasis, and FOSB, CASPS, TNFAIP3, FOS, NFKBIA, and
ILIB were shared by two or more pathways (Figure 5G).
Cluster 4 of the 4M treatment period was mainly enriched
in the NF-xB signaling pathway and TNF signaling path-
way, and ILIB, NFKBIA, and TNFAIP3 participated in as
many as two pathways (Figure 5H).

Discussion

The use of bioinformatics analysis offers new insights into
T1DM diagnosis and treatment. Several researchers have
previously analyzed the GSE9006 dataset. Kaizer et al, who
provided the original data for GSE9006, demonstrated that
T1DM and T2DM share a final common pathway, including
IL-1p and prostaglandin secretion by immune effector cells.®
Riquelme et al analyzed the coexpression network of all
T1DM subjects, including newly diagnosed, 1M and 4M
insulin-treated samples.'® We also analyzed the coexpression
networks by WGCNA in the present study. Unlike the pre-
vious studies mentioned here, we included a control group,
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Figure 5 Cluster analysis of dynamic network during insulin treatment in TIDM. (A-D) Four dynamic clusters were identified by the DyNetViewer MCODE algorithm in
newly diagnosed and insulin-treated TIDM. (E) Dynamic cluster attributes of modularity were calculated in three periods. (F-H) KEGG pathway enrichment of dynamic
clusters in each period (F, newly diagnosed TIDM; G, |-month insulin-treated TI1DM; H, 4-month insulin-treated T1DM) were analyzed by ClueGO.

Abbreviations: TIDM, type | diabetes mellitus; IM, | month; 4M, 4 months; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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newly diagnosed T1DM and T2DM, and thus we could
exclude the influence of insulin treatment in TIDM genes,
and demonstrate differences between the two types of dia-
betes. Although both TIDM and T2DM are characterized by
hyperglycemia, our results revealed opposite coexpression
networks in PBMCs in these two types of diabetes.
Coexpression network analysis identified altogether 12 dis-
tinct gene modules in newly diagnosed T1DM and T2DM
PBMCs. We found that the purple module was positively
correlated with T1DM but negatively correlated with T2DM.
In contrast, the magenta module was negatively associated
with T1DM but positively associated with T2DM (Figure 1).
KEGG pathway enrichment indicated that the magenta mod-
ule was mainly involved in thermogenesis and viral carcino-
genesis (Figure 1D), while the purple module was involved
with proteasomes (Figure 1E). For further investigation,
GSEA combined the gene expression profiles of newly diag-
nosed T1DM with the gene set database to explore the func-
tional pathway enrichment in TIDM highly correlated
modules. As a result, the magenta module was found to be
associated with the immune response and response to cyto-
kines for the GO biological process (Figure 2). Previous
studies indicated that non-shivering thermogenesis leads to
the recruitment and activation of immune cells in various
metabolic tissues,”” and increased thermogenesis could be
found in children with TIDM.?' Exposure of cells to inflam-
matory cytokines induced the expression of proteasome
immuno-subunits in peripheral tissues and constitutes
a mechanism that prevents the development of CD8 T-cell-
mediated autoimmune diseases, such as TIDM.?* The results
implied the diverse effects of PBMCs in T1DM and T2DM,
and revealed the related mechanisms in the development of
T1DM. In addition, our results indicated that T1DM may be
related to the cellular movement of PBMCs. Nine genes
(GSK3B, PDPKI, LEFI, HMGBI, ETSI, TIAMI,
NCKAPIL, RACI, and FGFRI) in the magenta module
were included in four cellular movement-related pathways,
namely locomotion, cell motility, regulation of cellular com-
ponent movement, and movement of cell or subcellular
component (Table 1), and may play critical roles in TIDM
pathogenesis. The relationships between T1DM and other
enriched pathways, such as cellular component morphogen-
esis, regulation of protein complex assembly, and ion trans-
membrane transport, were not fully explored,

To investigate the changes in expression of potential
key genes, Liu et al analyzed the DEGs of GSE9006 in
three periods, including newly and insulin-treated T1DM,
by comparison with a control group.'" In the present study,

we also identified the DEGs in these periods. The differ-
ence is that we screened the DEGs by comparing insulin
treatment groups with newly diagnosed T1DM and con-
structed dynamic clusters attributed to different treatment
periods, and therefore we were able to filter out the DEGs
that changed after insulin treatment in TIDM. Safari-
Alighiarloo et al found several cytokines and chemokines
in B cells and their receptors in PBMCs.'? In this study, we
explored the dynamic networks of altered DEGs after
insulin treatment, which could possibly provide potential
drug targets or clinical efficacy markers for T1DM
treatment.

As shown in Figure 3, we found that DEGs in module
1 were significantly changed in both short (1IM) and long
(4M) periods of insulin therapy. Meanwhile, DEGs in
module 2 only changed significantly in 1M treatment,
and DEGs in module 3 only altered remarkably in 4M
treatment. Therefore, we speculate that DEGs in module 1
would be the most suitable markers for TIDM clinical
features and treatment, and DEGs in module 3 would be
useful markers for long-term treatment of TIDM. The
dynamic expression profiles of all DEGs in newly diag-
nosed T1DM and insulin treatment groups were then ana-
lyzed. As a consequence, MAFB, AQPY, FPR2, NAMPT,
EGR3, TRIBI, and FOSB in module 1 were included in
meaningful profiles 13 and 14. These genes are more
likely to be potential key genes in insulin treatment of
T1DM. High expression of MAFB in human pancreatic
beta-cells was reported to increase cellular vulnerability to
viral infections associated with the etiology of T1DM.*
Expression of AQP9 was upregulated in the liver in
TIDM.?** FPR?2 helped to promote regeneration of the
corneal epithelium in T1DM mice.?® Our data indicate that
these three genes may also play roles in the PBMCs in
T1DM. Nurten et al demonstrated that serum NAMPT
levels in pediatric TIDM patients at onset did not differ
significantly from healthy controls, but were elevated in
longstanding patients.”’” Our study showed the distinct
result that the NAMPT level in PBMCs increased at
onset, but decreased after insulin treatment. The roles of
the remaining genes in T1DM, apart from those mentioned
in this paragraph, are not fully understood.

In addition, dynamic cluster attributions from newly
diagnosed and insulin-treated TIDM were detected for
pathway functional annotation. The IL-17 signaling path-
way was enriched in clusters 1 and 2 in the newly diag-
nosed TIDM period, and cluster 3 in the 1M insulin
treatment period. This result is consistent with previous
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research. IL-17 secreted by Th17 cells could aggravate the
progression of TIDM.*® Omega-3 polyunsaturated fatty
acids ameliorated TIDM, accompanied by suppression of
IL-17.%° Our results further implied that the IL-17 signaling
pathway may mainly have effects in the early stage of
insulin treatment, since the signaling pathway was not
enriched in the 4M treatment period. The NF-xB signaling
pathway was enriched in the 1M and 4M insulin treatment
periods, while the TNF signaling pathway was enriched in
the 4M treatment period. NFKBIA, ILIB, and TNFAIP3
were involved in these pathways at three different stages.
Previous studies demonstrated that hyperglycemia induced
NF-xB activation in isolated PBMCs of TIDM patients,”
and glucose control with insulin resulted in a reduction of
NF-xB binding activity by translocating NFKBIA (also
known as IxB-a) into the cytoplasm of mononuclear cells
in recently manifested TIDM patients.*! The secretion of
IL-1pB and TNF-a was increased in monocytes from T1DM
patients.*> We indicated that the TNF signaling pathway
was mainly involved in the relatively late period of insulin
treatment. The effects of hyperglycemia on IL-1p expres-
sion in TIDM PBMCs and islet cells showed conflicting
results.*® In agreement with other research on GSE9006,%'°
we identified that IL-1f played an important role in TIDM
PBMCs. We also found that IL-1f participated in the insulin
treatment course of TIDM PBMCs. However, the effect of
TNFAIP3 in PBMCs in TIDM remains unknown and needs
further exploration.

Conclusion

The study showed key genes that may be potential drug
targets and clinical therapeutic markers for TIDM.
However, further experiments are still needed to explore
the function of genes and pathways in PBMCs in TIDM.

Abbreviation list

DEG, differentially expressed gene; FDR, false discovery
rate; GEO, Gene Expression Omnibus; GO, Gene Ontology;
GSEA, gene set enrichment analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; NF-»«B, nuclear fac-
tor-xB; PBMC, peripheral blood mononuclear cell; STEM,
Short Time-series Expression Miner; T1DM, type 1 diabetes
mellitus; T2DM, type 2 diabetes mellitus; TNF, tumor necro-
sis factor; WGCNA, weighted correlation network analysis.
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Figure S1 Construction of coexpression gene modules by weighted correlation network analysis. (A) Construction of coexpression modules based on a dynamic branch-
cutting method. The merge cut height is 0.25. The gray module contains the unassigned genes. (B) Heatmap plot of topological overlap in the gene network. Colors in the
matrix represent the degree of topological overlap. The gene dendrogram and module assignment are shown along the left and top.
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Figure S2 Gene annotation enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in different modules. (A) Black module. (B) Blue module. (C)
Pink module. (D) Green module. (E) Tan module. (F) Brown module. (G) Green—yellow module. (H) Turquoise module. (I) Yellow module. (J) Red module.

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy

Publish your work in this journal

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy is
an international, peer-reviewed open-access journal committed to the
rapid publication of the latest laboratory and clinical findings in the
fields of diabetes, metabolic syndrome and obesity research. Original
research, review, case reports, hypothesis formation, expert opinion

Dove

and commentaries are all considered for publication. The manu-
script management system is completely online and includes a very
quick and fair peer-review system, which is all easy to use. Visit

http://www.dovepress.com/testimonials.php to read real quotes from
published authors.

Submit your manuscript here: https://www.dovepress.com/diabetes-metabolic-syndrome-and-obesity-targets-and-therapy-journal

982

submit your manuscript

Dove!

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:12


http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

