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Abstract: Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding

motif (TAZ) are two homologous transcriptional coactivators and the final effectors of the

Hippo signaling transduction pathway. The transcriptional activity of YAP/TAZ is dependent

on their recruitment to the nucleus, which promotes binding to the transcription factor of

TEA domain family members 1–4 (TEAD1-4). In Hippo-signaling pathway, YAP/TAZ is

inactivated and its translocation to the nucleus is blocked via a core kinase cascade stimu-

lated by a variety of upstream signals, such as G-protein-coupled receptor signaling,

mechanical pressure, and adherens junction signaling. This pathway plays a very important

role in regulating organ size, tissue homeostasis, and tumor development. In recent years,

many studies have reported upregulation or nuclear localization of YAP/TAZ in a number of

human malignancies, such as breast cancer, melanoma, lung cancer, especially squamous cell

carcinoma in different organs. A large number of experiments demonstrate that YAP/TAZ

activation promotes cancer formation, progression, and metastasis. Therefore, in this review,

we summarize the evidence of regulation and function of YAP/TAZ and discuss its role in

squamous cell carcinoma. Collectively, this summary strongly suggests that targeting aber-

rant YAP/TAZ activation is a promising strategy for the suppression of squamous cell

carcinoma.
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Introduction
The Hippo pathway was first discovered in Drosophila during the 1990s. This signal

pathway is highly conserved. It regulates organ size and maintains homeostasis during

cell proliferation and apoptosis.1,2 As the major downstream effectors of the Hippo

pathway, YAP and its paralog TAZ3 are negatively regulated by the Hippo pathway,

owing to their phosphorylation2 and their inability to enter the nucleus.4 Over the past

two decades, a number of studies uncovered four proteins including Wart (Wts),5

scaffold protein Salvador (Sav),6,7 Hippo (Hpo),1,8–10 and Mats,11 as the central part

of the Drosophila Hippo pathway. Based on this, Yorkie (Yki), a transcriptional co-

activator acting as a Wts-binding partner, was discovered in 2005.2 In Drosophila, the

core kinase Hippo binds and phosphorylates Salvador, then the downstream kinases

Warts and Mats, which promote the phosphorylation of Yki and localize it in the

cytoplasm, inhibit transcription of the target genes.10 On the contrary, unphosphory-

lated Yki is transferred to the nucleus and binds with scalloped (Sd),12,13 which induces

transcription of the downstream genes, including cell growth and apoptosis-regulating

genes such as cyclin E, cell-death inhibitor Diap1, and dmyc.8,14 The Yki homologous

protein in mammals is the transcriptionally active YAP identified in 1994.15 TAZ,
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YAP’s paralog was identified in 2000 as a protein that binds

with 14-3-3 protein.3 Since the discovery of YAP/TAZ, they

have emerged as the critical regulators of early embryonic

development and adult organs by driving the transcription of

genes that promote cell proliferation, cell survival, and stem

cell maintenance.16,17 Therefore, low activity of YAP/TAZ

can lead to developmental defects, defective repair, and

organ atrophy. On the contrary, aberrantly high activity of

YAP/TAZ promotes cell overgrowth and tumor formation. In

this review, we will provide an overview of the Hippo path-

way network, the functions of YAP/TAZ, and its regulation.

We will also discuss the roles of YAP/TAZ on squamous cell

carcinoma.

The Hippo pathway in mammals
Similar to the Drosophila Hippo pathway, the mammalian

Hippo pathway is also considered as a tumor suppressor

pathway, regulated by a phosphorylation-dependent pro-

tein kinase cascade. In Drosophila, the kinase cascade

mainly includes mammalian STE20-like protein kinase

(MST1/2), large tumor suppressor 1/2 (LATS1/2), human

Salvador homology1 (SAV1), and MOB kinase activator

(MOB), which are homologous to Hpo, Wts, Sav, and

Mats, respectively.1 The kinase chain can control the

activity of the downstream effecter YAP/TAZ (Figure 1).

Activated MST1/2 binds to the regulatory protein SAV1,

which promotes the phosphorylation of LATS1/2 and

MOB, and subsequently, phosphorylation of YAP/TAZ at

serine residue-127.18,19 This phosphorylation-dependent

process leads to the cytoplasmic retention of YAP/

TAZvia 14-3-3 protein interaction,7,20–25 and its ubiquiti-

nation and degradation (Figure 1).26 Upon inactivation of

the Hippo pathway, dephosphorylated YAP/TAZ translo-

cates to the nucleus and binds to the transcription factor

TEAD to induce expression of the genes involved in cell

proliferation, anti-apoptosis, and epithelial–mesenchymal

cell transformation (Figure 1).27–29 Recent studies by

Lamar et al showed that the binding to TEAD family is

an important step for YAP to perform its functions.30

Mutation of key sites associated with TEAD or YAP

binding domains will inhibit YAP-induced gene expression

and its functions.30 In addition to binding TEAD, YAP/

TAZ can also bind to other transcription factors, such as

Smad, RUNT-related transcription factors (Runx1/2), P63/

P73, erythroblastic oncogene B4 (ErbB4),31 T-box tran-

scription factor5 (TBX5),32 and Pax3.33,34 Finally, it parti-

cipates in cell proliferation, differentiation, and apoptosis.

Another study found that various cytokines including con-

nective tissue growth factor (CTGF), cysteine-richangio-

genic inducer 61 (CYR61), ankyrin Repeat Domain 1

Upstream signals
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YAP/TAZ
p
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Figure 1 Regulation of theHippo pathway. An overviewof the regulation of transcription by YAP/TAZ inmammalian cells. The core of theHippo-signaling pathway includes theMST1/2

and LATS1/2 kinases, which function as active dimers with SAV1 and MOB1, respectively. To enable phosphorylation of YAP and TAZ, phosphorylation of YAP/TAZ creates a 14-3-3

binding site, which promotes cytoplasmic localization of YAP/TAZ, resulting in YAP/TAZ cytoplasmic retention and degradation. YAP and TAZ translocate to the nucleus and serve as

transcriptional co-activators for TEADs, to coordinate pro-proliferating and anti-apoptotic programs, when the Hippo-signaling pathway is inactivated.

Abbreviations: YAP, Yes-associated protein; TAZ, transcriptional coactivator with PDZ-binding motif.
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(ANKRD1), baculoviral IAP repeat-containing protein 5

(BIRC5),18 brain-derived neurotrophic factor, and fibro-

blast growth factor1 worked as downstream substrates

for YAP stimulation. CTGF acts as a direct target gene

for YAP, promoting cell proliferation and anchorage for

independent growth.35 Recently, Kim et al indicated that

YAP/TAZ also functioned as a transcriptional co-repressor

to promote cell survival by repressing DNA damage-indu-

cible transcript 4 (DDIT4) and TNF-related apoptosis-

inducing ligand (Trail) mediated by histone deacetylase

(NuRD) complex.36

The Hippo pathway observed in mammals is mainly

regulated by multiple upstream signal input factors, such as

WW, C2 domain-containing protein 1 (KIBRA/WWC1),

neurofibromin2 (Nf2), and FERM domain-containing pro-

tein 6 (willin/FRMD6).37 Recently, G protein-coupled recep-

tor (GPCR) signaling was found to act as an upstream signal

of the Hippo pathway. It was shown that stimulation of G12/

13-coupled receptors or Gs-coupled receptors could inhibit

or activate Lats1/2, thereby activating or inhibiting YAP/

TAZ to influence cell proliferation and migration.38

YAP/TAZ and its regulation
The structure of YAP/TAZ
YAP is a transcriptional coactivator of the Hippo pathway

and promotes gene expression by enhancing the activity of

transcription factors. It has two subtypes, YAP1 and

YAP2. YAP contains multiple domains and specific

amino acid sequences, including a TEAD-binding region

(formed by the 94th serine,S94), two WW domains (con-

sist of amino acids 172–204 and 231–263), an N-terminal

proline-rich domain, a C-terminal PDZ-binding motif, an

SH3-binding motif, a coiled-coil domain and a transcrip-

tion activation domain (Figure 2). TAZ is homologous to

YAP and has similar domains and functions as YAP.3

However, it lacks a proline-rich domain, a second WW

domain and an SH3-binding motif (Figure 2). A previous

study demonstrated that the WW domain specifically

recognizes the PpxY (P is proline, x is any amino acid

and y is tyrosine) motifs, thereby controlling the localiza-

tion and activity of YAP/TAZ.39 The C-terminal of YAP/

TAZ can accurately identify the PDZ domain, which is

composed of 80–90 amino acids and is present in many

proteins.40

The effect of YAP/TAZ on cell

proliferation and apoptosis
Previous studies have suggested that YAP/TAZ is an onco-

protein resulting in cell proliferation. In Drosophila, over-

expression of yki (YAP homologue in Drosophila) leads to

overgrowth of the third instar wing discs.2 Researchers

have established that mice that overexpresses YAP had a

higher mitogenic activity in keratinocytes and thicker

basal layer, superstratum, and stratum corneum present

on the epidermis than those in wild type mice. On the

contrary, mutant YAP gene knockout mice showed marked

epidermis shrinkage and delayed wound healing.41 When

the skin was wounded, YAP protein level in the keratino-

cyte increased and subsequently induced cell

proliferation.41 Another study showed that the prolifera-

tion was inhibited in lung cancer cell line A549 transfected

with MST1 gene, which was due to high level of YAP

phosphorylation.42 It was also observed that in liver injury

caused by cholestasis, high expression of YAP promoted

the proliferation of hepatocytes and bile duct epithelial

cells, and resulted in the lesser of liver damage.43

Conditional knockout of YAP/TAZ gene leads to inhibi-

tion of hepatocyte regeneration and liver necrosis.43

Interestingly, high concentrations of bile acid can act as

upstream activators of the Hippo pathway, activate YAP

transcriptional activity, and stimulate hepatocyte prolifera-

tion and tumorigenesis.44

p-rich pdzww ww

ww pdz

Coiled-coil

Coiled-coil

SH3TEADYAP

TAZ TEAD

Figure 2 The structures of YAP and TAZ. YAP has a proline-rich (P-rich) region at the N-terminal, the TEAD transcription factor-binding domain, the WW domain(s) in the

middle, followed by an Src homology domain 3 binding motif (SH3 BM), a coiled-coiled motif (CC), and a PDZ-binding motif in the C-terminal. TAZ has a similar domain

organization as YAP but lacks the proline-rich domain, the second WW domain, and the SH3-binding motif.

Abbreviations: YAP, Yes-associated protein; TAZ, transcriptional coactivator with PDZ-binding motif.
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On the contrary, YAP/TAZ has an inhibitory effect on

apoptosis. In Drosophila, Yki protein inhibits cell apoptosis

by reducing the activity of apoptosis-related gene reaper

(rpr), the binding of P53 with the apoptosis-stimulating pro-

tein of P53-1 (ASPP1), and activation of head involution

defective (hid).45 A previous study also confirmed the anti-

apoptosis effect of YAP/TAZ in carcinoma cells, showing

that the nuclei of hepatocellular carcinoma and intrahepatic

cholangiocarcinoma cellsare rich in YAP and apoptotic pro-

tein inhibitor, survivin, whose transcription is dependent on

YAP/TAZ.46

The signaling pathways of YAP/TAZ
YAP/TAZ in the Hippo pathway can play a role in cell

proliferation and programmed death by regulating or being

regulated by various signaling pathways. YAP/TAZ is

closely related to the Wnt/β-catenin,47 TGF-β/SMAD,48

Notch49,50 and P13/AKT pathway.51,52

Barry et al found that YAP restricted nuclear translocation

of disheveled (DVL) and the regeneration of intestinal cells.47

This inhibition was caused by DVL-mediated inactivation of

theWnt signaling pathway.47 In a study based on tumorigenesis

and development, it was found that Smad3/YAP/TEAD/p300

could form complexes to increase the expression of CTGF,

promote proliferation of malignant stromal cells, and secretion

of extracellular matrix.48 YAP/TAZ can also interact with the

Notch signaling pathway to regulate intestinal homeostasis.

Under normal conditions, only Hes-1, a target gene of the

Notch signaling pathway, was expressed in the intestinal

crypts.49 Activation of YAP and the expression of Hes-1 was

widened and distributed in all chorio-epithelium, which sug-

gested that YAP-mediated expansion of intestinal progenitor

cells was at least partially dependent on the activation of the

Notch signal.49,50 PI3K/AKT pathway can cooperate with the

Hippo/YAP signaling pathway to regulate cell proliferation and

programmed cell death.51 It was reported that Pik3cb, one of the

genes encoding PI3k, could be directly activated by YAP/TAZ

through TEAD to promote PI3K transcription and AKT

activation.52 This mechanism has also been confirmed in rat

cardiomyocytes as YAP-mediated PI3K/AKT activation pro-

motes its proliferation and reduces programed cell death.52

The roles of YAP/TAZ in squamous
cell carcinoma
As a downstream function of the Hippo pathway, YAP/TAZ

can induce the activation of target genes related to cancer cell

proliferation, invasion, and metastasis. Therefore, YAP/TAZ

plays an oncogene role in a number of malignant tumors,

such as lung,53 liver,54 gynecological,55,56 gastrointestinal,-
57,58 and skin malignant tumors.59 Among skin malignancies,

squamous cell carcinoma (SCC), basal cell carcinoma

(BBC), and melanoma are the most common forms. Studies

show that in both human and mice BBC, YAP and TAZ were

nuclear and highly expressed.59,60 Meanwhile, the condi-

tional deletion of YAP and TAZ in mouse models of BCC

prevented tumor formation.59 YAP signaling also accelerated

BBC development via the c-JUN/AP1 axis,60 the positive

regulatory interactions with Hedgehog/GLI2 signaling,61 and

its downstream of cysteine-rich protein 61 (CCN1) and con-

nective tissue growth factor (CCN2).62 For melanoma, recent

papers described high expression of TAZ/YAP promoted its

progression associated with stimulation of low-density lipo-

protein receptor-related protein 1 (LRP1) and affects the

postoperative survival of patients.63,64 Emerging evidence

also suggested that YAP directly mediated evasion of cyto-

toxic T-cell immune responses in BRAFi-resistant melanoma

cells by upregulating PD-L1, and targeting of YAP-mediated

immune evasion may improve prognosis of melanoma

patients.65 More and more evidences show that squamous

cell carcinoma (SCC) that occurs in different organs covered

with squamous epithelium not only restrict to skin, was

initiated and determined by YAP/TAZ. Here, we will focus

on SCCs and summarize the effect of YAP/TAZ on tumor-

igenesis and progression of several common SCCs.

Cutaneous squamous cell carcinoma
The homozygous mouse mutant of the gene encoding 14-3-

3σ displays severe skin defects such as thick epidermis, high

proliferation of basal and spinous layers, and lack of granular

and stratum corneum, accompanied with enhanced YAP

nuclear localization in epidermal cells.66 This study demon-

strated that YAP/TAZ as a downstream molecule of 14-3-3σ,
blocked its binding with1 4-3-3 isoforms and failed to

sequester in the cytoplasm due to the mutant, 14-3-3σ.66

Accumulation of YAP/TAZ in the nucleus causes continued

progenitor expansion, inhibition of differentiation in the epi-

dermis, and formation of cutaneous squamous cell carcinoma

(CSCC).66 It was observed that YAP/TAZ is highly

expressed in both mouse and human CSCCs and shows

elevated expression in wounded skin.67 When YAP/TAZ

was knocked out, proliferation of cells as marked by positive

of Ki67 is reduced.67

YAP/TAZ can activate the EGFR/RAS signaling path-

way by inducing the expression of amphiregulin (AREG)

during transcription, thus activating its downstream P13K/
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AKT and ERK pathways.68 The two latter pathways are

involved in the regulation of cell growth, survival, and

migration on CSCC.68 The S100A7 protein is highly

expressed in psoriasis, differentiated SCC, and keratoa-

canthoma lesions.69 In the SCC cell line A431, YAP can

inhibit the expression of S100A7 protein by binding to

TEAD1. Although YAP has lesser protein expression com-

pared to S100A7, researchers believe that both the proteins

can promote cell proliferation and inhibit cell differentia-

tion. Moreover, S100A7 protein may be a substitute for

YAP to maintain cell survival.69,70

Esophageal squamous cell carcinoma
Esophageal cancer is one of the most common gastroin-

testinal cancers.71 The pathological type of esophageal

cancer is mainly esophageal squamous cell carcinoma

(ESCC).72 Muramatsu et al found that the effect of YAP

in ESCC depended on its expression level and depletion of

YAP inhibited cell proliferation, which was accompanied

with an increase in the transcription of CDKN1A/p21, and

a decrease in the transcription of BIRC5/survivin.73

Clinical observation showed that nuclear accumulation or

overexpression of YAP was associated with poor prog-

nosis for patients with ESCCs.73 Another clinical study

in ESCC 142 cases and 29 normal esophageal tissue cases

found that the location of YAP in nuclear was much more

in ESCC than in normal esophageal tissue.74 Moreover,

univariate analyses showed that enrichment of nuclear

YAP was associated with tumor diameter, Ki67 expres-

sion, histological grade (1–2 versus 3), pathological T

category (1 versus 2–4), and pathological TNM stage

(stage 1 versus 2–4) in patients with ESCC, indicating

that nuclear accumulation of YAP/TAZ is correlated with

the patients’ survival rate and prognosis.74

Head and neck squamous cell carcinoma
Head and neck squamous cell carcinoma (HNSCC) is themost

common of head and neck malignancy. Due to its anatomical

location and the adjacent relationship, all aspects of tumor

treatment are limited, which seriously affects the life quality

of patients.75 Evaluation of YAP expression by immunohisto-

chemical tissue chip technology showed that YAP expression

in HNSCC was significantly higher than in benign tissue and

precancerous lesions and the poorer differentiation of tumor

was alongwith the higher of YAP expression.75 A recent study

found that an ACTL6A/P63 complex suppressed WWC1 to

activate YAP/TAZ and promote tumorigenesis in HNSCC. It

was also observed that ACTL6A and an activated YAP/TAZ

pathway conferred poor prognosis in primary HNSCC.76 An

experiment by Wang et al showed that the level of nuclear

YAP/TAZ in fibroblasts associated with perineural invasion

was higher than those in the stroma of normal mucosa, sug-

gesting that the transcription programs mediated by YAP/TAZ

in the fibroblasts may contribute to perineural invasion in

HNSCC.77 Interestingly, a recent study reported that upregula-

tion of a circular RNA, circPVT1 together with TP53mutation

resulted in increased proliferation ofHNSCCcell lines through

the formation of mut-p53/YAP/TEAD complex.78

Oral squamous cell carcinoma
Genomic analysis showed that YAP/TAZ was amplified

and overexpressed in oral squamous cell carcinoma

(OSCC).79 Hiemer et al demonstrated that nuclear accu-

mulation of YAP/TAZ promoted OSCC cell proliferation,

survival, and migration in vitro and was required for the

growth and metastasis of OSCCin vivo.80 Recent research

showed the expression level of YAP was higher in OSCC

tissues than that in adjacent normal tissues and YAP could

drive the transcription of bcl-2 and c-myc genes subse-

quently leading to OSCC cell proliferation and resistance

to apoptosis.81 The expression of TAZ was significantly

higher in tongue oral squamous cell carcinoma (TSCC)

cells and specimens than those in non-cancerous cells and

normal tongue mucosa.82 Increase of TAZ expression

inTSCC was significantly associated with tumor size,

pathological grade, clinical stage, Ki-67 expression,

reduced overall, and disease-free survival.82

Cervical squamous cell carcinoma
Cervical cancer is one of themost commonmalignancies in the

female reproductive system. It is well known that the most

common histological type of cervical cancer is squamous cell

carcinoma, and its onset is a continuous developmental process

from cervical squamous intraepithelial neoplasia to invasive

cancer.83 Liu et al reported that compared to normal tissues,

YAP significantly increased in cervical SCC and was posi-

tively correlatedwith tumor differentiation, lymphnodemetas-

tasis, and early recurrence.84

Therapeutic potential on targeting
YAP/TAZ in squamous cell carcinoma
Based on the above-mentioned studies, it is clear that the

YAP/TAZ, which was expressed highly in SCCs,68,73,75,80,84

has an oncogenic function. Therefore, a strategy against

YAP/TAZ can prevent or at least slow the progression of
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SCCs. Fortunately, some inhibitors have been reported to be

effective in treating SCC through direct and indirect inhibi-

tion of YAP/TAZ activation. An experimental evidence has

demonstrated that verteporfin, an FDA-approved photody-

namic therapy, inhibited YAP–-EAD interaction and sup-

pressed YAP-induced cancer cells overgrowth in vivo or in

vitro.85,86 In addition, a report showed verteporfin also acti-

vated the Hippo pathway and sequestered YAP in the cyto-

plasm by upregulating 14-3-3σ.87 A number of pathways

have been identified to drive YAP/TAZ activities. Some can

be used as a target to treat YAP-dependent cancer, such as G-

protein-coupled receptor (GPCRs).88 It was reported that

viral GPCR inhibited the Hippo pathway kinases Lats1/2

through Gq/11 and G12/13, which resulted in the activation

of YAP/TAZ.89 Targeting the downstream genes of YAP/

TAZ such as CYR61 and CTGF is also a strategy for SCC

treatment, which is required for YAP/TAZ-dependent cancer

progression.90,91

Conclusion and future perspectives
The Hippo pathway is pivotal in mammalian development

and organ size control. YAP and TAZ are transcriptional co-

activators that are negatively regulated by the Hippo path-

way. YAP/TAZ activation promotes tumor formation and

progression. A subsequent study reported that YAP/TAZ

was overexpressed in a significant number of human cancers,

especially in SCCs derived from different organs. Therefore,

targeting the inhibition of YAP/TAZ activation would be an

effective approach to treat YAP/TAZ-driven cancers. There

are several strategies to directly target YAP/TAZ-TEAD,

including targeting upstream signaling molecules and down-

stream YAP/TAZ target genes. However, the side effects of

these treatments remain unclear. Moreover, there are no

studies indicating that YAP/TAZ inhibition can prevent the

growth of metastatic cancers.
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