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Abstract: Aggregator (frequent hitter) compounds show non-selective binding activity against 

any target protein and must be removed from the compound library to reduce false positives 

in drug screening. A previous study suggested that aggregators show high hydrophobicity. The 

LogS values of aggregators and non-aggregators were estimated by the artificial neural network 

(ANN) model, the multi-linear regression (MLR) model, and the partial least squares regression 

(PLS) models, with the weighted learning (WL) method, and the results showed the same trend. 

The WL method is weighted on the data of the learning set molecules that are similar to the 

test molecule and improves the prediction accuracy. Bayesian analysis was applied, revealing a 

simple relationship between aggregation and solubility. Namely, the molecules with LogS  −5 

were non-aggregators. In contrast, most of the molecules with LogS  −5 were aggregators. 

We also made a simple look-up table of probability of aggregation depending on the molecular 

weight and the number of hetero-atoms.

Keywords: aggregator, frequent hitter, compound library, solubility prediction, generalized-

Born accessible-surface area, GBSA

Introduction
Non-specific compounds are frequently observed in high-throughput screening (HTS). 

These compounds are called frequent hitters or aggregators. Jadhav et al reported that 

almost 90% appeared to be detergent-sensitive hits or aggregators of the compounds 

showing concentration-dependent inhibition in the detergent-free screening assay.1 The 

mechanism underlying such non-selectivity is complicated: some aggregators form 

micelle colloids, while others show nonspecific affinities with many different kinds 

of proteins. There have been several reports about aggregators, and some aggregator 

prediction methods have been described.1–9 In these reports, the methods used were 

the support vector machine, decision tree, Bayesian model, etc, based on the set of 

molecular descriptors.6–9 These methods succeeded in the prediction of aggregators and 

several features of aggregators have been reported: rigidity, hydrophobicity, numerous 

aromatic rings, and so on. However, these features are also common in known drugs. 

The quantitative relationships between aggregation and physical properties have 

remained unclear. Therefore, we investigated the relationships between aggregation 

and aqueous solubility (LogS) by using our LogS prediction method.

There have been many reports published about the logS prediction methods.10–27 

The most popular methods for predicting LogS involve a type of regression (multi-

linear regression (MLR), partial least squares (PLS) regression) based on the molecular 

descriptors, which represent the atoms and substructures (group contribution method) 
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within the molecule. Some methods consider several physical 

properties, such as surface area and molecular volume, as 

descriptors.16,18

Solubility can be approximated by experimentally observed 

properties, such as melting point (MP) and LogP.17

 LogS = 0.5 − 0.01(MP − 25) − LogP (1)

The MP (°C) and LogP are easily observed experimen-

tally, in contrast to the LogS. The MP represents the stability 

of the crystal, and the transfer free energy from pure solvent 

to octanol is assumed to be constant and independent of the 

solute. This method showed that solubility can be analyzed 

as the combination of several processes of solvation, which 

is a simple physical process. Jorgensen and Duffy showed 

that the LogS value could be predicted by the solute-solvent 

Coulombic interaction, the van der Waals interaction, the 

accessible surface area and the numbers of several kinds 

of functional groups included in the molecule.16 The LogS 

value could be approximated by only these six terms, and 

the predicted value showed a quite high correlation to the 

experimental data; the coefficient of determination (R2) 

was 0.9.

To examine the relationship between LogS and aggrega-

tion, we improved the LogS estimation method. We intro-

duced a weighted learning approach, which is weighted on 

the data of the learning set molecules that are similar to the 

test molecule. The similarity between molecules is calculated 

based on a set of molecular descriptors. The descriptors 

contain some physical properties as solvation free energy 

and accessible surface area, considering the previous work 

described above.16 The LogS values of aggregators and non-

aggregators were estimated by applying the WL method 

to the MLR, ANN, and PLS models. These three methods 

suggested the same clear correlation between LogS and 

aggregation; that is, the molecules with LogS  −5 were 

non-aggregators. In contrast, most of the molecules with 

LogS  −5 were aggregators.

Methods
We applied three LogS predictors: MLR, ANN, and PLS. 

The definitions of MLR and PLS are clear, so we have omit-

ted an explanation of these two methods. Our ANN LogS 

predictor uses an error-back propagation method with a set 

of molecular descriptors28 and it was developed using the 

MolWorks® software framework (Beyond Computing Co. 

Ltd., Tsukuba, Japan).29

To improve the prediction accuracy, we introduced 

the weighted learning method with these three predictors. 

 Without the weighted learning (WL) method, each molecule 

in the learning set is learned once. With the WL method, each 

molecule in the learning set is learned several times, depend-

ing on the similarity to the test (query) molecule. A molecule 

that is similar to the test molecule is learned several times, 

while a molecule that is not similar to the test molecule is 

learned once. The number of learning procedures depends 

on the similarity to the test molecule.

The relationship between the aggregation and the solubil-

ity is analyzed by the Bayesian statistics. The probability of 

aggregation is approximated by a sigmoid function of LogS 

value. This model estimates the probability of aggregation 

of subset of compound library.

Descriptors
We developed a new descriptor by modifying the Mol-

Works software.30 Table 1 shows the set of the molecular 

descriptors used in the current study. Newly added descrip-

tors in the current study are the 2nd–17th descriptors in 

Table 1. The LogS value could be approximated by the 

melting point and the LogP value, as shown in equation 

(1) above. The LogP value of a compound was calculated 

from the transfer free energy of the compound from octanol 

to water, as evaluated by the generalized-Born accessible-

surface area (GBSA) method.31,32 This method can estimate 

the transfer free energy from a vacuum to a solvent with 

a specific surface tension and dielectric constant. The 

molecular structure (dominant ion form) can change in the 

solvation process. In the current study, the dominant ion 

form of the COOH group in water is COO−. To simplify 

the problem, only two molecular structures were prepared 

for each molecule, when possible. Two ion forms were 

prepared for carboxylic acid, sulfuric acid, phosphoric 

acid, and amines. Namely, −COO− for −COOH, −SO
3

− 

for –SO
3
H, −PO

3
2− for −PO

3
H

2
, −PO

2
−− for –PO

2
H−, −NH

3
+ 

for –NH
2
, −NH

2
+− for –NH− (secondary amine), and –NH+ 

 for –N  (tertiary amine). Only one molecular struc-

ture was prepared for a molecule without these functional 

groups. We assumed that the H atom of the C-OH group 

does not dissociate, and that the dominant ion form of 

p-nitrophenolate (C
6
H

4
NO

3
−; the CAS No. is 14609-74-6) 

is an anion. The solvation free energies of these two ion 

forms into water and octanol were calculated by the GBSA 

method, and these four energies were adopted as the 

descriptors. The number of dissociated H atoms that bind 

to O or N atoms was also adopted as a descriptor.

The other descriptors were the Joback-like descriptors 

those are the numbers of substructures. In addition, some 
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 substructures were added in the current study, since the Joback 

descriptor does not include P, S, and halogen atoms.

Weighted learning (WL) method
In the WL method, the molecules in the learning set that 

are similar to the test molecule are learned many times. In 

contrast, the molecules in the learning set that are not similar 

to the test molecule are learned only once. The similarity 

between two molecules is given by a distance, and the distance 

between molecule A and molecule B (D(A, B)) is a general-

ized Euclidean distance of the descriptors, defined as:

 
D A B c d A d Bi i i

i

N

( , ) ( ( ) ( ))= −
=
∑ 2

1

 (2)

where d
i
(X) is the i-th descriptor of molecule X, N is the total 

number of descriptors, and c
i
 is a normalization coefficient. 

The value of c
i
 is defined as the deviation of d

i
 = 1.

Figure 1 shows the schematic representation of how 

to determine the learning time. For a test molecule X, the 

 distribution of D is calculated, with s as the deviation of 

D. Let M and h be the number of bins and the bin size, as 

follows:

	 h = s/M	 (3)

Let m and L
max

 be integer and the maximum number of 

learning times. For molecule A in the learning set, if mh  D	

(A,	X)  (m	+ 1)h, then molecule A is learned L
max

−m times. 

If L
max

−m  1, then molecule A is learned once.

In the framework of the ANN and MLR methods, the 

same data cannot be learned more than once. Thus, the 14th to 

17th descriptors in Table 1 are randomly modulated up to 3% 

to generate the L data for L-times learning. Since molecular 

structures are flexible and thus the physical properties can 

change, 3% modulation should be reasonable.

Table 1 Molecular descriptors used in the current study. 3: DelO_H: number of dissociated H atoms in water. 4: addN_H: number of 
added H atoms in water. Charge (−): number of atoms with atomic charges −0.3. Charge (medium): number of atoms with atomic 
charges between −0.3 and 0.3. Charge (+): number of atoms with atomic charges 0.3. dASA_o: accessible surface area per unit 
molecular volume in octanol. dG_o: transfer free energy from vacuum to octanol. dASA_wd: accessible surface area per unit volume of 
dissociated molecule in water. dG_wd: transfer free energy of dissociated molecule from vacuum to water. dASA_w: accessible surface 
area per unit volume of molecule in water. dG_w: transfer free energy of molecule from vacuum to water. 59: −NH2 or –NH3 group that 
binds the atom with p electrons. 60: −NH− group that binds the atom with p electrons. 61: −NH− group in ring that binds the atom with 
p electrons. 62: N− group that binds the atom with p electrons. 63: N− group in ring that binds the atom with p electrons

1 
Mass weight

2 
No of aromatic atoms

3 
DelO_H

4 
addN_H

5 
No of atoms in ring

6 7 8 9 10
charge (−) charge (medium) charge (+) dASA_o dG_o
11 12 13 14 15
dASA_wd dG_wd dASA_w dG_w ddG_o
16 17 18 19 20
ddG_wd ddG_w −CH3, CH4 CH2, CH2 (ring) CH−, CH− (ring)
21 22 23 24 25
C, C (ring) =CH2 =CH− =C =C=
26 27 28 29 30
≡CH ≡C− =CH− (ring) =C (ring) Fluorine
31 32 33 34 35
Chlorine Bromine Iodide Alcohol R−OH Phenol Ar-OH
36 37 38 39 40
−O− −O− (ring) C=O C=O (ring) −CHO (aldehyde)
41 42 43 44 45
−COOH (acid) −COO (ester) =O except (COO, SO2...) −NH2, NH3 NH, NH (ring)
46 47 48 49 50
N−, N− (ring) =N− −N= (ring) −CN −NO2

51 52 53 54 55
−SH −S− −S− (ring) PS− PO−
56 57 58 59 60
−(C=S)−, −(C=S)− (ring) −(S=O)− −(O=S=O)−, −(O=S=O)− (ring) −NH2, −NH3 (connected  

to atom with π orbital)
−NH− (connected to 
atom with π orbital)

61 62 63   
Ring −NH− ring  
(connected  
to atom with π orbital)

N− (connected to atom  
with π orbital) 

Ring N− ring (connected to  
atom with π orbital)
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Computational procedures
The preparation of the molecular descriptors consists of 

several steps:

Step 1: The Joback descriptors were calculated from the 

molecular structure. The original compound data were 

described in the SMILES format, and the 3D structures 

were generated by Molecular Operating Environment (MOE, 

Chemical Computing Group, Montreal, Canada). Some 

structures of compounds were modified by visual inspection. 

The Joback descriptors do not depend on the protonation 

state of the molecule.

Step 2: Two protonated structures (ion forms) were prepared. 

One was a dominant ion form in water and the other was a 

dominant ion form in octanol. These ion forms were pre-

pared by the Hgene software of myPresto® (http://medals.

jp/econtents/download and http://presto.protein.osaka-u.ac.

jp/myPresto4/index_e.html).

Step 3: For each ion form, several conformers were gen-

erated by the conformer generation program confgene of 

myPresto. The rotatable bonds were randomly rotated in 60 

degree increments.

Step 4: The coordinates of each conformer were energy-

optimized by using the GBSA model of cosgene/myPresto. 

The dielectric constants of water and octanol were set to 

78.5 and 4.0, respectively. The atomic solvation parameters 

(surface tensions) of all atoms were set to 10 cal/mol/Å2. The 

most stable structures were adopted for water and octanol. 

The physical properties, such as the solvation free energy, 

surface area, volume, and so on, were calculated based on 

these most stable structures.

Step 5: Steps 1–4 were applied to the learning dataset and 

the test dataset, and then the neural network model was 

constructed from the learning set.

Step 6: The LogS values of the molecules in the test dataset 

were predicted by the MLR, ANN, and PLS models.

Preparation of data
The LogS data were selected from the previous reports.23,24,33 

Palmer et al.23 included 1318 molecules, and 1290 molecules 

were used in Schwaighofer et al.24 Most of the data originated 

from Fukunishi et al.34 The 1290 molecules of reference 24 

were included in the set of reference 23. Several of the 1318 

molecules of reference 23 were counted twice. Among these 

molecules, some molecular structures could not be analyzed 

with our program, as they lacked descriptors. Finally, the 

total number of unique molecules used in this study was 

1298. These molecular structures and their LogS values 

are summarized in the supporting information file. Most 

calculations for data preparation were performed using the 

myPresto program.34 The two ion forms were generated by 

the Hgene/myPresto program. The atomic charges were 

calculated by the Gasteiger method in the Hgene program. 

A general Amber force field (GAFF) was used.35

Data on aggregators and non-aggregators were selected 

from the previous reports.6,7 There were 56 and 57 aggrega-

tors and non-aggregators, respectively. In excess of 1000 

aggregators are provided by the Shoichet group (http://

shoichetlab.compbio.ucsf.edu/take-away.php). Since the 

ANN with WL method is time-consuming, we used the small 

set of aggregators. The 3D structures and the descriptors of 

these compounds were prepared in the same manner as the 

LogS data described above.

Results
Prediction accuracy without  
the weighted learning method
The efficiency of the descriptor set was evaluated using 

the MLR, ANN, and PLS models. The jackknife test was 

applied: all of the compounds were divided into two sets, a 

learning set with solubility data for machine learning and a 

test data set, whose LogS values the software should predict. 

The number of compounds in the learning set was 1198 

(=1298−100), and the number in the test data set was 100. 

The molecules in the test data set were randomly selected. 

Ten pairs of these compound sets were prepared. Thus, a 

total of 1000 (=100 compounds × 10 trials) solubility data 

predictions were made.

The number of conformers is a parameter of our prediction 

method. We examined the conformer dependence of the pre-

dicted LogS value by using the ANN method. We examined 

the cases with a single conformer, 5 conformers, and 10 
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Figure 1 Schematic representation of the relationship between molecular similarity 
and learning time.
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conformers. These conformers were randomly generated. The 

larger the number of conformers, the better the prediction 

result. The results with 5 conformers were similar to those 

with 10, and thus the number of conformers was set to 5 in 

the following study.

To compare our methods with the other prediction methods, 

we applied the MOE LogS predictor36 and the Pipeline Pilot 

LogS predictor37 to the same solubility data. The results are 

summarized in Table 2. The results obtained by the MLR, ANN, 

and PLS models were similar to each other, and the prediction 

results by our methods were similar to those obtained by the 

other predictors. These results suggest that our descriptors and 

the prediction methods were reasonably constructed.

Prediction accuracy with  
the weighted learning method
The WL method was applied to the MLR, ANN, and PLS 

models. By using these methods, the LogS values of a small 

number of molecules were estimated with and without the 

WL method. Two test data sets were used: the dataset used 

in the previous section and the dataset used in the “solubility 

challenge”.11,12 In both cases, the WL method worked well 

to improve the accuracy. The M and L
max

 values were set to 

14 and 6, respectively.

The first test involved 33 molecules randomly selected 

from the learning set of 1298 compounds used in the previous 

section. For each test molecule, the learning set did not include 

the test molecule itself (one-leave-out test), hence the learning 

set consisted of 1297 (= 1298 − 1) molecules. Prediction with 

the WL method worked well. The R2 value and the average 

error of the predicted LogS values of these 33 test molecules 

are summarized in Table 3. With all three models (MLR, ANN, 

and PLS), the WL method improved accuracy; the R2 values 

were increased while the average and maximum errors were 

decreased. The R2 value for the teaching set was not calculated 

by the ANN, since the ANN was too time consuming.

In the second test, the LogS values of the “solubility 

challenge” were predicted.11,12 In the solubility challenge, the 

LogS values of 28 drug-like compounds must be predicted. 

Out of 32 compounds, 4 were too soluble to measure, so the 

other 28 LogS values must be predicted. The R2 value, the 

average error, and the maximum error of LogS are summarized 

in Table 4. Again, the prediction results were better than 

the results without the WL method. Our prediction results 

summarized in Table 4 were worse than the results summarized 

in Table 3 but nevertheless were not as bad when compared to 

the results reported in reference 6. In reference 6, the range 

of R2 values was 0.018 to 0.65 for these 28 compounds. Our 

R2 values, around 0.5–0.6, were better. The percentage of 

entries that gave R2 values better than 0.615 (obtained by the 

PLS model with the WL method) was 2% (2 entries out of 

99). These results showed that our prediction methods were 

acceptable and could be used in the further study.

LogS values of aggregators  
and non-aggregators
Using all 1298 compounds with experimental LogS values as 

the learning set, we calculated the LogS values of the aggre-

gators and non-aggregators. The prediction was performed 

using the MLR, ANN, and PLS models with the WL method. 

Figures 2a–c show the distribution of the LogS values of 

the aggregators and non-aggregators obtained by the MLR, 

ANN, and PLS models. The probability of aggregation at a 

LogS value was calculated by using Bayesian analysis.38 The 

results were fitted by a sigmoid curve. Namely:

 
P LogS

e
agg a LogS b

( )
( )

=
+ −

1

1
 (4)

where P
agg

(LogS), a, and b are the probability of aggregation 

at the LogS solubility and two constants, respectively. The b 

value represents the LogS value at which the probability of 

aggregation is 50%. The a and b values obtained by the MLR 

were 1.477 and −4.911, respectively. The fitting error was 

0.233. The a and b values obtained by the ANN were 1.013 

and −4.274, respectively. The fitting error was 0.206. The a 

and b values obtained by the PLS were 1.354 and −4.784, 

respectively. The fitting error was 0.217.

Figure 3 shows the probability of aggregation vs the 

predicted LogS value. The aggregators and non-aggregators 

were clearly distinguished by the LogS value. In Figure 3, 

the percentage of aggregators reached 50% around the LogS 

value of −5. The MLR, ANN, and PLS models showed that 

the compounds with −5  LogS  −2 are desirable as the 

non-aggregators.

Table 2 Prediction accuracies for the teaching set and the test set

Method Teaching set Test set

R2 value R2 value Average 
error

Maximum 
error

MLR 0.864 0.846 0.81 2.62
ANN 0.949 0.906 0.63 3.36
PLS 0.856 0.846 0.82 2.70
Moe 0.884 2.26 5.54
Pipeline Pilot  0.847 2.12 4.97

Abbreviations: MLR, multi-linear regression; ANN, artificial neural network; PLS, 

partial least squares regression.
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The LogS distribution of the aggregators overlapped 

with that of the non-aggregators in the range of LogS  −5. 

 Generally speaking, an aggregator has a small number of 

rotatable bonds, a flat, ring-like structure rich in nitrogen 

atoms, as suggested by a previous report.8 We compared 

the chemical structures of the aggregators to those of the 

non-aggregators in this range, but found no clear differ-

ence.

We examined the frequency of aggregators in a com-

pound library. The hetero atom dependence of aggrega-

tion was examined in two ways. One is the percentage of 

aggregation depending on the numbers of nitrogen and 

oxygen atoms of molecules. The other is the percent-

age of aggregation depending on the ratios of nitrogen 

and oxygen atoms of molecules. Nine subsets of the 

compound library were prepared in each. Each subset 

consisted of 55 compounds randomly selected from the 

library. The first group consisted of compounds with 200 

Da  MW  300 Da, the second group consisted of com-

pounds with 300 Da  MW 400 Da, and the third group 

consisted of compounds with 400 Da  MW 500 Da. The 

first way in which we examined is the heteroatom-number 

dependence of aggregation. Each group was divided into 

three subsets. The first set consisted of a compound whose 

number of N/O atoms 5. The second set consisted of a 

compound whose number of N/O atoms 5 and 10. And 

the third set consisted of compound with number of N/O 

atoms 10. The second way in which we examined is the 

hetero-atom-ratio dependence of aggregation. Each group 

was divided into three subsets. The first set consisted of a 

compound whose ratio of N/O atoms 15%. The second set 

consisted of a compound with a ratio of N/O atoms 15% 

and 30%. And the third set consisted of a compound with a 

ratio of N/O atoms 30%. These compounds were randomly 

extracted from the LigandBox database.39 The LogS values 

of these compounds were calculated by the PLS model with 

the WL method. The aggregator probability was calculated 

by equation (4).

The results are summarized in Tables 5 and 6. The 

probability of aggregation strongly depended on the 

molecular weight and the number and ratio of N/O atoms. 

The larger the compound is, the higher the probability 

of aggregation. Compounds with fewer N/O atoms were 

likely to be aggregates. The rule of five determines drug-

likeness as the compound with the number of hydrogen 

bond acceptors (N/O atoms) must be no greater than 10. 

The results in Table 6 show the same trend as those in 

Table 5. Consideration of only this one rule of drug-like-

Table 3 Prediction accuracies for 33 randomly selected molecules

Method Teaching set Test set Average error Maximum error

  R2 value R2 value

MLR without WL 0.864 0.785 0.97 2.27
MLR with WL 0.864 0.835 0.84 1.95
ANN without WL 0.871 0.51 2.48
ANN with WL 0.944 0.31 1.79
PLS without WL 0.842 0.708 1.16 2.52
PLS with WL 0.853 0.821 0.89 2.10

Abbreviations: MLR, multi-linear regression; ANN, artificial neural network; PLS, partial least squares regression.

Table 4 Prediction accuracies for 28 molecules of the “solubility challenge”

Method Teaching set Test set Average error Maximum error

R2 value R2 value

MLR without WL 0.864 0.498 1.03 2.60
MLR with WL 0.867 0.525 1.00 2.48
ANN without WL 0.452 1.06 2.58
ANN with WL 0.506 0.99 2.33
PLS without WL 0.856 0.558 0.96 2.92
PLS with WL 0.856 0.615 0.89 2.47
Pipeline Pilot without WL 0.304 1.01 4.31
Moe without WL 0.394 0.87 3.38
PLSa without WL 0.712 0.497 1.36 3.37
PLSa with WL 0.777 0.542 1.11 3.07

Note: athe LogS values of only 92 molecules provided by ref 37 were used as a teaching set.
Abbreviations: MLR, multi-linear regression; ANN, artificial neural network; PLS, partial least squares regression.
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Discussion
In the present study’s definition of aggregators, the mol-

ecule inhibits several target proteins. The actual reasons for 

aggregation include micelle colloid formation, nonspecific 

interactions with proteins, and other, unknown mechanisms. 

Some aggregators contain N-N bonds, which are chemically 

unstable, and thus chemical reactivity could be another 

cause of aggregation. Such compounds should be filtered 

out by software. A molecule with a low LogS value should 

ness increases the chance of aggregation. The other condi-

tion, which is that the LogP value must be 5, increases 

the LogS value by equation (1) and reduces the chance 

of aggregation.

The reliability of the values in Tables 5 and 6 is unclear. 

In our teaching set, only 157 out of 1298 compounds 

(12.1%) show LogS  −5; the other 87.9% of the com-

pounds show LogS  −5. The probability of aggregation 

was estimated to be high especially when the LogS value 

is −5. The number of low solubility compounds was 

small. There were data on only 56 aggregators, which is 

still small.
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Table 5 Percentage of aggregators of compound set depending on 
number of nitrogen/oxygen (N/O) atoms

MW (Da)

  200–300 300–400 400–500

No of N/O 0–4 23.0 62.6 92.0
5–9 9.9 45.1 69.8

 10– 3.2 18.9 36.6
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easily form a micelle colloid, but low solubility is not the 

only reason for nonspecific protein-compound interactions. 

If we applied multiple-target screening (MTS)40 as an in	

silico screening method, it could remove the nonselective 

compounds. In the MTS method, each compound is docked 

to many proteins, including a target protein. Then, the 

compounds that show the strongest affinities with the target 

protein, among the other different proteins, are selected as 

the hit compounds. If the LogS prediction is applied to the 

hit compounds by the MTS method, then the number of 

aggregators could be reduced.

In previous reports aggregators were predicted using the 

substructures of compounds.1,2 These predictions worked 

well, but the physical meaning of the substructures was 

unclear. The clogP value was used in the prediction, and 

the result suggested that compounds with high clogP values 

(hydrophobic) are likely to aggregate.1,2 This insight is con-

sistent with our result that the aggregators show low LogS 

values and with the experimental finding that the aggregators 

form micelle colloids in water.3

Conclusion
We introduced the weighted learning (WL) method in the 

prediction of LogS by the MLR, ANN, and PLS models. 

With the WL method, the LogS predictor studies the learn-

ing set by focusing on the molecules that are similar to the 

query molecule. The WL method can achieve high predic-

tion accuracy and can be combined with the MLR, ANN, 

and PLS models.

We applied our method to the prediction of aggregators 

and non-aggregators. The non-aggregators showed higher 

LogS values than the aggregators. One of the useful thresh-

olds is LogS = −5. The probability of aggregation was given 

by a simple sigmoid function of LogS (see equation 4). The 

molecules with LogS  −5 were potential aggregators, while 

those with LogS  −5 were potential non-aggregators. One 

of the reasons for aggregation is low solubility. In the lead 

optimization process, we recommend that the lead com-

pounds satisfy the condition of LogS  −5. We also showed 

a simple look-up table to estimate the percent of aggregation 

depending on the molecular weight and the ratio of nitro-

gen/oxygen atoms. The percentage of aggregation strongly 

depended on the molecular weight, the number and ratio 

of nitrogen/oxygen atoms. This knowledge will help in the 

design of a library for drug screening.
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