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Background: Taurine-upregulated gene 1 (TUG1) has been documented to be implicated in

carcinogenesis and chemoresistance in solid tumors. Here, we explored the biological role

and regulatory mechanism of TUG1 in progression and chemoresistance of urothelial

carcinoma of the bladder (UCB).

Methods: Nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) mRNA and TUG1

expression was determined by quantitative reverse transcription polymerase chain reaction.

Western blot was performed to determine the protein levels of Nrf2, p-glycoprotein (p-gp),

Ki-67 (Ki67), matrix metalloproteinase (MMP)-2 and MMP-9 and cleaved caspase-3. The

effects of either Nrf2 or TUG1 knockdown on the proliferation, invasion, apoptosis and

adriamycin (ADM) resistance of UCB cells were evaluated by CCK-8 assay, transwell

invasion assay and flow cytometry analysis. Xenograft tumor assay was carried out to

confirm the role of Nrf2 and TUG1 in ADM resistance of UCB cells in vivo.

Results: Nrf2 and TUG1 were upregulated in UCB tissues and cell lines. A positive

correlation between Nrf2 and TUG1 expression was discovered in UCB tissues. Moreover,

Nrf2 and TUG1 expression levels were higher in ADM-resistant cells compared with those in

parental cells. Furthermore, Nrf2 positively regulated the expression of TUG1 in UCB cells.

Knockdown of either Nrf2 or TUG1 led to the inhibition of cell proliferation and invasion

and promotion of cell apoptosis, accompanying with down-regulation of Ki67, MMP-2 and

MMP-9 and up-regulation of cleaved caspase-3. Knockdown of either Nrf2 or TUG1

enhanced the sensitivity of BIU-87/ADM and T24/ADM cells to ADM, as indicated by

decreased expression of p-gp. Besides, knockdown of either Nrf2 or TUG1 inhibited tumor

growth in the absence or presence of ADM in vivo.

Conclusions: Nrf2 induces the up-regulation of TUG1 to promote progression and ADM

resistance in UCB.

Keywords: urothelial carcinoma of the bladder, nuclear factor-erythroid 2 (NF-E2)-related

factor 2, taurine-upregulated gene 1, adriamycin

Introduction
Urothelial carcinoma of the bladder (UCB) is a malignancy arising from the tissues

of the urinary bladder. Metastasis and recurrence are regarded as the main obstacles

in the treatment of bladder cancer. Clinically, adriamycin (ADM)-based chemother-

apy is an important accessory treatment for bladder cancer. ADM is capable of

inhibiting the synthesis of cellular DNA and RNA, which results in cancer cell
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death.1 Although most patients achieve initial induction

remission with this treatment, the 5-year survival rate of

bladder cancer patients is still disappointing due to the

occurrence of therapeutic drug resistance.2 Hence, under-

standing the molecular mechanism that underlies chemore-

sistance can help to develop an effective therapy for UCB.

Nuclear factor-erythroid 2 (NF-E2)-related factor 2

(Nrf2) is a basic leucine zipper transcription factor that

plays a vital role in the cellular responses to oxidative

stress.3 Nrf2 is capable of regulating cellular redox

homeostasis by binding to the antioxidant response ele-

ments (AREs) in its target gene promoter. Under normal

conditions, Kelch-like ECH-associated protein 1

(keap1), as a major inhibitor of Nrf2, interacts with

Nrf2 and anchors Nrf2 in the cytoplasm. Keap1 forms

a complex with cullin3, which facilitates the ubiquitina-

tion and subsequent proteolysis of Nrf2. Under oxidative

stress, Nrf2 dissociates from keap1 and travels into the

nucleus where it activates the transcription of ARE-

driven genes.4 Nrf2 is a transcription factor master reg-

ulator of many diverse cellular mediators and it can

reduce sensitivity of cancer cells to chemotherapeutic

drugs.5 There is now growing evidence to suggest that

Nrf2 hyperactivation contributes to the development of

tumors and chemoresistance by regulating its targets,

such as ATP-binding cassette, subfamily G, member 2

and ATP-binding cassette sub-family F member 2.6,7

Down-regulation of Nrf2 reduced clonogenicity of

acute myeloid leukemia cells and enhanced their che-

motherapeutic responsiveness.8 Nrf2 modulated the sen-

sitivity of cancer cells towards platinum, including

cervical cancer cell line ME180R, ovarian cancer cell

line SKOV3 and lung adenocarcinoma cell line A549

cells.9 These recent data suggest that Nrf2 is an vital

mediator in the mechanism of chemotherapeutic drug

resistance in cancer cells. However, whether Nrf2 is

involved in the ADM resistance in UCB and its under-

lying mechanism remain elusive.

Long non-coding RNAs (lncRNAs) are actively being

investigated for their potential roles in human cancers.

Emerging evidence suggests that lncRNAs serve as

major regulators in tumorigenesis. Aberrant expression of

lncRNAs has been reported to confer tumor growth, cancer

cell metastasis, apoptosis and chemoresistance.10–12 As an

example, lnc-LBCS functioned as a tumor suppressor in

bladder cancer stem cells (BCSCs), which was tightly

correlated with tumor grade, chemotherapy response and

prognosis. Furthermore, lnc-LBCS inhibited tumorigenesis

and enhanced chemosensitivity through inhibiting enhan-

cer of zeste homolog 2/SRY (sex determining region Y)-box

2 axis in BCSCs.13 Taurine-upregulated gene 1 (TUG1),

located at chromosome 22q12, was identified as an onco-

gene in tumorigenesis and was responsible for

chemoresistance.14,15 Previous studies in UCB identified

TUG1 associated with UCB progression. High expression

of TUG1 has been documented to be correlated with

enhanced UCB cell proliferation and matastasis.16

Additionally, ADM-resistant acute myeloid leukemia tis-

sues and HL60/ADR cells have been shown to express

high levels of TUG1, and its knockdown facilitated the

sensitivity of HL60/ADR cells to ADM by epigenetically

promoting miR-34a expression.17 A previous paper

reported that TUG1 was responsible for the ADM resis-

tance of bladder urothelial carcinoma.18 However, the

upstream regulatory mechanism of TUG1-mediated pro-

gression and ADM resistance in UCB remains unknown.

As the key transcription factor, Nrf2 has been demon-

strated to control lncRNA expression in erythroid cells

and mammary stem cells.19,20 Therefore, we speculated

that Nrf2-mediated up-regulation of lncRNA TUG1 was

crucial to the progression and ADM resistance in urothe-

lial carcinoma of the bladder.

In this study, we hypothesized that aberrant expression

of Nrf2 and TUG1 in UCB might drive a mechanism for

ADM resistance, and found that Nrf2 induced the up-

regulation of TUG1 to promote progression and ADM

resistance in UCB.

Materials and methods
Patient samples
We obtained UCB tissues and paired normal tissues from 27

patients with histopathologically diagnosed UCB in Huaihe

Hospital of Henan University. Clinicopathological features of

patients with UCB were showed in Table 1. All participates

did not accept any adjuvant therapy prior to surgery. This study

was reviewed and approved by the Ethics Committee of

Huaihe Hospital of Henan University, and all written informed

consents were obtained.

Cell culture
Human UCB cell lines (EJ-1, 5637 and T24) and normal

human urothelial cells (SV-HUC-1) were obtained from

American Type Culture Collection (ATCC, Manassas, VA,

USA). Human UCB cell line BIU-87 was purchased from

the Chinese Academy of Sciences Cell Bank (Shanghai,
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China). BIU-87/ADM and T24/ADM cells were estab-

lished by stepwise exposure of BIU-87 and T24 cells to

increasing concentrations of ADM (0.1, 0.2, 0.4, 0.6, 0.8,

1.0 μg/ml). Each round screened the surviving cells for the

beginning of the next drug resistance concentration, until

the cells surviving in 1 μg/ml were BIU-87/ADM and T24/

ADM. Cells were incubated in RPMI-1640 medium

(Solarbio, Beijing, China) supplemented with 10% fetal

bovine serum (FBS; Solarbio), streptomycin (100 mg/ml;

Solarbio) and penicillin (100 units/ml; Solarbio) and main-

tained in a humidified atmosphere of 95% air and 5% CO2

at 37°C.

To knockdown Nrf2, BIU-87 and T24 cells were trans-

fected with small interfering RNA (siRNA) specific for

Nrf2 (si-Nrf2) or treated with ML385 (2 μM, a specific

Nrf2 inhibitor). Similarly, si-TUG1 was used to knock-

down TUG1. After 48 h of incubation, cells were collected

to analyze the expression of Nrf2 and TUG1.

Cell transfection
The coding sequence of Nrf2 was amplified and subcloned

into pcDNA3.1 to generate pcDNA-Nrf2. si-Nrf2, si-

TUG1, sh-Nrf2, sh-TUG1 and matched controls were

synthesized by Genechem (Shanghai, China). Cell

transfection was performed using Lipofectamine 2,000

(Invitrogen, Carlsbad, CA, USA), in accordance with the

manufacturer’s specifications.

Transwell invasion assay
After treatment, BIU-87 and T24 cells in serum-free med-

ium were seeded in the upper part of the transwell cham-

ber (Corning, Steuben County, New York, USA), which

was precoated with Matrigel (Franklin Lakes, NJ, USA).

Directional invasion was induced through addition of 10%

FBS-containing RPMI-1640 medium to the lower part of

the transwell chamber and cells were allowed to invade for

24 h in a 5% CO2 incubator at 37°C. Remaining cells on

the inner side were gently removed with a cotton swab and

cells adherent to the outer side were fixed with 4% paraf-

ormaldehyde (Solarbio), followed by staining with 0.1%

crystal violet (Solarbio) for 15 min. The number of

invaded cells was counted in six random fields under a

light microscope.

Detection of cell proliferation capacity
Cells were seeded in a 96-well plate at a density of 1×105

cells per well and transfected with si-Nrf2, si-TUG1 or

siRNA, followed by incubation with different concentra-

tions (0, 5, 10, 20 and 40 μg/ml) of ADM. CCK-8

reagent (10 μl; Beyotime, Shanghai, China) was added

into each well. After 2 h of incubation, the absorbance

value (OD value) at 450 nm was detected using a

NanoDrop spectrophotometer (Thermo Fisher Scientific,

Wilmington, DE, USA).

Flow cytometry
The apoptosis of BIU-87 and T24 cells was evaluated

using the Annexin V-APC/7-AAD Apoptosis kit

(MultiSciences, Shanghai, China), following the manu-

facturer’s direction. Briefly, BIU-87 and T24 cells were

collected, washed with PBS, and resuspended in 1× bind-

ing buffer after transfection. Thereafter, cells were incu-

bated with Annexin V-FITC and PI for 15 min at 37°C

in darkness. After addition of 1 × binding buffer, flow

cytometry was utilized to evaluate the apoptosis of

CAL-27 and TSCCA cells by measuring the mean fluor-

escent intensity.

Western blot analysis
Total protein was prepared from UCB tissues and cells

using RIPA buffer, and protein quantification was con-

ducted by a spectrophotometer (Thermo Fisher Scientific).

Table 1 Clinicopathological features of patients with urothelial

carcinoma of the bladder (UCB)

Characteristics Number of cases

Age (years)

≤55 13

>55 14

Sex

Male 19

Female 8

Stage

T1-2 17

T3-4 10

Pathological grade

G1 9

G2 12

G3 6

Lymph node metastasis

Negative 22

Positive 5

Number of tumors

Solitary 20

Multiple 7

Dovepress Sun et al

Cancer Management and Research 2019:11 submit your manuscript | www.dovepress.com

DovePress
6081

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Protein extracts were subjected to 14% sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE),

followed by transfer to polyvinylidene fluoride membranes

(Millipore, Bradford, MA, USA). After blocking with 5%

nonfat milk, membranes were probed with primary antibo-

dies at 4°C overnight, followed by incubation with horse-

radish peroxidase-conjugated secondary antibody (Boster,

Wuhan, China) for 1 h at room temperature. Primary anti-

bodies were as follows: anti-Nrf2 (R&D Systems,

Minneapolis, MN, USA), anti-Ki-67 (Boster), anti-matrix

metalloproteinase (MMP)-2 (R&D Systems), anti-MMP-9

(R&D Systems), anti-cleaved caspase 3 (R&D Systems),

anti-p-glycoprotein (p-gp; Abcam, Cambridge, MA, USA)

and anti-β-actin (Boster). Immunoblots were developed by

ECL reagents (Pierce, Rockford, IL, USA) and quantified

by the Image J software (National Institutes of Health,

NY, USA).

Quantitative reverse transcription

polymerase chain reaction
RNA isolation was performed using TRIzol reagent (Life

Technologies, Carlsbad, CA) and the cDNA was prepared

from 1 μg of RNA using PrimeScript™ RT reagent Kit

(Takara, Dalian, China). Quantitative reverse transcription

polymerase chain reaction (RT-PCR) was carried out to

analyze the expression of TUG1, Nrf2 and MDR1 using

SYBR® Premix Ex Taq kit (Takara) in the ABI prism

7900 sequence detection system (Life Technologies).

Relative expression levels of TUG1, Nrf2 and MDR1 were

normalized to β-actin using the 2−ΔΔCt method. Primer

sequences were listed as follows: TUG1 forward, 5ʹ-TAG
CAG TTC CCC AAT CCT TG-3ʹ and reverse, 5ʹ-CAC

AAA TTC CCA TCA TTC CC-3ʹ; Nrf2 forward, 5ʹ-ACA

CGG TCC ACA GCT CAT C-3ʹ and reverse, 5ʹ-TGT CAA

TCA AAT CCA TGT CCT G-3ʹ; MDR1 forward, 5ʹ-GCT

GTC AAG GAA GCC AAT GCC T-3ʹ and reverse, 5ʹ-TGC

AAT GGC GAT CCT CTG CTT C-3ʹ; β-actin forward, 5ʹ-

TCC CTG GAG AAG AGC TAC GA-3ʹ and reverse, 5ʹ-

AGC ACT GTG TTG GCG TAC AG-3ʹ.

Xenograft tumor assay
Animal protocols were in strict accordance with the guid-

ing principles of institutional animal ethics committee. All

animal experiments were reviewed and approved by the

Experimental Animal Ethical Committee of the Huaihe

Hospital of Henan University. Four- to six-week-old

male Balb/c-nude mice were purchased from Slac

Laboratory (Shanghai, China). T24/ADM cells stably

expressing sh-Nrf2, sh-TUG1 or sh-NC (negative control)

were subcutaneously injected into the flank of nude mice.

Subsequently, mice were intraperitoneally injected with

ADM or saline. At the 32th day after inoculation, all

mice were anaesthetized and decapitated, and the tumor

masses were resected, pictured and weighed. Tumor dia-

meters were measured every 4 days with calipers, and

tumor volume was calculated by the following formula:

volume =0.5 × length × width2.

Statistical analysis
Data were given as the mean ± standard deviation of the

mean (SD) from 3 independent experiments. Statistical

analysis was done using SPSS 20.0 software and the sig-

nificance of differences between relevant data sets was

analyzed with student’s t test or one-way analysis of var-

iance. A probability value of P<0.05 was designated as the

level of significance.

Results
Increased expression of Nrf2 and TUG1 in

UCB tissues
We first evaluated the expression of Nrf2 and TUG1 in

UCB tissues and then, in particular, investigated the cor-

relation between Nrf2 and TUG1 expression in UCB tis-

sues. RT-PCR analysis showed that the expression levels

of Nrf2 and TUG1 were markedly higher in UCB tissues

than those in paired normal tissues (Figure 1A and B). In

parallel, a positive correlation between Nrf2 and TUG1

expression was discovered in UCB tissues (Figure 1C).

Up-regulation of Nrf2 and TUG1 in ADM-

resistant cells
We validated the differential expression of Nrf2 and TUG1

in UCB cell lines (EJ-1, 5637, BIU-87 and T24) by RT-

PCR and Western blot. As a result, the expression of Nrf2

was markedly upregulated in UCB cell lines, especially in

BIU-87 and T24 cells, as compared to normal human

urothelial cells (SV-HUC-1) (Figure 2A and B). To under-

stand the role of Nrf2 and TUG1 in chemoresistance, we

compared the expression levels of Nrf2 and TUG1 in UCB

cells (BIU-87 and T24) and the ADM-resistant UCB cells

(BIU-87/ADM and T24/ADM). The results of Western

blot demonstrated that the expression of Nrf2 was remark-

ably increased in BIU-87/ADM and T24/ADM cells as

compared to BIU-87 and T24 cells (Figure 2C).
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Similarly, the expression of TUG1 was increased in UCB

cell lines, especially in BIU-87 and T24 cells, compared

with SV-HUC-1 cells (Figure 2D). Meanwhile, the expres-

sion of TUG1 was higher in BIU-87/ADM and T24/ADM

cells than that in BIU-87 and T24 cells, as evidenced by

RT-PCR (Figure 2E).

Nrf2 positively regulates the expression

of TUG1 in UCB cells
To understand the basis for higher Nrf2 and TUG1

expression in UCB cells, we investigated the relation-

ship between Nrf2 and TUG1 expression in BIU-87 and

T24 cells. Nrf2 expression was restored by transfecting

BIU-87 and T24 cells with pcDNA-Nrf2, while Nrf2

level was knockdown in BIU-87 and T24 cells using

si-Nrf2 or ML385 (Figure 3A and B). Overexpression of

Nrf2 obviously increased the expression of TUG1 in

BIU-87 and T24 cells (Figure 3C and D). Conversely,

knockdown of Nrf2 by siRNA caused a marked decrease

in TUG1 expression in BIU-87 and T24 cells (Figure 3E

and F). Similarly, treatment of BIU-87 and T24 cells

with ML385 resulted in a dose-dependent reduction in

TUG1 expression (Figure 3G and H).

Knockdown of either Nrf2 or TUG1
inhibits the progression of UCB in vitro
Since Nrf2 and TUG1 were upregulated in UCB, we

knockdown Nrf2 and TUG1 to evaluate their functional

roles in UCB cell proliferation, invasion and apoptosis.

si-Nrf2, si-TUG1 or si-NC was transfected into BIU-87

and T24 cells, respectively. CCK-8 assay showed that

the viability of BIU-87 and T24 cells was strikingly

reduced in Nrf2-silenced cells and TUG1-silenced cells

as compared to control cells (Figure 4A). Moreover,

decreased levels of Ki-67 expression were noticed in

Nrf2-silenced cells and TUG1-silenced cells (Figure 4B

and C). Meanwhile, knockdown of Nrf2 remarkably

inhibited the invasion of BIU-87 and T24 cells and

decreased the expression of MMP-2 and MMP-9 in

BIU-87 and T24 cells. Intriguingly, TUG1 knockdown

led to similar functional effects as those of Nrf2 knock-

down in BIU-87 and T24 cells (Figure 4D–G). In par-

allel, Nrf2 knockdown conspicuously promoted the

apoptosis of BIU-87 and T24 cells. Also, TUG1 knock-

down caused an increased rate of apoptotic cells in BIU-

87 and T24 cells (Figure 4H and I). Furthermore, a

pronounced elevation in cleaved caspase-3 expression

was found in Nrf2-silenced cells and TUG1-silenced

cells as seen by Western blot (Figure 4J and K).

Knockdown of either Nrf2 or TUG1
enhances the chemosensitivity of ADM-

resistant UCB cells to ADM
Previous studies documented that multidrug resistance 1

gene (MDR1) was implicated in the chemoresistance

mechanisms of bladder cancer.21 Here, we detected the

expression of MDR1 mRNA and its encoded protein P-

glycoprotein (p-gp). Identical conclusions were obtained in

our study, the expression levels of p-gp protein and MDR1

mRNAwere higher in BIU-87/ADM and T24/ADM cells as

compared to BIU-87 and T24 cells (Figure 5A and B).To

examine whether knockdown either Nrf2 or TUG1 restores

the sensitivity of BIU-87/ADM and T24/ADM cells to

ADM, BIU-87/ADM and T24/ADM cells were transfected

with si-Nrf2, si-TUG1 or si-NC, followed by stimulation
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with increasing doses (0, 5, 10, 20 and 40 μg/ml) of ADM.

The results of CCK-8 assay revealed that down-regulation

of Nrf2 markedly inhibited the viability of BIU-87/ADM

and T24/ADM cells in the presence of ADM. Also, the

reduced viability of BIU-87/ADM and T24/ADM cells was

observed in the si-TUG1 group in comparison with the si-
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NC group in the presence of ADM (Figure 5C). In addition,

Blocking either Nrf2 or TUG1 obviously downregulated the

expression of p-gp in BIU-87/ADM and T24/ADM cells

(Figure 5D and E).

Knockdown of either Nrf2 or TUG1
enhances the sensitivity of UCB cells to

ADM in vivo
Given the significance of Nrf2 and TUG1 in vitro, we

further characterized whether knockdown either Nrf2 or

TUG1 enhances the sensitivity of UCB cells to ADM in

vivo. T24/ADM cells stably expressing sh-Nrf2, sh-TUG1

or sh-NC were subcutaneously injected into nude mice.

Subsequently, mice were intraperitoneally injected with

ADM or saline. The results revealed that xenograft tumors

from sh-Nrf2 or sh-TUG1 transfected T24/ADM cells

grew slower than the tumors from sh-NC-transfected

T24/ADM cells. Moreover, the tumor growth was slower

in tumors from sh-Nrf2 or sh-TUG1 transfected T24/ADM

cells than the tumors from sh-NC-transfected T24/ADM

cells in the presence of ADM (Figure 6A). The tumor

weight was prominently lighter in the sh-Nrf2 group and

the sh-TUG1 group than that in the sh-NC group under

ADM administration (Figure 6B). The expression level of

Nrf2 protein in the sh-Nrf2 group was lower than that in

the sh-NC group (Figure 6C).The expression levels of

TUG1, MDR1 mRNA and p-gp protein were obviously

decreased in tumors from sh-Nrf2 or sh-TUG1 transfected

T24/ADM cells as compared to the tumors from sh-NC-

transfected T24/ADM cells (Figure 6D–F).

Discussion
Prior studies have noted the significance of Nrf2. It partici-

pates in regulating cellular redox homeostasis, thus exerting

as a vital player in chemoresistance. Nrf2 has been consid-

ered as a potential therapeutic target for chemoresistance.22

For instance, inhibition of Nrf2 has been postulated to

enhance the chemosensitivity of THP-1 cells to proteasome

inhibitors.23 In addition, cisplatin-resistant RT112 cells

have been shown to express high levels of Nrf2, and its

knockdown partially restored the chemosensitivity to

cisplatin.24 Studies in 253J tumor cell lines panel suggested

that Nrf2 was upregulated in cisplatin resistant tumor cells,

and down-regulation ofNrf2 enhanced the chemosensitivity

to cisplatin and reduced the migration of 253J cells.25 In

vitro and in vivo experiments revealed that knockdown of

Nrf2 increased the sensitivity of human lung cancer A549

cells to cisplatin, vinorelbine and carboplatin, as well as

inhibited the growth of xenograft tumor, suggesting that

overexpression of Nrf2 is a central contributor in the devel-

opment of chemoresistance.26 However, there are limit

studies suggesting the biological role of Nrf2 in mediating
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ADM resistance in UCB. Our study identified up-regulation

of Nrf2 in ADM resistant UCB cells, and found that ADM

resistant UCB cells were resensitized upon knockdown of

Nrf2, fitting the established notion ofNrf2 as a key regulator

in the development of chemoresistance and as a promising

target to restore chemosensitivity.

The significance of TUG1 in chemoresistance has been

widely studied. TUG1 has been shown to serve as an impor-

tant role in drug resistance, whereas, its role might vary in

different cancers. Tang et al have been identified the down-

regulation of TUG1 in triple negative breast cancer. They

showed that overexpression of TUG1 markedly augmented

the sensitivity of MDA-MB-231 and BT549 cells to cisplatin

via miR-197/nemo-like kinase axis through inhibiting WNT

signaling.27 Conversely, a recent report investigated the role

of TUG1 in osteosarcoma, and found that TUG1 was

overexpressed in osteosarcoma. Moreover, TUG1 knock-

down suppressed glucose consumption, lactate production

and cell viability in osteosarcoma cells through up-regulation

of hexokinase-2.28 Also, TUG1 was overexpressed in small

cell lung cancer (SCLC). Knockdown of TUG1 impaired cell

proliferation, migration and invasion, promoted cell apoptosis

and cell cycle arrest, and enhanced SCLC cell sensitivity to

anti-cancer drugs by regulating LIM domain kinase 2b via

enhancer of zeste homolog 2.29 In addition, up-regulation of

TUG1 was also discovered in pancreatic cancer tissue and

cells. functional studies in pancreatic ductal adenocarcinoma

cells showed that up-regulation of TUG1 promoted cell

viability, migration and invasion, suppressed cell apoptosis,

as well as reduced the gemcitabine chemosensitivity.30

However, the role and mechanism of TUG1 in chemoresis-

tance in UCB remain to be completely elucidated. In this
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study, our results demonstrated that TUG1 functioned as an

important tumor promoting factor in UCB growth and che-

moresistance, contributing to promote tumorigenesis and

enhance chemoresistance. A positive correlation between

Nrf2 and TUG1 expression was discovered in UCB tissues,

more importantly, Nrf2 positively regulated the expression of

TUG1 in UCB cells, indicating the functional interaction

between Nrf2 and TUG1 in UCB tumorigenesis and ADM

resistance. Therapeutic drug resistance is regarded as a domi-

nant hindrance toward curative cancer treatment.31 The

occurrence of chemoresistance is considered the result of

multiple factors, including altered expression of drug influx
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and efflux transporters, alterations in drug targets and

increased antioxidant defense systems.32 p-gp, also known

as ATP-binding cassette sub-family B member 1 (ABCB1),

belongs to the superfamily of ATP-binding cassette (ABC)

transporters and is an ATP-dependent drug efflux pump that

leads to reduced intracellular drug accumulation in drug-

resistant cells.33 Notably, high expression of p-gp encoded

by MDR1 is mainly responsible for multidrug resistance.34

As an example, up-regulation of ABCB1 was shown to con-

tribute to the development of nab-paclitaxel resistance, and

suppression of ABCB1 by cabozantinib and crizotinib sensi-

tized ABCB1-overexpressing urothelial bladder cancer cells

to nab-paclitaxel, suggesting that targeting MDR1 appears to

be an effective approach for overcoming therapeutic drug

resistance.35 Nrf2 has been shown to be an important inducer

of p-gp upregulation.36 Nrf2-dependent upregulation of xCT

modulates the sensitivity of T24 cells to proteasome

inhibition.37 TUG1 depletion repressed cell proliferation

and promoted cell apoptosis in BIU87 cells under radiation.38

But more importantly, whether p-gp is involved in Nrf2 and

TUG1-mediated chemoresistance in UCB remains unclear. In

our study, up-regulation of p-gp and MDR was identified by

us in ADM resistant UCB cells, and blocking either Nrf2 or

TUG1 could downregulated the expression of p-gp, raising

the possibility that targeting Nrf2 or TUG1 may be an effec-

tive approach for overcoming ADM resistance in UCB.

Conclusion
In summary, our results demonstrated that Nrf2 and TUG1

were upregulated in UCB tissues and cells, as well as ADM-

resistant UCB cells. Functionally, Nrf2 induces the up-reg-

ulation of lncRNA TUG1 to promote progression and ADM

resistance in UCB. This study indicates that Nrf2-mediated

TUG1 acts as a key player in the development of ADM

resistance in UCB and may constitute an ideal target to

combat ADM resistance in UCB.
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