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Abstract: Metabolic syndrome is a common metabolic disorder which has become a public

health challenge worldwide. There has been growing interest in medications including

natural products as complementary or alternative choices for common chemical therapeutics

regarding their limited side effects and ease of access. Nanosizing these compounds may

help to increase their solubility, bioavailability, and promisingly enhance their efficacy. This

study, for the first time, provides a comprehensive overview of the application of natural-

products-based nanoformulations in the management of metabolic syndrome. Different

phytochemicals including curcumin, berberine, Capsicum oleoresin, naringenin, emodin,

gymnemic acid, resveratrol, quercetin, scutellarin, stevioside, silybin, baicalin, and others

have been nanosized hitherto, and their nanosizing method and effect in treatment and

alleviating metabolic syndrome have been reviewed and discussed in this study. It has

been discovered that there are several pathways or molecular targets relevant to metabolic

disorders which are affected by these compounds. Various natural-based nanoformulations

have shown promising effect in treatment of metabolic syndrome, and therefore can be

considered as future candidates instead of or in conjunction with pharmaceutical drugs if

they pass clinical trials successfully.
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Introduction
Metabolic syndrome (MetS) is a health disorder that includes a cluster of medical

conditions occurring together. MetS increases the risk of progressing atherosclerotic

cardiovascular diseases (CVDs), central obesity, insulin resistance, systemic hyperten-

sion, cerebrovascular accident, and atherogenic dyslipidemia.1,2 Diverse definition has

been suggested by the International Diabetes Federation, National Cholesterol

Education Program’s Adult Treatment Panel III, and the WHO. All mentioned inter-

national agencies concentrate on fivemedical conditions as a diagnosis guideline which

include waist circumference more than 35 inches in women and 40 inches in men,

enhanced fasting glucose of l00 mg/dL or greater, increased triglycerides (TGs) 150

mg/dL or greater, declined high-density lipoprotein cholesterol (HDL) less than 50 mg/

dL in women and less than 40 mg/dL in men, and blood pressure values of systolic 130

mmHg or higher and/or diastolic 85 mmHg or higher.3 Chronic inflammation has been

associated with insulin resistance and visceral obesity, which results in creation of

abnormal adipocytokines including IL-1, IL-6, TNF-α, adiponectin, and leptin.4 In the
case of MetS, lifestyle modification should be included along with pharmacological

treatment for those who have high levels of risk factors. An ordinary treatment guide-

line for MetS consists of prescribing drugs to lower the blood glucose level, TGs, and
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blood pressure along with improvement of the patient’s life-

style. Treatment with commonmedications exerts unpleasant

adverse effects such as flatulence and other related side

effects in the early stage of treatment.5 This high level of

adverse effects leads to a weak tolerance of the patient

especially in the long-term application of the medications.

In order to decrease side effects of these medications and to

improve the efficiency of drug delivery for treatment of

MetS, nanoformulation of natural and synthetic agents is an

option. Nanosized drug carriers, consisting of phytochem-

icals from conventional medicines endowed with developed

pharmacodynamics and pharmacokinetic characteristics, are

a novel therapeutic approach. The nano-vehicles provide

unique properties including enhanced bioavailability and

solubility of the drug, diminished systemic adverse effects,

elongated circulation time, and privileged accumulation in

the precise target organ.6 Therefore, different phytochem-

icals including curcumin, berberine (BBR), oleoresin capsi-

cum, naringenin, emodin, gymnemic acid, resveratrol,

quercetin (QUE), scutellarin, stevioside, silybin, baicalin,

and others have been used in diverse strategies for treatment

and alleviation of MetS. These phytochemicals have been

incorporated into diverse nanoformulation structures includ-

ing polymeric-based polyesters, polyanhydride, poly (alkyl

cyanoacrylate), etc, and natural ones (including cellulose,

collagen, albumin, chitosan, dextran, etc). Lipid-based drug

delivery systems such as micelles, liposomes, solid lipid

nanoparticles (SLNs), nanostructured lipid carriers, and

other related nanoformulations have also been included.7

Each polymeric and lipid nanostructure has precise synthesis

and drug loading methods and have been described in this

review.

Pathophysiology of MetS
Increasing knowledge about the exact pathophysiology of

MetS is very necessary to succeed in the design of suitable

medicines and pharmaceutical forms.8 Among different cellu-

lar pathways suggested, insulin resistance and excess fatty acid

are the most widely accepted ones.9,10 Insulin promotes glu-

cose uptake in the main target tissues of the liver, skeletal

muscle, and adipocytes via glycoprotein receptors and inhibit-

ing lipolysis and hepatic gluconeogenesis.11,12 Activation of

the insulin receptor initiates a cascade of phosphorylation

events using substrates which comprise insulin receptor sub-

strates (IRS-1–IRS-4) as well as JAK-2, which are docking

proteins that activate numerous signaling cascades.13,14 The

pathways for this activating process are PI3K/PKB, known as

Akt signaling. This process contributes to various metabolic

activities of insulin and the MAPK signaling cascade that

controls the regular function and growth of cells.2,13,14

Insulin-dependent glucose cellular uptake is activated by

migration of GLUT4 from an intracellular compartment to

the plasma membrane. GLUT4 is highly expressed in skeletal

muscles and adipose tissues. Glucose is then phosphorylated

as the substrate for glycogen synthesis or can be metabolized

to adenosine triphosphate.10,15–18 Frequent stroke and heart

failure propose a probable relation between this pathophysio-

logical condition and CVDs. Changes in the levels of insulin

signaling proteins like Glut4, IR-β, PI3K, IRS-1, PGC-1α, and
Akt, are involved in blocking insulin-mediated glucose uptake

along with other insulin functions in the cardiomyocytes.19

Insulin resistance is the most widely accepted hypothesis

for underlying pathophysiology of MetS. Free fatty acids

(FFAs) inhibit protein kinase activity and reduce glucose

uptake in the muscle, but in the liver – with increment of

protein kinase activity – result in production of atherogenic

factors such as glucose, TGs, and low-density lipoprotein

(LDL). In response to hyperglycemia, beta cells release

more insulin to maintain euglycemia which results in hyper-

insulinemia. Ultimately, failure in compensation and conse-

quently reduction of insulin secretion occurs. FFAs can

induce lipotoxicity in pancreatic beta cells, causing reduction

of insulin secretion.20,21 Reduced responsiveness to normal

insulin level causes type 2 diabetes and contributes to the

development of hypertension because of disturbance in the

vasodilator effect of insulin.2,20

Dyslipidemia
Dyslipidemia refers to unhealthy levels of one or more kinds

of lipids in blood, increased levels of apo B, TGs, LDL, with

reduced level of HDL, resulting from several abnormalities

in structure, metabolism, and biology of atherogenic and

antiatherogenic lipoproteins.22 Dyslipidemia is often due to

diet and lifestyle, but prolonged elevation of insulin level can

also lead to atherogenic dyslipidemia via different pathways.

Firstly, insulin inhibits lipolysis, thus this disturbance in

insulin signaling enhances lipolysis which can cause produc-

tion of FFAs. In the hepatocytes, FFAs act as a substrate for

the synthesis of TGs resulting in enhancement of very-low-

density lipoprotein (VLDL) production.23 Next, insulin par-

ticipates in apoB degradation and lipoprotein lipase activity,

so in this case, hypertriglyceridemia could be attributed to

increase in VLDL production and reduction of its clearance.-
23 CETP collects TGs from VLDL or LDL and exchanges
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them for cholesteryl esters which leads to TG-enriched HDL.

Hepatic lipase can rapidly clear HDL particles rich in TGs

and remove them from the circulation.23

Hypertension
Obesity is the main factor for insulin resistance with conse-

quent hyperinsulinemia. Type 2 diabetes and a genetic pre-

disposition with a family history of hypertension are other

important risk factors for hyperinsulinemia.24 There are accu-

mulating data indicating angiotensin II's inhibitory effect on

insulin action. In fact, in vascular muscle tissues, angiotensin

II interferes with insulin signaling through PI3K and its down-

streamAkt signaling pathway.25 This angiotensin II inhibitory

effect is performed via stimulation of RhoA activity.

Increased levels of RhoA activity and ROS inhibit PI3K/

Akt signaling followed by a decrease in production of NO

within endothelial cells and consequently increased

vasoconstriction.25 Activated renin-angiotensin system may

contribute to development of hypertension in MetS.26 On the

other hand, in obese individuals, a probable shift from PI3K to

the MAPK pathway can cause pro-atherogenic function.27,28

Hyperinsulinemia also increases re-absorption of sodium in

the kidneys through activation of sympathetic nervous sys-

tem, improving the cardiac output and vasoconstriction of

arteries, which will all lead to hypertension.20,29

Inflammatory and oxidative mediators
Adipose tissue is a dynamic endocrine organ able to

release a number of bioactive peptides including adipo-

nectin, IL-6 (by increasing CRP production), resistin,

RBP4, leptin, and TNF-α.30,31 Dysregulation of adipose

tissue activity has been implicated in over-secretion of

deleterious adipokines and hypo-secretion of beneficial

ones.30 Leptin has a major role in the regulation of meta-

bolism of the entire body by stimulating energy expendi-

ture, preventing food intake, and restoring euglycemia.

However, in the majority of obesity cases, resistance of

leptin limits its biological efficacy. In contrast to leptin,

secretion of adiponectin is often decreased in obesity.

Adiponectin is directly associated with an increase of

insulin sensitivity, enhancement of fatty acid oxidation,

and decrease in the production of glucose by the liver.32

Natural compounds and medicinal
plants for treatment of MetS
It has been shown that natural products or their derivatives are

a valuable source of therapeutic agents.33 Consistent with this

approach, researchers have focused on natural products in the

field of prevention or treatment of MetS.34–36 MetS increases

the risk of both atherosclerotic and non-atherosclerotic CVD,

one of the leading causes of death in the world.37,38 Results

from a meta-analysis showed that MetS increases the risk of

CVD outcomes and mortality.39 Considering the morbidity

and mortality caused by MetS and cardiometabolic disorders,

there is a high interest in the discovery of novel compounds

and pharmacological targets that might be effective in the

prevention or treatment of metabolic and/or cardiovascular

disorders. Many medicinal plants and natural products are

considered by the public as a safe and natural alternative to

synthetic drugs, of course without definite proof from rando-

mized controlled clinical trials.40 Therefore, there is an

increased interest in development of products with validated

efficacy and safety.

Major pharmacological targets of natural

compounds involved in prevention of MetS
Different molecular mechanisms have been reported for

therapeutic activity of natural products against cardiovas-

cular disorders and Mets. DPP-4, COX-1 and -2, AMPK,

PTP1B, transcription factors NF-κB, Nrf2, PPARs, eNOS,
and 5-LO are involved in anti-inflammatory activity, ame-

lioration of blood lipid profiles, normalization of blood

glucose levels, improvement of insulin sensitivity and

transcriptional regulation of genes controlling lipid

metabolism.41–46 Recently, PPARs and some other nuclear

receptors have been under focus of scientists due to their

regulatory roles in homeostasis of glucose, metabolism of

lipids and lipoproteins, cellular proliferation, cellular dif-

ferentiation, and cellular apoptosis.38,47 PPARs are a group

of steroid/thyroid nuclear receptor superfamilies of ligand-

activated transcription factors.48 PPAR subfamily includes

alpha-, beta-, and gamma-subtypes which are activators of

key metabolic pathways and highly expressed in tissues

relevant to energy homeostasis. PPARs also possess a

prominent role in differentiation of adipocyte and insulin

sensitivity.49,50 PPAR-α involves fatty acid catabolism

whereas PPAR-β affects homeostasis of glucose, storage

of lipids, and differentiation of adipocytes. The exact

function of PPAR-β is less known hitherto.51,52

There is a progressive trend in identifying potent, bio-

logically active agents for modulating nuclear receptors

such as PPARs, LXRs, and FXRs. The most active PPAR

agonists and combination agonists have been examined for

treatment of type 2 diabetes and MetS.53,54 For example,
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Bitter Chinese tree Pseudolarix kaempferi, Gordon and

Korean ginseng, Panax ginseng are two plants that possess

PPAR-α modulatory activity.55,56 Pseudolaric acid B iso-

lated from the bark of P. kaempferi is an efficient compound

that induces maximum luciferase response with activation

of PPAR-α in H4IIEC3 cells. In the case of ginseng, ginse-

nosides have been shown to have an inhibitory effect on

PPAR-α, and thus have hypolipidaemic effects.55,57,58

Many PPAR-γ modulators have been detected such as

Saurufura A, an acyclic furanoditerpene constitute of

Saururus chinensis (Saururaceae), and Genistein, a soy

phyto-oestrogen compound, as PPAR-γ activators.59

Other herbal-derived transcriptional modulators are LXR,

and FXR modulators.54,60 It has been reported that paxilline,

secondary metabolite of Penicillium paxilli, activates LXRs.61

FXR (NR1H4), known as BAR, is a nuclear receptor

involved in regulation of genes in synthesis of bile acid,

metabolism of lipoprotein, transport, and absorption.62 An

ethyl acetate extract of the gum resin of Commiphoramukul

decreased the level of LDL cholesterol and TGs in humans

with an inhibitory effect on NR1H4.63

Natural product-based
nanoformulations for MetS
Here, we refer to the most relevant nanoformulation of

natural products which can be applied in prevention or alle-

viation of MetS. The advantages of nanoformulations vs

conventional formulations are their greater surface area to

volume ratio, targeted drug delivery, sustained and controlled

drug release, andmodified bioavailability. The disadvantages

of nanoformulations compared with conventional formula-

tions are short shelf-life, unforeseeable stability, pharmaco-

kinetics, toxicity, and also being more expensive.64

Therefore, nanoformulation methods and nanonization are

offered as promising substitutions for conventional drug

delivery systems. A brief report of the outcomes of adminis-

tration of these natural-based nanodrugs in different models

of MetS has been prepared in Table 1.

Curcumin
Curcumin, a derivative of turmeric (Curcuma longa),

belongs to the curcuminoid subgroup of polyphenols with a

panel of pharmacological activities such as antitumor, anti-

oxidant, anti-inflammatory, hypolipidemic, and anticarcino-

genic effects.64,66 Many researchers have demonstrated that

curcumin possesses therapeutic effects regarding MetS.

Curcumin has been reported to suppress PAI-1 expression,

activate Nrf2, downregulate TNF-α expression, and suppress
NF-κB activation. In addition, it inhibits the obesity-related

Wnt/β-catenin pathway, and activates PPAR-β in hepatic

stellate cells.67–70 Curcumin also interrupts leptin signaling,

thus increasing adiponectin expression. Curcumin negatively

affects obesity and positively affects insulin sensitization,

blunt the inflammatory pathways in MetS.20 It improves

obesity-associated metabolic disorders such as hyperglyce-

mia, hyperlipidemia, and insulin resistance. It also prevents

LDL cholesterol oxidation and reduces body weight gain.71

Clinical trials which have been performed for curcumin sup-

port its positive effects as an adjuvant therapy of type 2

diabetes.1,72,73 The poor water solubility of curcumin is a

problem that should be resolved.74,75 Several strategies have

been designed to cope with this problem, mostly including

formulating this phytochemical in a nanosized structure.76

Encapsulation of curcumin in multipolymer poly (gamma-

benzyl l-glutamate)-poly (ethylene glycol)-poly (gammaben-

zyl l-glutamate) nanoparticles (NPs) was a promising way to

improve its bioactivity and water solubility. Such nanofor-

mulation exerted a potent effect on relieving diabetic cardi-

omyopathy (DCM). DCM alters the systolic and/or diastolic

cardiac functions which results in heart failure and myocar-

dial ischemia. Curcumin encapsulated in multipolymer

affects DCM and cross-regulates the receptors responsible

for sensing calcium and endogenous CSE/hydrogen sulfide

(H2S). Continuous administration of this nanoformulation

relieved pathological morphological destruction of myocar-

dium, boosted serum levels of H2S and ((Ca2+))i content in

myocardial cells, and upregulated the expression of CSE,

CaSR, and CaM. The presence of curcumin in the structure

of the nanoformulation can be the possible reason for such

advantageous effects.77

Self-emulsifying drug delivery system (SEDDS) has

become important as a new approach to modify the dissolu-

tion, oral absorption, and solubility of drugs that are poorly

soluble in water. SNEDDS is a branch of SEDDS which

contains an isotropic mixture of drug substance, surfactant,

co-surfactant, and oil, resulting in the formation of a nanoe-

mulsion just after consumption in the gastrointestinal tract.

SNEDDS based on a curcumin formulation has been devel-

oped for alleviating diabetic neuropathy and found to be an

efficient tool for relieving neuroinflammation, and modifying

antioxidant defense in diabetic neuropathy.78 In another study,

curcumin-encapsulated NPs in Poly (lactic-co-glycolic acid)-

Polyvinyl alcohol polymers were synthesized and it was stu-

died in the streptozotocin (STZ)-induced diabetes cataract

model. The average particle size was 282±5.72 nm with
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polydispersity index of 0.14±0.06 and nearly 56% curcumin

encapsulation. The results demonstrated that curcumin-loaded

Poly (lactic-co-glycolic acid) (PLGA) NPs increased effi-

ciency and oral bioavailability in in vivo conditions.79 In

another study, curcumin-loaded pluronic nanomicelles were

synthesized and characterized for the treatment of diabetes.

Pluronics are triblock copolymers made up from a central

block which is made of poly (propylene oxide) and two poly

(ethylene oxide) (PEO) chains with the general structure of

HO-(C2H4O)a(C3H6O)b(C2H4O)a-H. Pluronics have pharma-

ceutical applications such as emulsifiers, wetting agents,

surfactants, and solubilizing agents. Of course, the hydrophi-

lic-lipophilic balance of pluronics may change with the altera-

tion in the numbers of PPO and PEO blocks. Curcumin NPs

with a size of 333±6 nm were prepared. Curcumin-loaded

pluronic nanomicelles were synthesized via nanoprecipitation

method with pluronics. The in vivo experiment was done in an

STZ-induced diabetic model. The developed curcumin NPs

had antidiabetic action because of the remarkable upregulation

of both Pdx-1 and NKx6.1 genes' expression, which are sig-

nificant transcription factors in insulin gene expression. This

formulation was orally delivered and increased the bioavail-

ability of the drug.80 In another study, PLGA-based NPs

encapsulating curcumin and CoQ10 were developed and

orally delivered to enhance therapeutic efficacy and oral bioa-

vailability of treatment of diabetic adverse effects. This anti-

oxidant formulation was tested in STZ-induced diabetic rats.

The results demonstrated that consumption of these NPs led to

a remarkable reduction of CRP, IL-6, total cholesterol, plasma

TGs, and an increase in HDL cholesterol. The CoQ10 and

curcumin-loaded PLGA NPs were prepared via emulsion-

diffusion-evaporation technique. The particle Z-average sizes

of curcumin-encapsulated NPs and CoQ10 NPs were 237±6

nm and 115±12, respectively.81 In another study, a curcumin

nanoemulsionwas prepared as an antihypercholestrolemic and

antihypertensive agent. The potential of curcumin against

hypertensionwas analyzed bymeasurement of ACE inhibition

in an in vitro study. Hippuryl-L-histidyl-L-leucine is a sub-

strate for ACE. The enzymatic process results in the genera-

tion of hippuric acid. They demonstrated to what extent

curcumin is involved in ACE inhibition by measuring the

quantity of hippuric acid production. The antihypercholester-

olemic capability was analyzed via HMG-CoA reductase

assay. The curcumin nanoemulsion was synthesized using

Rasaputri method. The average diameter of curcumin nanoe-

mulsion droplets was 42.93±29.85 nm and the polydispersity

index was low and had a value of 0.36±0.04 which was uni-

form in size. The application of the curcumin nanoemulsion

was able to inhibit HMGR along with ACE and also improved

curcumin solubility in the formulation.82 In another study,

curcumin-encapsulated NPs were used for treatment of dia-

betic peripheral neuropathy. Diabetic peripheral neuropathy is

a significant and usual consequence of type 2 diabetes that

leads to neuropathy. Curcumin-encapsulated NPs were used to

relieve diabetic neuropathic pain via P2Y12 receptor on satel-

lite glial cells in the dorsal root ganglia of rat. The NPs

diminished the level of Cx43 mRNA in rats, which was the

reason for mechanical and thermal hyperalgesia in rats. Also,

the level of IL-1β and phosphorylated-AKt decreased in the

dorsal root ganglia of diabetic rats after administration of NPs.

Furthermore, curcumin NPs reduced the P2Y12 receptor on

satellite glial cells in the dorsal root ganglia and thermal/

mechanical hyperalgesia in diabetic rats.83

For wound healing purposes, one promising method to

increase the bioavailability and efficacy of curcumin is the

use of hydrogels. Thermos-sensitive hydrogel in the structure

of gelatin microspheres containing curcumin was developed

for the treatment of diabetic wounds. Curcumin NPs were

enclosed in gelatin microspheres to respond to MMPs which

are commonly over-expressed at diabetic wound sides. The

thermo-responsive hydrogel containing curcumin NPs

loaded in gelatin microspheres was used as a local delivery

system in the wound site to investigate its capacity for drug

release. For temperature responsiveness of hydrogels, pluro-

nic F127 (a type of macromolecular non-ionic surfactant)

was applied. F127 demonstrated temperature-dependent gel-

sol and sol-gel transition. The synthesized formulation was

administered to the genetically and chemically-induced dia-

betic rats via STZ injection. Thermo-sensitive hydrogel con-

taining curcumin in the form of gelatin microspheres seems

an ideal choice as a skin drug delivery system, not only in

therapeutics, but also for pharmaceutical and cosmetic

products.84 Various strategies have been developed to over-

come the major barriers to the clinical translational use of

curcumin. For example, nanoformulation of curcumin has

shown therapeutic benefits rather than free curcumin85,86 in

the management of cancer, cardiovascular, and neurodegen-

erative diseases. Clinical trials have shown that curcumin

nanoformulations improve bioavailability of curcumin, pro-

viding a strong rationale for future medical applications after

clarification of mechanistic perspectives.

Capsicum oleoresin
Oleoresin capsicum has been identified as an organic solvent

extract from dried, ripe red pepper, a fruit of the Capsicum

plant.87 OC has been extensively used as an additive in the

Taghipour et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:145310

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


food industry for taste modification and preservation of food.

The butanolic and ethanolic extracts of capsicum extracts

possess diverse biological benefits including antioxidant,

antiobesity, anti-inflammatory, and anticancer effects.88,89

Administration of a nanoemulsion obtained from OC in

obese rats decreased adipogenic gene expression and

increased expression of PPAR-α, UCP2, and CPT-1α,
which participate in thermogenesis and β-oxidation.
Administration of this nanoformulation drastically dimin-

ished the final body weight and reduced the level of adipose

tissue mass in the obese rats which received a high-fat regi-

men. The antiobesity effect of the nanoemulsion is due to its

potential in activation of the AMPK pathway. Activation of

AMPK in the rats supplemented with OC nanoemulsion was

more dominant than in rats supplemented with OC. The

activity of GPDH was also more restricted. However, OC

caused no significant effect on the high-fat diet rats, and

nanosizing of this extract was the main reason for this high

antiobesity activity.90 Alginate double-layer nanoemulsion

loaded with OC and single layer nanoemulsion at concentra-

tions of 100 and 1,000 ng/mL diminished intracellular lipid

content in 3T3-L1 adipocyte cells. Furthermore, the amount

of FFAs and glycerol which were released into the medium

increased in the cells treated with 1,000 ng/mL. Levels of

mRNA of adipogenic genes including PPAR-γ and aP2, and
lipolytic genes including HSL and CPT-1α, are regulated in a
concentration-dependent manner. Thus, this type of nanos-

tructured OC was found to have higher lipolytic activity,

which may be an option for treatment of obesity.91

Berberine
Berberine (BBR) is an essential benzylisoquinoline alkaloid

from Coptis chinensis.92 BBR has been employed for treat-

ment of intestinal infections, congestive heart failure, hyper-

tension, cardiac arrhythmia, cancer, hyperlipidemia, and

diabetes.93,94 Studies have shown that the use of BBR in

insulin-resistant animals improves TG levels, body weight,

and insulin sensitivity. In fact, BBR upregulates the genes

which participate in energy utilization and downregulates the

genes which participate in lipogenesis.95 Its insulin-sensitizing

action is similar to that of thiazolidinediones as well as

metformin.96 BBR has been reported to reduce waist circum-

ference, TG levels, and systolic blood pressure. These altera-

tions were found to be more prominent in women suffering

fromMetS.97 Nanoformulated forms of BBR has shown better

bioavailability. SLNs containing BBR in comparison to BBR

alone have shown higher bioavailability. Oral administration

of NPs (BBR-SLN) and bulk formulation of BBR remarkably

reduced body weight gain, homeostasis evaluation of insulin

resistance, and fasting blood glucose level.98 O-hexadecyl-

dextran encapsulated BBR NPs were prepared and their cyto-

protective effects on high glucose stress-induced apoptosis

were evaluated in rat primary hepatocytes. Hepatocytes treated

with this nanoformulation in high glucose levels of 40 mM,

enhanced cells' viability in comparison to bulk BBR treated

cells. The results showed a decrease in ROS production,

caspase activation, oxidative stress, and prohibition of depo-

larization of mitochondria in cells treated with NPs.99 Oral

administration of the nanoformulation prepared by PLGA-

PEG-PLGA block copolymers containing BBR chloride

effectively modulated PCSK-9 mRNA for treatment of high

LDL cholesterol.100

Naringenin
Naringenin (5,7,4’-trihydroxyflavanone) is part of the class of

flavonoids called flavanones which exist in vegetables and

citrus fruits like grapefruit and oranges. It has shown antimuta-

genic, anti-inflammatory, antihyperglycemic, and antioxidant

activities.101 Naringenin is an option for treatment of cancer,

CVD, and osteoporosis. Also, it reduces levels of lipids and

insulin-like characteristics. Regarding the mechanism of action

of naringenin, it has been shown to absorb glucose from the

intestine of diabetic rats.102 Naringenin treatment of diabetic

mice showed a drastic increase in the immunological and

hematological parameters of blood along with 100% survival

in diabetic mice. Vasorelaxant impact of naringenin was shown

in CVD and hypertension.103 The main problem of naringenin

could be attributed to the fact that it is poorly dissolved in water

and poorly absorbed in the intestine after oral administration

due to the quick elimination by diverse enzymes located in the

gut and liver.104 Therefore, for better targeting of the colon and

modified absorption, nanosizing this flavanone and/or loading it

onto NPs, or encapsulating it in a nanoformulation can be

considered as practical methods. Core shell NPs (chitosan/

alginate) impregnated with naringenin demonstrated no toxi-

city, with remarkable antidiabetic effects after oral administra-

tion in STZ-induced diabetic rats. This polymeric

nanoformulation was a biodegradable and biocompatible vehi-

cle for oral transfer of naringenin or other medicaments.105

Quercetin
Quercetin (QUE), a flavonoid found in various foods such

as onions, citrus fruits, apples, and tea, has antioxidant and

anti-inflammatory activities.106 QUE acts via mitochon-

drial pathways involved in adipokinesis and lipolysis.107

It has been reported that administration of QUE decreases
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blood pressure, insulin resistance, and cholesterol.108 QUE

in combination with other polyphenols such as luteolin and

apigenin can increase insulin secretion and resistance to

cytotoxicity induced by internal cytokines, decreasing acti-

vation of NO synthase and NF-κB.41,109–111 QUE has been

shown to improve metabolic parameters including post-

prandial blood glucose, waist circumference, and lipids.112

In a study, poly(ethylene glycol)-block-(poly(ethylenedia-

minel-glutamate)-graft-poly(ε-benzyloxycarbonyl-l-lysine))
was prepared and its in vitro and in vivo abilities in the form of

nanosized complex with QUE in diabetic nephropathy was

examined. The results of blood samples and left kidney analy-

sis demonstrated modified renal function, alleviated renal oxi-

dative stress harm, and downregulated ICAM-1 expression.

Also, QUENPs complex remarkably alleviated the mentioned

effects.113 A pH sensitive formulation comprising chitosan-

alginate core-shell NPs loaded with succinylated-QUE NPs

demonstrated no in vivo toxicity as biocompatible and biode-

gradable carriers for oral administration of QUE.114 QUE (20

mg/kg) in combination with other antioxidants including rutin

(20 mg/kg) and resveratrol (100 mg/kg), and QUE nanoemul-

sion (20mg/kg) demonstrated positive outcomes in decreasing

inflammation, pain, and apoptosis exploited by oxaliplatin, and

prevented oxaliplatin-induced neuro- and hepato-toxicity in

mice.115

Similar to other compounds, nanoformulations of QUE

possess a higher bioavailability in comparisonwith formulations

in larger scales. LoadingQUEonPLGAvia emulsion-diffusion-

evaporation technique was one of the attempts to increase the

bioavailability of QUE and decrease the dosage required for

treatment. The oral bioavailability of this nanoformulation in

rats was more than 52.3% and it caused a required drug dose

because of nanosizing QUE. These results clearly highlighted

the importance of oral administration of QUENPs in a reduced

dose for treatment of diabetes.116 In another study, QUE nanor-

ods (15.4 nm) were synthesized and their effect was tested on

alloxan-induced diabetic rats. Administration of this type ofNPs

decreased the level of fasting blood glucose in diabetic mice.

QUE decreased generation of lipid peroxidation products. The

activity of hexokinase, as a primary enzyme in glycolysis path-

way, was diminished in diabetic samples including kidney,

pancreas, and liver. The activity of G6Pase was remarkably

diminished upon using QUE nanorods. Also, the activity of

FBPase, an enzyme of gluconeogenesis pathway,was decreased

with the application of nanorods. This nanoformulation

enhanced the level of antioxidant enzyme SOD, GSH, and –

thiol groups, and diminished protein oxidation and lipid perox-

idation in diabetic mice. Furthermore, the kidney and liver

functional markers including ALP, ALT, and AST were

decreased. The rod structure was an efficient structure for

treatment of diabetes, but further studies in the field are still

required.117 PLGA-loaded QUENPs with a particle size of 180

nm increased the bioavailability in STZ-induced diabetic rat

model. This gives hope for the development of different QUE-

based nanocarriers to improve oral delivery and for future

medicine with lower carrier toxicities for diabetic patients.106

Emodin
Emodin (3-methyl-1,6,8- trihydroxyanthraquinone) is an

anthra-quinone derivative, which can be found in Radix et

rhizoma rhei.118 Emodin possesses anti-inflammatory, anti-

nociceptive, and anticancer activities.119 Emodin has PPAR-

γ-activating impacts. Intraperitoneal injections of this com-

pound alleviated the symptoms of diabetes via regulating

PPAR-γ. Emodin increased binding affinity in differentiated

3T3-L1 adipocytes via induction of enhanced glucose uptake

and enhanced GLUT1 and GLUT4 mRNA expression.

Furthermore, emodin is a novel activator of AMPK and had

positive impact on glucose metabolism in 3T3-L1 adipocytes

through enhancement of glycolysis.119 Nanomacromolecule

encapsulating emodin was used for treatment of diabetic neu-

ropathic pain. This nanoformulation had the effect on P2X3

receptor located on the dorsal root ganglia. Mechanical with-

drawal threshold and thermalwithdrawal latency in rats receiv-

ing emodin NPs were greater in comparison with those in

diabetic rats. This nanoformulation diminished upregulation

of TNF-α protein, P2X3 receptor, and the phosphorylation of

ERK1/2 in the dorsal root ganglia of rats suffering from type 2

diabetes. Emodin-loaded nanomacromolecules could alleviate

neuropathy via prohibiting excitatory transmission induced by

P2X3 receptor in dorsal root ganglia neurons.120 Another

nanoformulation called nano emodin transferosome (NET)

was prepared, and mRNA expression of ATGL and G0S2 in

adipose tissue of obese rats were investigated. NET could

increase ATGL protein expression to apply its weight-reduc-

tion impact and decreased G0S2 protein expression in the

adipose tissue of obese rats. NET diminished body weight

and adipocyte size.121 Emodin has shown high first pass meta-

bolism and great hydrophobicity associated with a limited

bioavailability after oral administration. Hence, nanoemul-

sions and nanotransfers have been effective in better delivery

and efficiency of emodin.106

Gymnemic acid
Gymnemic acid (C43H68O14) is a triterpenoid phytoconstituent

ofGymnema sylvestre, possessing a strong antidiabetic effect.122
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Gymnemic acid has presented diverse physiological activities

such as suppressing taste sensitivity to sweetness, preventing

intestinal absorption of glucose, and decreasing the level of

glucose and insulin in plasma of diabetic patients.123 The poor

water solubility of this phytochemical decreases its pharmaco-

logical effects.123 Thus, a modified approach is needed to

enhance the bioavailability and solubility of gymnemic acid.

In a study, a nanosuspension of gymnemic acid was prepared

and the oral nanoformulation tested on diabetic rats. The nano-

formulation demonstrated meaningful antihyperglycemic activ-

ity and generated hypoglycemia. Gymnemic acid

nanoformulations could reduce blood glucose levels in diabetic

rats after 3 hours. It seems that gymnemic acid nanoformulation

can be an efficient option for treatment of diabetes.124

Baicalin
Baicalin (5,6-dihydroxy-2-phenyl-4H-1-benzopyran-4-one-

7-O-D-β-glucuronic acid) is one of the principal flavonoids

of Scutellaria radix.125 Like other flavonoid extracts, baicalin

possesses anti-inflammatory properties via scavenging ROS

and causes antioxidant modification by decreasing the activ-

ity of NF-κB. It also suppresses the expression of lots of

inflammatory cytokines and chemokines such as MCP-1,

cyclooxygenases, nitric oxide synthase, tumor necrosis fac-

tor, interleukins, and lipoxygenases. Thus, it is considered a

promising choice for alleviating diabetes and relevant dis-

orders like CVDs, gout, inflammatory bowel disease, and

neurodegeneration.126 Baicalin possesses low hydrophilicity

and is poorly absorbed after oral administration because of its

glycosylic group.127 The nanoformulation form was estab-

lished by loading baicalin onto lipid carriers, and evaluated

for antidiabetic activity. The in vivo study was done on STZ-

induced diabetic male Sprague-Dawley rats. The results

demonstrated that baicalin and its nanoformulated form

remarkably diminished the TC, HbA1c, and TG levels, pro-

viding a hypoglycemic effect with regulation of lipid meta-

bolism in diabetic rats.128 Various nanosized formulations of

baicalin such as NPs, liposomes, and nanoemulsions have

been used to improve its bioavailability. When the oral bioa-

vailability of regular baicalin crystals and baicalin solid

nanocrystals was examined in rats, a remarkably better result

was shown.129 Recently, nanosuspension has been applied to

resolve the formulation problem of scarcely soluble drugs.130

Scutellarin
Scutellarin (4′,5,6-trihydroxyflavone-7-O-glucuronide), one of

the most active compounds of the traditional Chinese herb

Erigeron breviscapus (Vant.) Hand. Mazz, has been frequently

used against vascular endothelial cell dysfunction; it exerts its

effect via many pathways. Experimental research and clinical

observation demonstrated that scutellarin possesses a powerful

effect against neovascularization and enhances vascular per-

meability via diminishing viscosity of blood flow and improv-

ing microcirculation.129,131 A nanoformulation based on

scutellarin loaded onto amphiphilic chitosan derivatives was

prepared to increase its bioavailability and efficacy for treat-

ment of diabetic retinopathy. The synthesized particles demon-

strated great capacity to be transferred from Caco-2 cells.

Results indicated that administration of scutellarin diminishes

retinal damage in diabetic rats. Treatment with the nanofor-

mulation was more efficient than the scutellarin alone.

Scutellarin resulted in downregulated expression of

VEGFR2, VEGF, and vWF in the retina of diabetic rats. The

scutellarin nanostructure enhanced the bioavailability of scu-

tellarin and significantly improved diabetic retinopathy.132

Resveratrol
Resveratrol (3,5,4-trihydroxylstilbene) is a polyphenol

found in grapes and nuts that has extensive pharmacological

activities including anti-inflammatory, strong antioxidant,

antiplatelet, analgesic, neuroprotective, cardioprotective,

and antiaging. It remarkably modifies glucose metabolism

and oxidative injury.133,134 Resveratrol has been shown to

activate the sirtuin pathway. Different cellular functions,

which are linked to oxidation, metabolism, and aging are

regulated by the sirtuin pathway. Resveratrol affects cellular

energy homeostasis, increases lipolysis, activates Nrf2,

decreases adipogenesis and blood cholesterol, inhibits

cyclooxygenase, and protects cardiac cells.135–139

Resveratrol has been shown to promisingly enhance insulin

sensitivity, glucose tolerance, and decrease weight and body

mass index in patients suffering from MetS.140 Resveratrol

seems a promising adjuvant therapy for management of

type 2 diabetes.141

Studies demonstrated that treatment with resveratrol

exhibits antidiabetic potential in pancreatic cells via dimin-

ishing hyperglycemia, preservation of cells, enhancing

insulin secretion, and antioxidant effect.142 Resveratrol-

loaded nanoliposomes were prepared for alleviation of dia-

betes in STZ-induced diabetic animals. The liposomes were

PEGylated covalently to increase plasma half-life and resi-

dence time of the nanoliposome loaded with resveratrol.

The results demonstrated that liposomes enhanced the

expression of ROS-inactivating enzymes such as GSH-Px

and SOD with extended release of resveratrol in diabetic

pancreatic β TC cells. This nanoformulation loaded with
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resveratrol could be an advantageous formulation for treat-

ment of and protection against type 2 diabetes mellitus.143

Another formulation including resveratrol (resveratrol-

loaded nanocapsules) was synthesized and the effect of

this nanoformulation was investigated on mice with MetS.

The results illustrated that the systolic and diastolic blood

pressures were regulated in mice treated with

nanocapsules.144 The management of diabetes with resver-

atrol has been challenged due to small cohorts of patients

and short duration of trials, low bioavailability of RSV in

humans due to rapid glucuronation, sulfation and clearance

from the body. Many bioavailability studies are vague in

quantifying tissue distribution and plasma bioavailability of

RSV pool. Therefore, the dosage required for optimal bioa-

vailability for sufficient tissue distribution needs to be

clarified.145 New approaches to increase the bioavailability

may help to actualize its potential as therapeutic agent in

diabetes and related complications. The use of resveratrol or

its analog could be combined with nanotechnology to treat

or prevent human diabetes in the near future.

Silybin
Silybin is the main active ingredient, accounting for 34%

of total mass, of silymarin. Silybins A and B are the most

common diastereoisomers. The plant is mostly found in

Southern Europe and Asia.145 This compound possesses

low toxicity and exhibits remarkable hepatoprotective,

anti-inflammatory, and anticarcinogenic effects. Silybin

has been shown to be effective in obesity-induced insulin

resistance related to its anti-inflammatory and fat reduction

properties.146 Furthermore, the results of experiments

demonstrated that silymarin remarkably diminished epidi-

dymal fat mass and body weight with unchanged food

intake.146–148 In another study, PLGA polymers loaded

with silybin were prepared and the effect of this nanofor-

mulation was tested on STZ-induced rats. The loading

efficiency of silybin was more than 92.11%. The results

showed that this nanoformulation contributed to diabetes

control and reduced hyperglycemia. Silybin is associated

with powerful antioxidant characteristics, regenerative

impacts on beta cells, and increased membrane permeabil-

ity. This nanoformulation introduced a new approach for

the control of diabetes and has been used as a coadjuvant

in therapy.149

Myricitrin
Myricitrin (myricetin-3-O-α-rhamnoside) is an herbal flavo-

nol glycoside extracted from some plants (Pouteriagender,

Myrica rubra, Manilkara zapota, and Eugenia uniflora).150

Myricitrin possesses anti-nociceptive, anxiolytic, antioxi-

dant, and anti-inflammatory effects. Due to its high antiox-

idant activity, it is considered as an essential supplement in

medicine. Research has revealed that myricitrin prevents

vein endothelial cell dysfunction caused by ROS via dimin-

ishing H2O2-induced oxidative damage, reducing malondial-

dehyde, and regulation of activity of antioxidant enzymes.151

The metabolism and bioavailability of flavonoids, especially

flavonoid glycosides, are the essential characteristics that

should be considered. Due to high polarity it is not able to

cross membranes.152 SLNs containing myricitrin showed

protective impact against cytotoxicity induced by STZ in β-
cells. In addition, antioxidant and antidiabetic effects of

SLNs containing myricitrin were reported in a STZ-nicoti-

namide-induced diabetic model and myotube cell of a male

mouse.153

Stevioside
Stevioside can be extracted from the leaves of Stevia

rebaudiana (Bertoni), known to have powerful antidiabetic

activity.154 Research has demonstrated that stevioside has

an impact on renal function and glucose metabolism.155

Stevioside has the ability to regulate the concentration of

glucose in blood via boosting insulin utilization and insu-

lin secretion in rats with insulin deficiency. Stevioside has

been proven as one of the powerful antidiabetic agents, but

it possesses less therapeutic efficiency because it is poorly

absorbed in the intestine, and has scarce bioavailability.

Poly-lactic acid (PLA) NPs based on Pluronic-F-68 copo-

lymer containing stevioside were synthesized and evalu-

ated in diabetes. The particle size of the synthesized

nanoformulation was 110–130 nm with a spherical struc-

ture. Stevioside efficiently incorporated in NPs increased

the bioavailability and intestinal absorption. The nanoen-

capsulation of stevioside in PLA showed better drug

release and more absorption in the intestine compared to

free stevioside.156 Due to the presence of highly bioactive

molecules, S, rebaudiana is now employed in several

commercial formulations.

Alpha-eleostearic acid
Bitter ground oil (BGO) contains approximately 30%–50%

α-eleostearic acid, which possesses antioxidative and ROS-
scavenging effects.157 Conjugated linolenic acid isomers

increase immunity and behave as anti-adipogenic and anti-

inflammatory agents.15 In a study, a bitter ground seed oil
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nanoemulsion was synthesized to enhance bioavailability of

conjugated linolenic acid in an in vivo system undergoing

oxidative stress. For the in vivo study, rats were divided into

five groups. Group Awas only administered sunflower oil;

group B was orally administered sunflower oil diet and

intraperitoneally alloxan; group C received alloxan intra-

peritoneally and sunflower oil orally: nanoemulsion (99.5:

0.5 v/v) containing 0.25% conjugated linolenic acid once a

day; received alloxan intraperitoneally and BGO nanoemul-

sion with sunflower oil orally: nanoemulsion (99: 1 v/v)

containing 0.5% conjugated linolenic acid; the diet of group

E was similar to that of group C, but the conventional

emulsion of BGO was used; the diet of group F was similar

to that of group D, but the conventional emulsion of BGO

was used. According to results, the concentration of blood

glucose decreased after administration of 0.5% and 1%

nanoemulsion which contained 0.25% and 0.5% α-eleos-
tearic acid, respectively. α–eleostearic acid upregulated

PPAR-γ and modified insulin sensitivity and thus glucose

tolerance. The remarkable improvement was in the antiox-

idative enzymes including GPx, SOD, and CAT in the liver

and plasma fractions. This nanoemulsion system amelio-

rated the stress state induced by alloxan via antioxidative

defense. This research showed the possibility of application

of conjugated linolenic acid as a powerful nutraceutical for

further usage.158 Advanced studies on engineered nanoma-

terials have shown that NPs interact with the biological

interfaces on a more targeted level than conventional ther-

apeutics. Hence, it is of pivotal importance to explore the

interactions at a biological interface, bringing them into

practice for biomedical purposes.

Translational insights and future
perspective of nanoformulations for
MetS
Most studies onMetS and obesity have been conducted on the

peripheral organs, while the role of the central nervous system

has been poorly recognized. Improvement of the sympathetic

system activity has positive roles in MetS and conditions such

as obesity, hypertension, insulin resistance, dyslipidemia, and

inflammation.159 For instance, leptin is responsible for increas-

ing sympathetic renal activity and affects oxidative stress ele-

ments. Also, the role of inflammation in different determinants

of MetS has been described. Adipokines are known to induce

insulin resistance and atherosclerosis through specific elements

such as adiponectin, TNF-α, IL-6, MCP-1, and leptin. If it is

postulated that obesity is a multi-component disease, the

impairment of vascular function is observed in almost all

subjects.159 Therefore, further focus on the role players of

MetS in the central nervous system along with vascular dys-

function and inflammatory elements is necessary. Literature

review shows that natural products can affect the previously

mentioned mechanisms of MetS in a positive way. Thus, good

and efficient delivery to the human body is a necessity.

Biodegradable NPs have been found useful for the delivery

of proteins and peptides in minimum doses,160 and studies on

the natural products continue. The final goal should be to carry

and deliver themedicine to the target site of actionwith enough

understanding of the mechanisms involved in MetS.

Unfortunately, discovery and development of potent drugs

against MetS have been greatly hampered due to lack of a

suitable preclinical model. Meanwhile, several studies are still

warranted to find and screen new readily available plants,

isolate their active compounds, and test pharmacological activ-

ities. The safety of nanoformulations fabricated from herbal-

based compounds is another concern that must be taken into

account. Focusing on the “antidiabetic” activity of plants rather

than their “hypoglycemic” effect would be of high priority

because of further clinical implications in MetS. It seems that

there is no well-developed approach to test these compounds,

especially details of lipid metabolism, thus future studies will

possibly consider this limitation. Nanoformulations based on

natural products should be biodegradable, biocompatible, non-

toxic, and in the meantime should have a great ability to enter

cells and produce a rapid action, and be stable after oral

administration. Risk benefit and cost effectiveness are further

concerns that have to be noted. Justification of the efficacy of

these novel therapies remains to be established by conducting

precise clinical trials.

Conclusion
MetS is a complex of disorders including mainly impaired

glucose tolerance, insulin resistance, and hyperinsulinemia.

It has been shown that natural-based compounds or their

derivatives are great sources for therapeutic applications,

especially in diabetes and its complications and in inflamma-

tory pathways mediated through insulin resistance in MetS.

Plant-based natural products improve obesity-associated

MetS such as hyperglycemia, hyperlipidemia, and insulin

resistance, reduce systolic and diastolic blood pressure, and

reduce body weight gain. The mechanism of effect of these

phytochemicals has been schematically summarized in

Figure 1. These compounds were found to suppress expres-

sion of PAI-1, downregulate ICAM-1 expression, regulate

COX-1 and -2, downregulate TNF-α expression, suppress
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NF-κB activation, activate PPARs, and inhibit P2X3 receptor

activity and the phosphorylation of ERK1/2 in the dorsal root

ganglia. The low oral bioavailability of these phytochemicals

is considered as an obstacle to achieve the highest therapeutic

efficacy from these compounds. In order to improve the

bioactivity and functionality of these products, and also for
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Figure 1 A schematic diagram of the mechanism of action of different phytochemicals against metabolic syndrome.
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better targeting of colon and modified absorption, nanosizing

or loading of NPs, or encapsulating in nanoformulation can

be considered as practical methods.

Encapsulation in multipolymer NPS, nanoemulsions,

and solid lipid nanoformulations, and using SEDDs, nano-

liposoms, and nanosuspensions are some of the methods

for enhancing solubility and bioavailability, increasing

plasma half-life, and eventually improving the efficacy of

these natural compounds in management of MetS.

Although the published reports have shown that these

nanoformulations can be good candidates for adjunctive

therapy for MetS, further clinical studies are required to

explore the therapeutic benefits of nanoformulations in direct

comparative studies with unformulated, approved therapeu-

tics. Cost effectiveness studies are highly recommended,

particularly for the well established nanoformulations.
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