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Background: In recent years, green synthesized silver nanoparticles have been increasingly

investigated for their anti-cancer potential. In the present study, we aimed at the biosynthesis of

silver nanoparticles (AgNPs) using a curcumin derivative, ST06. Although, the individual

efficacies of silver nanoparticles or curcumin derivatives have been studied previously, the

synergistic cytotoxic effects of curcumin derivative and silver nanoparticles in a single nano-

particulate formulation have not been studied earlier specifically on animal models. This makes

this study novel compared to the earlier synthesized curcumin derivative or silver nanoparticles

studies. The aim of the study was to synthesize ST06 coated silver nanoparticles (ST06-

AgNPs) using ST06 as both reducing and coating agent.

Methods: The synthesized nanoparticles AgNPs and ST06-AgNPs were characterised for

the particle size distribution, morphology, optical properties and surface charge by using UV-

visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy

(TEM). Elemental composition and structural properties were studied by energy dispersive

X-ray spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD). The presence of ST06

as capping agent was demonstrated by Fourier transform infrared spectroscopy (FTIR).

Results: The synthesized nanoparticles (ST06-AgNPs) were spherical and had a size distribu-

tion in the range of 50–100 nm. UV-Vis spectroscopy displayed a specific silver plasmon peak at

410 nm. The in vitro cytotoxicity effects of ST06 and ST06-AgNPs, as assessed by MTT assay,

showed significant growth inhibition of human cervical cancer cell line (HeLa). In addition,

studies carried out in EAC tumor-induced mouse model (Ehrlich Ascites carcinoma) using

ST06-AgNPs, revealed that treatment of the animals with these nanoparticles resulted in

a significant reduction in the tumor growth, compared to the control group animals.

Conclusion: In conclusion, green synthesized ST06-AgNPs exhibited superior anti-tumor

efficacy than the free ST06 or AgNPs with no acute toxicity under both in vitro and in vivo

conditions. The tumor suppression is associated with the intrinsic apoptotic pathway.

Together, the results of this study suggest that ST06-AgNPs could be considered as

a potential option for the treatment of solid tumors.

Keywords: silver nanoparticles, anticancer, Ehrlich Ascites carcinoma, apoptosis

Introduction
Curcumin a biphenyl compound, isolated from the rhizomes of turmeric (Curcuma longa)

is widely known for its multiplemedicinal properties1, including the anti-cancer property.

Despite notable chemo preventive effects of curcumin, its low water solubility and poor
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bioavailability markedly limit its clinical uses.2 Several

approaches have been examined to overcome these limitations

and to improve the bioactivity of curcumin.One such approach

is the synthesis of curcumin derivatives or analogues that have

higher bioavailability. Recent studies have shown that some of

the curcumin derivatives exhibit significantly stronger antic-

ancer activity than that of curcumin.3–8 One example of such

compounds is 3,4,5-trimethoxy derivatives of curcumin, espe-

cially bis[(3E,5E)-4-oxo-3,5-bis[(3,4,5-trimethoxyphenyl)

methylene]-1-piperidyl ethane-1,2-dione, which have been

reported to exhibit higher metabolic stability and cytotoxic

potency, compared to curcumin.9 In the present study we

have synthesized the known compound (1,2-bis[(3E,5E)-

4-oxo-3,5-bis[(3,4,5-trimethoxyphenyl) methylene]-1-piperi-

dyl] ethane-1,2-dione), which is referred here as ST06, and

its anticancer potential has been analysed after loading it on

AgNPs.

Earlier studies have suggested that intervention with

curcumin loaded nanoparticulate systems presents several

benefits, including improved solubility, enhanced drug

uptake, and site-specific delivery.10 In recent years, plant-

mediated biosynthesis of silver nanoparticles (AgNPs) has

received considerable attention owing to its simple, non-

toxic and eco-friendly way of synthesis. The method of

green synthesis of AgNPs, using plant extracts not only

make them more sustainable and biocompatible11–13 but it

may also result in functionalization of the nanoparticles,

which could further enhance their anti-cancer activity.14

Several studies have evaluated the anti-cancer potential of

green AgNPs on cancer cell lines and in animal models.15–20

These nanoparticles exhibited anti-cancer effects on a variety

of cancer cell lines, such as breast cancer,21 lung cancer,22

colon cancer23 and cervical cancer.21 Biogenic AgNPs inhib-

ited the cervical carcinoma cells by caspase mediated cell

death24 and nanosilver induced apoptosis via mitochondrial

pathway.25 Another study which elucidated the possible

mechanism of cytotoxicity of AgNPs on human fibroblast

cells (IMR-90) and glioblastoma cells (U251) showed that

these nanoparticles increased the production of reactive oxy-

gen species (ROS), which resulted in DNA damage and cell

cycle arrest.26 These results suggest that AgNPs have great

potential in anti-cancer therapeutics. However, more studies

are needed to understand the underlyingmolecular mechanism

attributing to their therapeutic efficacy.

Unlike in vitro studies, only limited studies have

evaluated the antitumor potential of AgNPs in animal

models. AgNPs exhibited potent antiangiogenic ability

by inhibiting the vascular endothelial growth factor

(VEGF) in retinal endothelial cells.27 It has been

reported that AgNPs exert their anti-angiogenic activity

through activation of P13K/Akt signalling pathways.28

Treatment of lymphosarcoma tumor bearing animals

with AgNPs significantly increased their survival per-

iod, as compared to the control group.29 In a similar

study, AgNPs have been shown to significantly

increase (by about 50%) the survival of Dalton’s lym-

phoma ascites tumor-bearing mice, and decreased (by

about 60%) the ascitic fluid in the tumor.30,31 In the

present study, we utilised ST06, a curcumin derivative

as reducing agent for the synthesis of silver nanoparti-

cles (AgNPs) and later ST06 was coated on to

the synthesised AgNPs. The ST06-AgNPs thus-

synthesised were characterised by ultraviolet-visible

(UV-Vis) spectroscopy, dynamic light scattering

(DLS), transmission electron microscopy (TEM),

energy dispersive X-ray spectroscopy (EDX), and

Fourier-transform infrared spectroscopy (FTIR). The

anticancer activity of ST06-AgNPs was evaluated in

human cervical cancer cell line (HeLa) as well as in

Ehrlich’s ascites carcinoma (EAC) tumor bearing mice.

Materials and methods
Synthesis of ST06
The reaction of 4-piperidone hydrochloride with 3,4,5, -

trimethoxy benzaldehydes in the presence of dry hydrogen

chloride yielded 3,4,5-bis(benzylidene)-4-piperidone. To

a solution of respective 3,5-dibenzyledenepiperidin-4-one

(0.024 M) in acetone (25 ml), potassium carbonate (0.04)

was added. To this reaction mixture, tetrabutyl ammonium

bromide (TBAB) (0.002 M) was added and then the reac-

tion mixture was stirred at room temperature for 1 hr. To

this reaction mixture, oxalyl chloride (0.012 M, 2.2 ml)

was added dropwise. The reaction mixture was stirred at

room temperature for 24 hrs. The product obtained was

filtered, washed with water and recrystallized from ethanol

(Figures S1 and S2).

Preparation of AgNPs
The biosynthesis of AgNPs followed the protocol mentioned

by Yang et al.32 Briefly, 250 µL of 20 mM ST06 dissolved in

DMSO was mixed with 22.5 mL millipore water and the pH

was adjusted to alkaline with KOH. With vigorous stirring at

100°C, 2.5 mL AgNO3 (10 mM) was quickly added to the

mixture (Figure 3). The colour changed from yellow to

brown after a few minutes. The mixture was stirred at
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100°C for 1 hr and then cooled down to room temperature.

AgNPs thus prepared were collected by centrifugation at

16,000 rpm for 20 mins, and then washed several times

with deionized water to remove any unreacted silver and

ST06. UV–visible spectroscopy was used to detect the sur-

face plasmon resonance (LSPR) peaks for silver nanoparti-

cles. The synthesised AgNPs were dried.

Preparation of ST06-bound AgNPs
In order to prepare ST06 bound silver nanoparticles

(ST06-AgNPs), the protocol mentioned by Ahmed et al.33

was followed. Briefly, 5 mL of ST06 solution (200 μg/mL)

was added to a 50 mL suspension of silver nanoparticles

(AgNPs). The reaction mixture was sonicated for 2 mins

and magnetically stirred for 24 hrs at room temperature.

UV–visible spectroscopy was used to detect the position of

silver plasmon peaks for ST06-adsorbed AgNPs. The reac-

tion mixture was centrifuged at 12,000 rpm for 10 mins

and the pellet (ST06-AgNPs) obtained was washed twice

with distilled water. Finally, the nanoparticles were freeze-

dried and were stored at room temperature (26 °C) for

further study.

Characterization of ST06-AgNPs
The reactionmixture was scanned in the range of 200 – 800nm

for AgNPs and ST06-AgNPs respectively, in a UV-Vis spec-

trophotometer (Tecan infinite M 200 pro, Tecan Austria

GmbH, Grödig, Austria). The shape, morphology, and disper-

sal of the nanoparticles were analysed by TEM. The size

distribution profile and the zeta potential of the nanoparticles

were analysed using DLS with a particle size analyser

(Malvern zetasizer nano ZS90, Malvern, UK). The elemental

composition and crystalline nature of silver nanoparticles were

determined by X-ray diffraction (Powder X-ray—D8

advanced diffractometer, BRUKER). FT-IR spectra was

recorded on a single beam Nicolet iS5 FT-IR spectrophot-

ometer with the following parameters: scan range,

4000–500 cm−1; number of scans, 16; and resolution 4.0 cm−1.

Transmission Electron Microscope (TEM) samples

were prepared by placing a drop of dispersed NPs solution

onto formvar coated copper grid for determining morphol-

ogy and polydispersity in particle size. The micrographs

were obtained on TECNAI G2 Spirit (FEI, Netherland)

equipped with Gatan digital camera operated at an accel-

erating voltage at 80 kV. Elemental composition of the

NPs was analysed by placing the drop of nanoparticle

solution on aluminium stub and elemental analysis was

done using Field Emission Scanning Electron Microscope

(FE-SEM) coupled with Energy Dispersive X-ray analysis

(EDAX) on Quanta FEG 450 (FEI, Netherland).

Cancer cell culture
Human cervical cancer cell lines (HeLa) was purchased

from NCCS (National center for cell sciences), Pune,

India. Cells were grown in MEM with 10% Fetal bovine

serum and antibiotic-antimycotic agents (GIBCO, Thermo

fisher scientific, US) at 37°C in a humidified incubator

with 5% CO2 supply.

MTT assay
The in vitro cytotoxicity of ST06 and ST06-AgNPs on

human cancer cell lines were assessed by MTT (3-(4,

5-dimethylthiazol-2-yl)-2–5-diphenyletrazolium bromide)

assay. Briefly, HeLa cells were plated at a concentration

of 5×103 in a 96-well plate (NEST®, New Jessey, USA).

After 24 hrs, the cells were subjected to treatment with

ST06 and ST06-AgNPs for 48 hrs (0.5 µM, 1 µM, 1.5 µM,

and 2 µM). After the incubation, 10 ul of MTT (5 mg/mL)

solution was added to each well and incubated till the time

purple colour develops in the well. Then, 100 µl of stop-

ping solution (50% dimethyl formamide and 10% sodium

dodecyl sulphate) was added to stop the reaction, which

dissolves the purple formazan crystals. The plates were

covered with aluminium foil and kept at 37°C incubator

for 2 hrs for the complete dissolution of purple coloured

formazan crystals. The amount of formazan crystals

formed is directly proportional to the number of viable

cells present in the well. The absorbance was measured

using an ELISA plate reader (Tecan infinite M 200 pro,

Tecan Austria GmbH, Grödig, Austria) at 570 nm. The

percentage of cytotoxicity was defined as ([absorbance of

treated cells]/[absorbance of control cell] ×100).

In vivo efficacy studies
The study was approved by the “committee for the purpose

of control and supervision of experiments on animals”

(CPCSEA, Government of India, Animal welfare division,

Reg.No. 1994/GO/ReBi/S/17/CPCSEA) and all experiments

were performed following institutional and national guide-

lines and regulations of the CPCSEA. The in vivo activity of

the ST06-AgNPs was tested using tumour induced mouse

model (Swiss Albino) developed by intravenously injecting

Ehrlich ascites carcinoma (EAC) cells (1×106 cells) to either

of the hind legs of mice. After tumours had developed to

a size of ≃ 200 mm3, animals were segregated (n=5) in

a manner to equalize the mean tumor diameter among the
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groups. Tumor bearing mice were divided into four experi-

mental groups (ST06, ST06-AgNPs, blank AgNPs and con-

trol without drug treatment) and subjected to 15 doses of

5 mg/kg of body weight of ST06 and ST06-AgNPs intraper-

itoneally (i.p) every alternate day. The experiment was

repeated three times with 5 animals each per group to

a total number of n=15. Changes in the tumour size and

body weight were observed for 30 days from the day of

treatment. The width, length, and height of tumors were

measured using a digital calliper. Tumor volume was calcu-

lated using the formula V = (L xW xW)/2, where V is tumor

volume, W is tumor width, L is tumor length.

Western blot analysis
Tumor tissues (100 mg) from the three groups (tumor-bearing

control without drug treatment, AgNPs treated, ST06 treated,

ST06-AgNPs treatment) were minced and lysed in 500 μl cell
lysis buffer for 30 mins, sonicated and centrifuged at

12,000 rpm for 15 mins at 4°C. The supernatant was collected

and protein concentrations were determined by Bradford

assay. Samples were subjected to 10% sodium dodecyl sul-

phate polyacrylamide gel electrophoresis (SDS-PAGE) and

the resolved proteins were transferred to polyvinylidene

difluoride (PVDF) membrane (Biorad, USA) by semi-dry

transfer method (Transblot-Turbo blotting system, Biorad,

USA). The membranes were blocked with 5% non-fat dried

milk in Tris-buffered saline containing 0.1% Tween 20

(TBST) for 1 hr at room temperature, washed three times

with TBST and incubated with primary antibody (Bcl-2, cas-

pase 9, 3, PARP1) for 2 hrs at room temperature followed by

respective secondary antibodies labelled with biotin. The anti-

bodies were purchased from Santa Cruz Biotechnology Santa

Cruz, CA and Cell Signalling Technology, Beverly, MA. After

washing three times with TBST, the membranes were incu-

bated with streptavidin-horseradish peroxidase conjugate for

1 hr at room temperature. The antibody hybridized membrane

was developed using chemiluminescence reagent (Clarity

Western ECL blotting substrate, Biorad, USA). The blot

images were captured using Syngene G: Box gel doc system

and protein image quantification were done using GelQuant.

Net, BiochemLab solutions.

Drug toxicity assessment
EAC tumor-induced mice were treated with ST06 and

ST06-AgNPs for 30 days, after which the drug toxicity

evaluation was carried out. Blood samples were collected

from three animals from each group and the serum was

separated. Drug toxicity biomarkers such as aspartate

aminotransferase (AST), alanine aminotransferase (ALT)

and urea were estimated according to the method

described by ALT/AST/urea activity assay kit (Abcam,

India).

Histological analysis of tumour tissues
H & E staining of the tumor and organs were performed by

fixing the tissues in formalin. The tissues were then embedded

in paraffin and the tissue blocks were sectioned into 5 mm

thickness. For histological staining, the tissue slices were

deparaffinized in xylene for 5 mins, dehydrated in ethanol

gradient (100%, 70%, 50%, 30%) followed by washing with

running water and incubation in hematoxylin for 5 min. The

slides were then subjected to acid-alcohol wash (1% HCl in

70% of C2H5OH) and then kept in 2% sodium bicarbonate

solution for 1 min, followed by washing with running water. It

was then incubated in eosin for 30 seconds. The slides with

the tissues were dehydrated in a solution of graded ethanol

(70%, 100%) followed by xylene incubation for 5 min. The

slides were then fixed using DPX mountant and allowed to

dry for observation under the microscope.

Statistical analysis
All values in this study were presented as mean ± SE of

at least 3 independent experiments. Two-way ANOVA

for significance testing was used for multiple group ana-

lysis and Student’s t-tests were used for two-group com-

parison. p-value ≤0.05 was considered as significant. The

p-value was represented as * for p-value <0.05, ** for

p<0.01, *** for p<0.001, **** for p-value <0.0001.

Results
Characterisation of ST06-AgNPs
The hydrodynamic diameter of ST06-AgNPs, as determined

using DLS, was 74±0.52 nm with a low polydispersity index

(PDI) of 0.202 (Figure 1A), indicating the formation of mono-

dispersed nanoparticles. The Zeta potential of ST06-AgNPs

was −35.3 mV. The observed high negative surface charge

indicates the formation of stable nanoparticles (Figure 1B).

The absorbance of the silver nanoparticles solutions was mea-

sured on a UV-Visible spectrometer. The AgNPs and ST06-

AgNPs showed a characteristic silver plasmon band at 410 nm

(Figure 1C and D). The average particle diameter, as analysed

by TEM, was about 50–100 nm (Figure 2A). Elemental ana-

lysis by EDX presented a strong peak for silver at about 3 keV

indicating that silver is the basic constituent element

(Figure 2B). The FTIR spectra (Figure 2C) showed absorption
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Figure 1 Characterization of ST06-AgNPs.

Notes: Particle size distribution of ST06-AgNPs by dynamic light scattering (DLS) (A) Zeta Potential distribution of ST06-AgNPs (B) UV-vis spectra of the reaction mixture

containing AgNPs (C) and ST06-AgNPs (D).
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peaks from 3291 cm−1 to 612 cm−1. The peak at 1651 cm−1

represents the carbonyl group (C=O) while the absorption

peaks at 1271–1385 cm−1 correspond to amide groups.

Stretching vibration at 3291cm−1 indicate N-H stretching and

peak at 1271 cm−1 and 1089 cm−1 represents -OH and

C-O-H stretching. The peak at 1545 cm−1 and 612 assigned

to N-O stretching and aromatic C-H vibrations. Thus, from the

FTIR spectra, it can be inferred that the synthesised ST06-

AgNPs have been primarily functionalized by ST06, which

may be responsible for efficient capping and stability of the

nanoparticle. Moreover, a structure-activity relationship study

against different cancer cell lines revealed that majority of the

anti-cancer molecules contained functional groups like ROH,

R2NH, R3N, RCOR, ROR.
34,35 Hence, the FTIR results sug-

gest that the synthesised nanoparticles are stable and functio-

nalised preferentially to demonstrate its anti-cancer effects.

The crystalline nature of AgNPs and ST06-AgNPs was

verified by XRD. The XRD pattern was recorded at 25°- 90°

at two angles. High-intensity peaks from XRD patterns were

observed around 37°, 44°, 64° and 84° corresponding to

diffraction faces of silver. The XRD peak at 37°37°, 44°,

64°, and 84° represented the Bragg reflection corresponding

to (111), (200), (220) and 311 planes (Figure 2D).

Effects of ST06 and ST06-AgNPs on HeLa

cell lines
ST06-AgNPs were tested for their inhibitory effects on HeLa

cervical cancer cell line. Cytotoxicity analysis by MTT assay

showed a dose dependent decrease in the viability of cancer

cells (Figure 4). About 50% of the cells were killed at

a concentration of 1 µM of ST06 (P<0.01) and 1 µM of ST06-

AgNPs (P<0.01). AgNPs showed a significant reduction at

2 µM (P<0.01). The anti-cancer activity of green synthesised

AgNPs on HeLa cells has been reported earlier.19,36 In a study,

green synthesised AgNPs exhibited anti-cancer activity at

a concentration of 5 and 2 ug/ml on HeLa cells.19

Manivasagan et al showed, IC50 value to be 200 ug/ml of

AgNPs against HeLa cancer cells.36 But the effective doses

used in these studies were considerably higher than those

observed in the present study (IC50, 1 µM, Figure 4).

Effects of ST06 and ST06-AgNPs on EAC

tumor induced mice
EAC tumor-induced mice were divided into four experimen-

tal groups (n=15, ST06, blank AgNPs, ST06-AgNPs,

untreated control) and subjected to 15 doses of ST06, ST06-

AgNPs, blank AgNPs (5 mg/kg body weight) separately

through intraperitoneal (i.p) route. At the end of treatment,

tumor from each mouse from all the four groups was excised

and weighed. The average tumor weight was 4.24 g for

control, 3.23 g for AgNPs, 2.68 g for ST06, and 0.992 g

for ST06-AgNPs (Figure 5A). The animals were segregated

such that the initial tumor volume in all the groups was

similar. The average initial tumor volume at the start of the

experiment was 0.23 cm3 for the control (untreated),

0.26 cm3 for AgNPs, 0.25 cm3 for ST06 and 0.25 cm3 for

ST06-AgNPs treated group. After 30 days of treatment, the

average tumor volume of ST06-AgNPs decreased signifi-

cantly compared to the treatment with AgNPs, ST06 and

control groups (Figure 5B). The average tumor volume in

mice after treatment was 3.6 cm3 for control group, 2.2 cm3

for AgNPs, 1.8 cm3 for ST06, and 0.66 cm3 for the ST06-

AgNPs (Figure 5C). Statistical analysis by two-way

ANOVA showed that the tumor volume of the treatment

groups were significantly reduced on comparison with the

untreated controls; ST06-AgNPs (P=0.0015), blank AgNPs

(P=0.05) and ST06 treatment groups (P=0.01). These results

clearly revealed that ST06-AgNPs inhibited the tumor

AgNO3, 100o C, 1h 

AgNPsST06

ST06 + AgNPs

ST06-AgNPs

Figure 3 Green synthesis of ST06-AgNPs.

Notes: Green synthesis of ST06-AgNPs. Reduction of AgNO3 to AgNPs with ST06 and synthesis of ST06 adsorbed AgNPs.
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growth much more efficiently, compared to the free ST06

and AgNPs treatment groups. The average initial body

weight of animals at the start of the experiment was

26.48 g for the control, 26.24 g for ST06, 26.2 for AgNPs

and 26.38 g for ST06-AgNPs treated group (Figure 5D). The

body weight changes in all the four groups were found to be

similar towards the end of the experiment. Based on these

results, we infer that ST06-AgNPs given at a concentration

of 5 mg/kg intraperitoneally significantly inhibited the tumor

growth in tumor-bearing animals, without affecting their

body weight.

Effects of ST06 and ST06-AgNPs on the

levels of bcl-2, caspase 3,9 and PARP
After treatment with ST06 and ST06-AgNPs, expression

of the apoptosis-associated proteins in tumour tissues was

investigated in order to understand the mechanism

involved in tumor reduction. Results showed that the

expression of parent caspase 9 decreased by 0.3 and

0.5-fold, respectively, in the ST06 and ST06-AgNPs treat-

ment groups, compared to the control group. At the same

time, the expression of cleaved caspase 9 increased

by~2fold, whereas the expression of cleaved caspase 3

increased by ~4-fold in both the treatment groups.

Meanwhile, cleaved PARP expression increased by ~0.44 -

fold in ST06-AgNPs, whereas the Bcl-2 expression

decreased in both the groups by ~0.15 fold (Figure 6).

These results suggest activation of the caspases involved

in the intrinsic pathway, along with the cleavage of parent

PARP in treated tumor tissues.

Toxicity assessment
After 30 days of treatment with ST06 and ST06-AgNPs the

serum samples were collected from the mice and analysed

for alkaline aminotransferase (ALT), aspartate aminotrans-

ferase (AST) and urea contents. The results shown in Figure

7 reveal that serum AST and ALT levels were within the

normal range in both the treatment groups (AST<100 U/L

and ALT <60 U/L), whereas in case of urea, the levels were

slightly higher than the normal range (Urea<35 mM/L).

Histological analysis of tumor tissues and

organs
Tumor tissues from both the experimental groups and

control group were fixed with formalin, embedded in

paraffin and sectioned. The H&E-stained sections of

major organs, such as liver, spleen and kidney, were

analysed and the histological results compared with

the results of the biochemical analysis. No severe

abnormalities were identified in both the treatment

groups. The sections of organs were observed for

changes such as necrosis, hypertrophy, hyperplasia,
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pigmentation, steatoses in the liver; loss of germinal

centers, enlargement of the red and white pulp of

spleen; vacuolation of tubules in the kidney.

Treatment with ST06 and ST06-AgNPs significantly

improved the morphological/histopathological condi-

tions, compared to the control group (Figure 8).

Further, the H & E stained sections of tumor tissues

in the treatment groups exhibited a significant reduc-

tion in the number of blood vessel formation, com-

pared to the controls (Figure 8).

Discussion
AgNPs have been widely recognised for their anti-

bacterial,37–39 anti-fungal,40,41 anti-viral,32,42 and anti-

inflammatory effects.43,44 Recently, AgNPs synthesised

using plants, bacteria and fungi products have been

reported to have a wide range of applications in cancer

treatment and biomedical field.45–47 Several plants and

microbial-based AgNPs have been shown to exhibit

enhanced cytotoxicity on a variety of adherent and non-

adherent cancer cell lines.48 Besides, the in vivo anti-
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tumorigenic potential of AgNPs has been demonstrated

in Dalton’s lymphoma tumor-bearing mice29 and

L5178Y-R tumor bearing mice49 models.

Curcumin, from Curcuma longa, is well recognized for

its chemo preventive and antitumor properties, however, its

instability and poor bioavailability are the major problems in

its therapeutic application.1,50 Modifications or substitutions

on the aromatic ring of curcumin have been reported to alter

the metabolic stability and cytotoxicity51 of the parent mole-

cule. Several compounds containing 4-fluro, 4-chloro,

4-hydroxy or 3,4,5 trimethoxy substitutions were found to

be potent inhibitors of several cancer cell types at sub micro-

molar concentrations9. Furthermore, a large number of cur-

cumin based nano-formulations have been reported to

enhance curcumin therapeutic efficacy.52 Moreover, curcu-

min modified AgNPs (Cur-AgNPs) were shown to signifi-

cantly inhibit respiratory syncytial virus;32 reduce replication

of HIV;53 exhibit antibacterial activity;54 and improve the

therapeutic efficacy of collagen for biomedical applications55

In the present study, we report the synthesis, characterisation

and evaluation of cytotoxic activity of ST06 (a curcumin

derivative) and ST06 loaded on to AgNPs (ST06-AgNPs)

on human cervical cancer cells (HeLa) and also in EAC

tumor-bearing mice model. The results revealed that ST06-

AgNPs exhibit significantly higher anticancer activity, as

compared to free ST06 or AgNPs.

Earlier studies have proposed different mechanisms, such

as apoptosis, induction of reactive oxygen species (ROS) and

silver ion release, for the anti-cancer potential of AgNPs.24

The cascade of events in the execution of apoptosis involves

caspase and Bcl-2 families of proteins. It has been reported

that down regulation of Bcl-2 leads to release of cytochrome

c followed by activation of caspase 9, 3 and cleavage of

PARP which eventually leads to apoptosis.56 In this study,

the protein expression analysis of tumor tissues revealed

a significant decrease in the expression of Bcl-2 whereas

the expression of proapoptotic proteins caspase-9, and 3

and cleavage of PARP1 was upregulated in both the treat-

ment groups. These findings suggest that ST06 and ST06-

AgNPs inhibits the tumor growth by induction of mitochon-

dria-mediated caspases dependent apoptosis.

Although, both ST06 and ST06-AgNPs showed inhibitory

effects on the tumor growth, ST06 adsorbed on to AgNPs

(ST06-AgNPs) exhibited greater efficacy than the free drug or

AgNPs, because of adsorption of the drug to relatively larger

surface area of nanoparticles, which might have enhanced the

dissolution rate of the drug by Van der Waals forces, and

hydrogen bonds.57 This is well supported by the earlier

studies, which have shown that adsorption of drugs and anti-

biotics toAgNPs significantly enhanced their bioactivity, com-

pared to free drug.33,58 Further, AgNPs though have been

widely employed as drug carriers in the biomedical field but

only limited studies have been carried out to assess their toxic

effects. The biochemical and histological analyses in the pre-

sent study indicated that both ST06 and ST06-AgNPs exhib-

ited no significant toxic effects in the animals at the given dose

(5 mg/Kg). This is in agreement with earlier studies, which

have shown that the toxicity of the AgNPs depends upon the

particles size and their injected dose. It has been reported that

small size AgNPs cause multi organ, such as liver and kidney,

toxicity at high doses (13–21 mg/kg), however lower doses

exhibited negligible toxic effects.59,60 As the H&E sections of

tumor tissues exhibited a significant reduction in the number

of blood vessel formation in the ST06 and ST06-AgNPs

treatment groups, compared to the controls, it is inferred that

both the treatments might have impaired the angiogenesis in

tumors, which in turn could have resulted in inhibition of the

tumor growth and progression. This is well supported by the

earlier studies, which have shown that AgNPs effectively

impede new blood vessels formation in bovine retinal endothe-

lial cells28 and in chick chorioalantoic membrane.61 Taken

together, our results suggest that the synthesised nanoparticles

(ST06-AgNPs) possess strong anti-tumorigenic and anti-

angiogenic potential against EAC tumors.
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Supplementary materials

Figure S1 Schematic representation of the synthesis of ST06.

Notes: The reaction of 4-piperidone hydrochloride with 3,4,5, -trimethoxy benzaldehydes in the presence of dry hydrogen chloride yielded 3,4,5-bis(benzylidene)-

4-piperidone. To the solution of 3,5- dibenzyledenepiperidin-4-one, potassium carbonate was added followed by addition of tetrabutyl ammonium bromide (TBAB) and

oxalyl chloride to obtain 3,4,5-tri-OCH3 (ST06). Das S, Das U, Varela-Ramirez A, et al. Bis[3,5-bis(benzylidene)-4-oxo-1-piperidinyl]amides: A novel class of potent

cytotoxins. ChemMedChem. 2011.6.1892-1899. Copyright Wiley-VCH Verlag GmbH and Co. KGaA. Reproduced with permission.1
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Figure S2 Mass Spectrometry data of ST06.

Notes: Representative chromatography of ST06 as obtained by Mass spectrometry (MS (ESI) m/z: 964.99)
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