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in A375 melanoma cells by modulating membrane
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Background: The role of endothelin receptor type B (EDNRB) isoform 3 involved in

Temozolomide (TMZ)-induced melanoma cell death has not yet been elucidated.

Methods: The subcellular localization of EDNRB isoform 3 was determined by confocal and

immunoblotting assays. Silencing EDNRB isoform 3 was performed by CRISPR/Cas9.

Apoptosis was assessed by annexin V/propium iodide staining and caspases 3/7/9 activity.

Mitochondrial membrane potential, reactive oxygen species and mitochondrial Ca2+ were

measured by flow cytometry. Apoptosis protein array was applied.

Results: Confocal and immunoblot analyses indicate mitochondrial localization of EDNRB

isoform 3 and the first N-terminal (1–22) amino acids are sufficient for its mitochondrial targeting.

EDNRB isoform 3 depleted A375 cells significantly confers chemoresistance with mitochondrial

depolarization, reduced reactive oxygen species, enhanced mitochondrial Ca2+ uptake and

decreased caspase 9 activation. Additionally, apoptosis array shows that lack of EDNRB isoform

3 has relatively lower expression of phosphorylation of p53 at S392 and a slightly higher

expression of Paraoxonase 2.

Conclusion: Our findings raise the possibility of targeting EDNRB isoform 3 as a new

therapeutic strategy in combination with TMZ for melanoma treatment.

Keywords: melanoma, Temozolomide, mitochondrial targeting sequence, apoptosis,

reactive oxygen species

Introduction
Melanoma is themost dangerous form of skin cancer and its incidence is increasing fast.1

Five-year survival rates of advanced stage of melanoma are less than 10%.2

Temozolomide (TMZ) is one of the alkylating agents used for treatment for metastatic

melanoma. However, response rates to TMZ are limited. The widely studied TMZ

resistance mechanisms mainly focus on the DNA repair capacity of the cancerous cells

such as increased expression of DNA repair protein O6-methylguanine-DNA methyl-

transferase (MGMT).3 In fact, until now, other mechanisms contributing to drug efficacy

have been put forward. Investigators have recently shown that TMZ treatment increases

reactive oxygen species (ROS) accumulation, induces mitochondrial damage such as

mitochondrial depolarization and regulates Ca2+ concentration in human glioma cells or

myeloid precursor cells.4–6 In this context, mitochondria undergo rapid changes in matrix

Ca2+ concentration upon cell stimulation and mitochondrial Ca2+ homeostasis plays an
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important role in maintaining mitochondrial membrane

potential.7 Thus, mitochondrial membrane depolarization and

oxidative stress induced upon TMZ treatment may play an

important role in cell death.

Endothelin receptor type B (EDNRB), one of the

GPCRs (G protein-coupled receptor) binds with endothelin

3 (EDN3).8 This endothelin axis plays an important role in

proliferation, differentiation and migration of neural crest

cells and melanocyte precursors during embryonic

development.9 Germline inactivating mutations in either

EDNRB/EDN3 signaling are responsible for Waardenburg

syndrome.10 As a marker of melanoma progression,

EDNRB expression is overexpressed in metastatic

melanoma.11–13 Therefore, blocking EDNRB/EDN3 sig-

naling by an EDNRB antagonist (ie, BQ788) was devel-

oped to reduce proliferation of human melanoma in vitro

and in vivo.14 Although EDNRB blockade by small mole-

cule inhibitors or antibody-drug conjugates was sensitized

to apoptosis,15,16 these work in a cell-type-dependent

manner.17 Additionally, EDNRB-specific inhibitor (ie,

A192621) shows lack of efficacy in inhibiting the growth

of intracranially implanted melanomas in preclinical

studies.18 Minimal effect is achieved with other EDNRB

inhibitors (ie, bosentan) in phase II clinical trials when

either given alone or in combination with first-line che-

motherapeutic agents.19,20 These disappointing results sug-

gest that other mechanisms involving in drug resistance

should be well elucidated in the future.

So far, alternatively spliced transcript variants have

been described for the EDNRB gene.21–23 There are four

alternatively spiced forms of EDNRB gene in the databases

National Center for Biotechnology Information. EDNRB

variant 1 (GenBank: NM_000115.1) and 3 (GenBank:

NM_001122659.2) encode EDNRB isoform 1; EDNRB

variant 2 (GenBank: NM_003991.3) encodes isoform 2;

EDNRB variant 4 (GenBank: NM_001201397.1) encodes

EDNRB isoform 3. EDNRB isoform 1 has 442 amino acid

residues with a calculated molecular mass of around 49

kDa.22 EDNRB isoform 2 has a unique 3ʹ exon encoding

the intracellular C-terminal domain and has 336 amino

acid residues with a calculated molecular mass of around

37 kDa. It is expressed as a 2.7-kb mRNA in the lung,

placenta, kidney and skeletal muscle.23 Tsutsumi et al24

first described the alternative splicing product EDNRB

transcript variant 4 (EDNRBΔ3), which encodes EDNRB

isoform 3 with an extra protein sequence of 89 amino

acids at the N terminus comparing EDNRB isoforms 1

and 2. EDNRB isoform 3 has a unique 5ʹ exon encoding

89 amino acids, which has 532 amino acid residues with a

calculated molecular mass of 53 kDa.

Here, we report at the first time that the EDNRB isoform

3 locates at the mitochondria and play a role in conferring

resistance to TMZ-induced apoptosis. Our results provide

evidence that depletion of EDNRB isoform 3 protects against

mitochondrial depolarization and ROS production via mito-

chondrial Ca2+ buffering. Thus, we have identified a pre-

viously undescribedmechanism bywhich EDNRB isoform 3

mediates TMZ-induced apoptosis.

Materials and methods
Prediction analysis
The putative transmembrane regions of EDNRB isoform 3

were analyzed by using the PSPORT prediction program.25

Two additional bioinformatics software MITOPROT26 and

TargetP 1.1 server27 were also applied to predict MMP for

the N terminal regions of EDNRB isoform 3.

Reagents and antibodies
Temozolomide (TMZ), staurosporine (STS), etoposide, Ru360,

ProteinaseK andLuperox®TBH70X, tert-Butyl hydroperoxide

solution were purchased from Sigma. Antibodies for EDNRB,

GAPDH andHRP-goat anti-rabbit antibodywere fromAbcam.

COXIV antibody was purchased from Santa Cruz

Biotechnology. Caspase 9 antibody was supplied from Cell

Signaling Technology. Alexa Fluor 488 antibody was from

Molecular Probes (Thermo Fisher Scientific).

Cell culture and transfection
Human embryonic kidney 293 (HEK293) cells and A375

melanoma cells were purchased from ATCC and cultured in

growth medium (DMEM) supplemented with 10% fetal calf

serum at 37°C under a humidified atmosphere of 5% CO2.

Cells were seeded in culture wells 24 hrs prior to transfec-

tion. Wild-type EDNRB variant 4 cDNA (RefSeq:

NM_001201397) cloned in a pCMV6 expression vector

(pCMV6-EDNRB-v4-GFP) with a variant of green fluores-

cent protein tag at the C-terminal was described earlier.10

The constructed vectors were transfected into HEK293 cells

according to the instructions Lipofectamine 2000 reagent

(Thermo Fisher Scientific).

Establishment and validation of A375

EDNRB iso3 -/- #23 cells
The sequences of gRNA oligos are shown in Figure 2. It

was designed using the CRISPR design tool (crispr.mit.edu)
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and synthesized by Blue Heron Biotechnology, Origene

(Bothell, WA, USA). A mixture of 1 μg of pCas-Guide

vector containing each target gRNA and 1 μg of donor

DNA was transfected into adherent A375 cells. And then,

cells were cultured in medium containing 2.0 μg/mL pur-

omycin for 3 days for selection. Single colonies were

selected, and each colony was passaged and genotyped.

DNA was isolated using a DNeasy Blood & Tissue Kit

(Qiagen). The genomic region surrounding the CRISPR/

Cas9 target site was PCR amplified and sequenced using a

3100 Genetic Analyzer (ABI). Table S1 shows the primer.

Immunofluorescence staining and

confocal microscopy
The MitoTracker was dissolved in DMSO according to the

manufacturer’s instructions. A375 cells were stained with

Mitotracker Red (50 nM, 20 mins, 37°C, Molecular Probes,

Thermo Fisher Scientific) and fixed with 4% paraformalde-

hyde according to the manual’s instructions. And then, cells

were stained with anti-EDNRB primary antibody for 1 hr at

room temperature followed by incubation with Alexa Fluor

488 conjugated goat anti-rabbit IgG (Goat anti-Rabbit IgG

(H+L) Secondary Antibody, Alexa Fluor® 488 conjugate).

Slides were mounted with Prolong Gold mounting medium

(Molecular Probes) and visualized on a Leica SP5 confocal

microscope. Alternatively, the plasmids encoding EDNRB

isoform 3 fused with EGFP and Mitotracker Red (50 nM,

Thermo Fisher Scientific) were co-transfected into HEK293

cells, and the fluorescence of EGFP andMitotracker Red was

observed under the fluorescence microscope.

Mitochondrial isolation and proteinase K

treatment
Mitochondria were isolated using mitochondrial isolation

kit according to the manufacturer’s instructions (Thermo

Scientific Pierce). Briefly, cells were homogenized in a

dounce homogenizer and then centrifuged at 750 g for 10

mins at 4°C. The supernatant was further centrifuged at

12,000 g for 15 mins at 4°C. The pellet was then washed

and kept as the mitochondrial fraction. The supernatant was

further centrifuged at 100,000 g for 1 hr at 4°C and desig-

nated as the cytosolic fraction. For protease protection

assay, 50 μg of mitochondrial or cytosolic protein from

A375 cells were treated with 50 μg/mL proteinase-K for

20 mins or 30 mins on ice. Then, proteolysis was halted by

the addition of phenylmethylsulfonyl fluoride to a final

concentration of 2 mM for 10 mins on ice.

Flow cytometry analysis of cell apoptosis

using annexin V-FITC/propidium iodide (PI)

staining
Cells were either kept untreated or exposed to cisplatin for

indicated time before analysis by flow cytometry. The detec-

tion was performed according to the manual of Alexa Fluor®

488 Annexin V/Dead Cell Apoptosis Kit (Thermo Fisher

Scientific). About 1×106 cells were collected, washed with

ice-cold PBS, and resuspended in binding buffer containing a

suitable amount of annexin V-FITC. After 15 mins of incu-

bation in the dark at room temperature, the buffer was

removed by centrifugation. The cells were then resuspended

in reaction buffer containing PI. Flow cytometry analysis

was performed immediately to detect apoptosis.

Protein extraction and western blotting
Total protein was extracted with RIPA lysis buffer containing

1% protease inhibitor cocktail (Abcam). Twenty micrograms

of protein from mitochondria or whole cell lysates were

subjected to sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE). Proteins were separated on a 10%

separating gel and 3% stacking gel in the presence of 0.1%

SDS and transferred to polyvinylidene difluoride (PVDF)

membranes (Millipore). Blocking for 1 hr was at room tem-

perature with 5% non-fat milk. Themembrane was incubated

overnight with the primary antibodies (dilution ratio 1:1000)

at 4°C with at room temperature, including EDNRB, COXIV

and caspase-9 at a 1:1000 dilution in non-fat milk in TBS-T

overnight at 4°C. The membrane was then washed 4 times in

TBS-T and incubated with HRP-Goat Anti-rabbit secondary

antibody (Abcam) at a 1:7500 dilution in non-fat milk in

TBS-T for 1 hr at 37°C. The membrane was reacted with

enhanced chemiluminescent reagents (ECL plus, GE

Healthcare) and bands were visualized by an ECL Advance

Western Blotting Detection Kit (Amersham).

Evaluation of functional mitochondria
The mitochondrial membrane potential (ΔΨm) was detected

according to the manual of the MitoProbe™ JC-1 Assay Kit

and TMRE (Thermo Fisher Scientific). Briefly, cells sus-

pended in 1 mL PBS at approximately 1×106 cells/mL were

incubated with 2 μM of JC-1 for 15 mins at 37°C. The cells

were washed and resuspended in 500 μL PBS and then ana-

lyzed on a flow cytometer with 488 nm excitation and emis-

sion at 590 nm (red) and 540 nm (green). At high

mitochondrial membrane potentials, JC-1 accumulates in the

mitochondria and forms J aggregates that show a red
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fluorescence emission at 590 nm. mROS production was

determined by 10-min staining of cells with 5 uM MitoSox

Red. All samples were examined by flow cytometry analysis

using Cytomics FC 500 (Beckman Coulter) flow cytometer.

Mitochondrial calcium measurement
Mitochondrial calcium level was determined using cal-

cium-sensitive dye Rhod2-AM (excitation wavelength,

552 nm; emission wavelength, 581 nm). The fluorescent

dye Rhod2-AM has a net positive charge, facilitating its

sequestration into mitochondria through membrane poten-

tial-driven uptake.28 According to the instructions, cells

were harvested, pelleted and resuspended in ice-cold PBS

and 10 μM Rhod2-AM. And then cells were stained with

Rhod-2 AM (Thermo Fisher Scientific) for 1 hr at 37°C.

Mitochondrial calcium levels were determined by

Cytomics FC 500 (Beckman Coulter) flow cytometer.

Protein array
After treatment with TMZ for 24 hrs, the cells were

harvested for analysis of apoptosis protein expression.

The Proteome Profiler™ Human Apoptosis array kit

(ARY009; R&D Systems) was used to detect the relative

expression levels of 35 apoptosis-related proteins accord-

ing to the manufacturer’s instructions. Briefly, ~1×107

cells were solubilized in lysis buffer provided by the

manufacturer. The recommended quantity of lysates was

diluted and pipetted onto the membranes and incubated

overnight at 2–8°C on a rocking platform shaker.

Biotinylated secondary antibody cocktail provided by the

manufacturer was pipetted onto membranes and incubated

for 1 hr. After the washing process, the membranes were

incubated with streptavidin-HRP provided by the manu-

facturer for 30 mins. The signals were developed using

chemiluminescent reagents and then exposed to X-ray

films. The positive signals were analyzed using ImageJ

software.

Results
Prediction analysis
Results of the PSPORT prediction analysis suggested that

human EDNRB isoform 3 (EDNRB isoform 3, 532 amino

acids) had a putative recognition site (SRI | WG between the

amino acid residues 113–117 of EDNRB isoform 3) of

mitochondrial potential peptide (MPP) (R-2 motif, XRX |

X(S/X)).25 Two additional bioinformatics software

MITOPROT29 and TargetP 1.1 server27 were used to predict

the subcellular location of eukaryotic proteins. TargetP 1.1

prediction gave a score of 0.817 for the presence of a mito-

chondrial targeting peptide (MTP) in EDNRB isoform 3. The

MitoProt II v1.101 revealed that EDNRB isoform 3 has a

92.41% probability of being exported to the mitochondria.

Both programs predicted that there are 115 residues long

mitochondria targeting peptide in the N terminal of

EDNRB isoform 3, indicating that its cleavage site for

mature peptide was located between 115 and 116 residues.

The N terminus of EDNRB isoform 3

promotes mitochondrial localization
Based on multiple subcellular localization prediction algo-

rithms, it appears that EDNRB isoform 3 contains a mito-

chondrial targeting sequence (MTS) at the N terminus

(Figure 1A). To determine if endogenous EDNRB isoform

3 is localized to the mitochondria, confocal microscopy

experiment has been conducted. The fluorescence experi-

ment results showed that the full-length EDNRB isoform 3

colocalized with mitochondria that were stained with

MitoTracker Red in A375 melanoma cells (Figure 1B).

Additionally, western blotting of isolated cytosolic and

mitochondrial fractions revealed that EDNRB isoform 3

was present in the mitochondrial fraction with a molecular

weight of around 40 kDa (Figure 1C). The immunoblots

also detected EDNRB isoform 1 in the cytosolic extract,

which showed two bands with a molecular weight around

50 and 70 kDa.

In order to determine the minimal region required for

mitochondrial targeting on protein distribution in the

cell, PSIPRED server30 was applied to predict the sec-

ondary structure. The results found that the first 1–22

residues of EDNRB isoform 3 contained a positively

charged amphipathic α-helix (Figure S1, residues 15–

19), indicating that it may serve as a signal sequence

for matrix transport. To confirm that the first 1–22

residues of EDNRB isoform 3 N terminus is sufficient

for its transportation to mitochondria, we then analyzed

the cellular localization of fusion proteins composed of

the N terminus of EDNRB isoform 3 attaching to a

fluorescent protein. We had previously found that

HEK293 cells were the preferred model for this study

because of lack of endogenous EDNRB isoform 3

expression and also because of its high transfection

efficiency.10 As shown in Figure 1B, the first 1–22

residues of EDNRB isoform 3-C terminus-EGFP colo-

calized very well with that of the Mito Tracker Red dye.

Chen et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Cancer Management and Research 2019:117356

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


To determine whether EDNRB isoform 3 is asso-

ciated with the outer membrane, purified intact mito-

chondria were treated with proteinase K for various

length of time. As shown in Figure 1D, EDNRB iso-

form 3 was protease-insensitive under these condi-

tions, indicating that it is not associated with the

outer membrane and is present within the mitochon-

dria. In contrast, EDNRB isoform 1 located in the cell

plasma membrane was rapidly degraded.

We thus conclude that only the EDNRB isoform 3

can facilitate targeting to mitochondria in a cellular

environment and the first 22 amino acid acids in the

N-terminus of EDNRB isoform 3 have a mitochondrial

targeting ability comparable to that of the full-length

EDNRB isoform 3.

Depletion of EDNRB isoform 3 confers

resistance to alkylating agents
To determine whether EDNRB isoform 3 plays a role in

modulating sensitivity to DNA-damaging agents, we gener-

ated A375 melanoma cells that were stably depleted of the

EDNRB isoform 3 protein using CRISPR/Cas9 technology

through targeting EDNRB isoform 3-specific mRNA tran-

script region (Figure 2A). Sequence analysis of the PCR

product revealed that homologous donor sequence was suc-

cessfully integrated into wild-type genomic region of EDNRB

isoform 3 (Figure 2B), representing EDNRB isoform 3 knock-

out A375 cells (referred as EDNRB iso3 -/- #23).

The data from the flow cytometric apoptosis assay

showed that increased annexin V positive cells in the

EDNRB isoform 3

EDNRB isoform 3

Proteinase K (50μg/ml)
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Figure 1 EDNRB isoform 3 is targeted to mitochondria. (A) EDNRB isoform 3 was predicted to contain a mitochondrial targeting sequence at the N terminus using

Mitoprot and iPSORT. (B) Endogenous EDNBR and transiently expressed EDNRB isoform 3-GFP colocalizes with mitochondria in A375 and HEK293 cells. (C).

Mitochondria were stained using Mitotracker Red and visualized under confocal microscopy. (C) Subcellular distribution of EDNRB isoform 3 by western blot.

Membrane was probed with EDNRB C terminus antibody (ab117529), which detected a ∼40 kDa band in mitochondrial extract. GAPDH and COXIV were used as

markers for the cytosolic and mitochondrial fractions, respectively. (D) Mitochondrial or cytosolic fractions were treated with the indicated concentrations of proteinase K

and analyzed by immunoblotting.
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A375 control cells in the presence of TMZ treatment

compared with EDNRB isoform 3-depleted A375 cells

(p<0.0001, Figure 3A and B). Consistent with annexin

V staining data, significant increased caspase 3/7 activa-

tion was found in A375 control cells (Figure 3C).

Furthermore, caspase-9 activation was determined by

Western blot. As shown in Figure 3D, caspase-9 was

cleaved to yield more fragment following TMZ treat-

ment in A375 control cells compared with EDNRB iso-

form 3-depleted A375 cells.

To determine whether the resistant phenotype of

EDNRB isoform 3-depleted cells was specific to TMZ,

we treated control and EDNRB isoform 3-depleted cells

with DNA-damaging agents known to induce apoptosis in

A375 cells; namely, etoposide, STS and TBH70X. In

contrast to being resistant to alkylation-induced apoptosis.

EDNRB isoform 3-depleted cells underwent levels of

apoptosis similar to those of control cells after treatment

with either UV, etoposide, STS or TBH70X as judged by

caspase activation (Figure 3C–D). Collectively, these

results show that depletion of EDNRB isoform 3 confers

resistance to TMZ but not other DNA-damaging agents.

EDNRB isoform 3 plays a key role in

mitochondrial dysfunction leading to

TMZ-induced apoptosis
To investigate whether EDNRB isoform 3 plays a role

in the initiation of mitochondrial dysfunction that was

induced by TMZ, we analyzed the characteristics of

mitochondrial damage, such as mitochondrial depolari-

zation and formation of reactive oxygen species (ROS).

We measured mitochondrial membrane potential (ΔΨm)

using two different types of membrane potential

ATG(3)

gRNA

gRNA

936 bp→

T T

EDNRB iso 3-/- #23

1 2

Isoform 1

Isoform 2

Isoform 3

A B

WT genomic seq

WT genomic seq

Donor seq

Edited genomic seq

1 25
442aa

336aa

532aa
1151

3 4

Core EDNRB protein

Correct integration of GFP-puro cassette

SP

mTP

330 340

790780

G

G

G

G G GG

G G GG G

G G G

C

C

C

C C C

C C C C C

C

A

A

A A

A A

A

A A A

A AA

5 6 7 8

10
0 

bp
 la

dd
er

W
ild

-ty
pe

P
1

E
D

N
R

B
 is

o 
3+

/- 
#1

1

E
D

N
R

B
 is

o 
3+

/- 
#1

2

E
D

N
R

B
 is

o 
3+

/- 
#1

4

E
D

N
R

B
 is

o 
3+

/- 
#1

6

E
D

N
R

B
 is

o 
3+

/- 
#1

7

E
D

N
R

B
 is

o 
3+

/- 
#1

1

E
D

N
R

B
 is

o 
3+

/- 
#2

4

E
D

N
R

B
 is

o 
3+

/- 
#2

3

9
ATG(1,2) STOP(2)

STOP(1,3)

Figure 2 Establishment and validation of A375 EDNRB iso3 -/- #23 cells. (A) Schematic representation of the EDNRB genomic region. There are three alternatively spliced

isoforms. EDNRB isoform 1 has 442 amino acid residues. EDNRB isoform 2 has 336 amino acid residues with a unique 3ʹ exon encoding the intracellular C-terminal domain.

EDNRB isoform 3 has a unique 5ʹ exon encoding 89 amino acids, which has 532 amino acid residues. Red line indicates gRNA primer position. (B) The 936 bp length of

fragment surrounding the edited part was amplified and the amplicons from each puromycin-resistant colonies were separated in agarose gels. EDNRB isoform 3 -/-#23 cells

contains integrated the GFP-puromycin cassette as the figure shown.

Abbreviations: SP, signal peptide; mTP, mitochondrial targeting peptide; WT, wild-type.
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indicators: JC-1 and tetramethylrhodamine (TMRE). A

significant depolarization of mitochondria was observed

at 24 hrs as measured by JC-1 staining after treatment

with 1.5 mM TMZ for 24 hrs (Figure 4A and B).

Similarly, an overall decrease in TMRE staining in

TMZ-treated A375 control cells following TMZ treat-

ment, indicating the loss of mitochondrial (ΔΨm) after

TMZ treatment (Figure 4C and D). Consistent with the

maintenance of mitochondrial function, EDNRB isoform

3-depleted cells did not exhibit a significant increase in

ROS after TMZ treatment, as measured using MitoSox

Red, a mitochondrial-targeted form of the superoxide

indicator dihydroethidium (Figure 4E and F).

Collectively, these results indicate that loss of EDNRB

isoform 3 is involved in cell death induced by mito-

chondrial membrane potential or/and ROS.

Lack of EDNRB isoform 3 results in

elevated mitochondrial Ca2+ levels during

TMZ-induced apoptosis
Mitochondrial inner membrane voltage (ΔΨm) mainly

promotes mitochondrial Ca2+ uptake, which is main-

tained by the electron transport chain and oxidative

phosphorylation.31 To determine whether TMZ-induced

mitochondrial depolarization is suppressed by depletion

of EDNRB isoform 3 in cells, we monitored Ca2+ influx

into mitochondria using mitochondrial probe Rhod2-

AM.32 After TMZ treatment, EDNRB isoform 3-depleted

A375 cells showed a marked increase in Rhod2 fluores-

cence intensity, but control A375 cells showed only a

slight increase (Figure 5A and B). Ru360, an inhibitor of

the mitochondrial calcium uniporter, was used to confirm
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these results (Figure 5C). In addition, we also examined

the effect of EDNRB isoform 3 on cell death induced by

A23187, a Ca2+ ionophore. EDNRB isoform 3-depleted

cells showed significant resistance to A23187-induced

cell death (Figure S2). These results indicate that com-

pared to control cells, EDNRB isoform 3-depleted cells
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absorb a larger amount of Ca2+ into their mitochondria

without loss of mitochondrial depolarization.

EDNRB isoform 3-mediated apoptosis

may be related to reduced expression of

phosphorylation of p53 at S392
To evaluate the effects of EDNRB isoform 3 depletion on

alterations of apoptosis protein expression under TMZ treat-

ment, Proteome Profiler™ Human Apoptosis array was per-

formed. TMZ-mediated protein expressions were assessed in

the EDNRB isoform 3-depleted A375 cells compared to the

A375 control cells. Of the 35 apoptosis-related proteins on

the array, we found that TMZ-treated A375 control cells

showed upregulated expression of 2 pro-apoptosis proteins,

Bid and Pro-Caspase-3, compared to EDNRB isoform 3-

depleted A375 cells (Figure 6A and B). On the other hand,

the anti-apoptotic proteins such as Bcl-2 were not signifi-

cantly altered. Additionally, EDNRB isoform 3 depletion

also downregulated the protein expression of Phospho-p53

(S392) and upregulated Paraoxonase 2 (PON2) (Figure 6A

and B). Phosphorylation of p53 at S392 is correlated with

increased DNA binding33,34 and PON2 located in mitochon-

dria inhibits mitochondrial superoxide formation.35 These

results may suggest that changes of these proteins were

necessary for ENDRB isoform 3 protection of cell apoptosis

induced by TMZ.

Discussion
Three EDNRB isoforms have been described, EDNRB

isoform 1, 2 and 3, which are encoded by a single mam-

malian EDNRB gene and differ in their N or C-terminal

sequences due to alternative splicing.24 N terminus of the

isoform 1 or 2 serves as a signal peptide for N tail trans-

location and consequently for a functional receptor in the

cell membrane,36 but no function has been studied for the

N terminal of isoform 3. For the past years, several G

proteins previously characterized as regulators working at

the plasma membrane have been recently identified as

translocating to mitochondria.37–39 In this study, bioinfor-

matics analysis showed that N terminal of isoforms 3

contained MTS, which enriches of specific aa and the

ability to form amphiphilic α-helices.40 As expected, the

immunoblots and confocal experiments confirmed its loca-

lization in mitochondria. Since no isoform 3 specific anti-

body is accessible, we detected two double bands in

cytosolic parts using EDNRB C terminus antibody,

which is consistent with previous findings. The two

bands represent EDNRB isoform 1 after proteolytic clea-

vage at Arg64 and Ser65 sites of N extracellular terminus

and full-length receptor, respectively.10,41,42 The proteoly-

tic cleavage at Arg64 and Ser65 may allegedly be due to

the metal proteinases released during the preparation of

membrane fractions.42,43 Mitochondrial transport systems

import proteins that contain different types of localization

signals, but most matrix proteins contain an N-terminal

sorting signal, which is often proteolytically removed dur-

ing the import.44 This explains the molecular weight of

EDNRB isoform 3 that was smaller than estimated.

Tsutsumi et al24 showed that EDNRB isoform 3 was

expressed in human gut tissue. But little was reported on

its function. A previous study described a missense hetero-

zygous mutation K15X in EDNRB isoform 3 in a sporadic

Caucasian HSCR (Hirschsprung’s disease) patient.45 It

implies that this kind of isoform is crucial for the survival

of neural crest cells. Additionally, it has been reported that
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repression of GPCRs expression sensitizes cells to DNA

damage or ischemic hypoxia-induced apoptosis.46,47 As

one of the members of GPCRs, we asked whether this

isoform has similar functions. We next generated ENDRB

isoform 3-depleted A375 melanoma cells, which was

proved to contain both isoform 1 and 3 in our lab. Our

results showed a correlation between EDNRB isoform 3

silencing and TMZ resistance, but not other apoptosis

inducers such as STS, etoposide and TBH70X, indicating

that EDNRB isoform 3 is involved in alkylating agents

induced cell death. We found that lack of EDNRB isoform

3 markedly decreased the activity of caspase 9, indicating

intrinsic mitochondrial apoptosis pathway was activated.

Caspase 9 activation may further lead to its downstream

caspase 3 cleavage which can activate its substrates such

as PARP, resulting in activation of DNA fragmentation of

apoptosis.48 As mentioned earlier, production of mitochon-

drial depolarization and reactive oxygen species is found

in TMZ-induced apoptosis.6 In the present study, com-

pared with control cells, EDNRB isoform 3-depleted

cells demonstrated a robust ΔΨm as evidenced by JC-1

and TMRE staining. Consistent with the maintenance of

mitochondrial function, EDNRB isoform 3-depleted cells

exhibited a slight increase in ROS after TMZ treatment.

The maintenance of mitochondrial function most likely

explains relatively lower ROS accumulation in EDNRB

isoform 3-depleted cells. Loss of ΔΨm also leads to the

release of pro-apoptotic factors such as cytochrome c.49

The mechanism of EDNRB isoform 3 mediates TMZ

resistance such as cytochrome c release, remains to be

elucidated.

It has been reported that GPCRs modulate Ca2+ home-

ostasis and/or Ca2+ signals and are known to regulate cell

proliferation, migration and survival.39,50–52 Some of the

GPCRs have been recently found localized on mitochondria

regulating mitochondrial function.39,53 Mitochondria is the

primary subcellular Ca2+ store buffering cytosolic Ca2+.54

Our results indicated that EDNRN isoform 3-depleted mito-

chondria accumulated excess Ca2+ without significant loss

of ΔΨm and generation of high levels of ROS following

treatment with TMZ. Moreover, upon A23187 treatment

EDNRB isoform 3-depleted A375 melanoma cells accumu-

lated more Ca2+ than wild-type A375 melanoma cells and

were significantly more resistant to A23187-induced death,

as measured by Annexin V staining. Thus, these results

demonstrated that mitochondrial Ca2+ uptake is strongly

accelerated in the absence of EDNRB isoform 3 expression

during alkylating agents induced cell death process. There

is a controversy conception that Ca2+ overload leads to

stimulated ROS generation in mitochondria. The role mito-

chondrial Ca2+ uptake plays in ROS generation remains

largely elusive. Some investigators have found mitochon-

drial Ca2+ uptake increase in ROS generation,55,56 but

others have shown it has effect on57 or even decreases in

ROS generation.58,59 In the present study, our findings sup-

port a relationship between an increase in mitochondrial

Ca2+ absorbing and resistance to cell death following expo-

sure of TMZ in absence of EDNRB isoform 3 expression.

Inhibition of mitochondrial Ca2+ uptake by Ru360 attenu-

ated the effects, confirmatively suggesting that EDNRB

isoform 3 plays a direct role in mitochondrial Ca2+ uptake.

Collectively, these results we observed imply that the loss of

ΔΨm might be involved in cell death due to Ca2+ overload

and accumulation of ROS. A further understanding about

new functions of EDNRB isoform 3 in manipulating mito-

chondrial Ca2+ uptake and thus provides a new target for

regulation of Ca2+ signaling related to cell survival and

death.

Previous report revealed that one of GPCRs regulated

apoptosis induced by DNA damage through modulate

phosphorylation status of p53.60 Hyperphosphorylation of

p53 under genotoxic stress was found to result in both p53

stabilization and activation. We obtained a similar result

that the TMZ treatment resulted in decreased phosphoryla-

tion at serine residues 392 on p53 EDNRB isoform 3-

depleted A375 cells than in A375 control cells.

Phosphorylation of S392 in p53 enhanced DNA binding

through regulating p53 tetramerization.34 This result sug-

gests that the status of p53 correlates to TMZ-induced

apoptosis in the absence of EDNRB isoform 3. We also

found depletion of EDNRB isoform 3 can increase the

expression of PON2. PON2 is an antioxidant mitochon-

drial enzyme, protecting cells from death caused by oxi-

dative stress.61,62 The above findings imply that, EDNRB

isoform 3 has the ability of mediating generation of ROS

may due to stimulation of the expression of PON2.

Taken together, our results suggest that EDNRB iso-

form 3 participates in resistance against TMZ-induced pro-

apoptotic signals in melanoma cells. Therefore, targeting

EDNRB isoform 3 could be an appropriate and beneficial

strategy in melanoma management.
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Figure S1 Secondary structure of the N-terminal region of EDNRB isoform 3 was predicted by the PSIPRED server.
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Figure S2 Depletion of EDNRB isoform 3 confers resistance to A23187. (A) Apoptosis was analyzed by flow cytometry after annexin V and propidium iodide staining. Cells

were incubated with and without A23187 (10 µM) for 24 hrs. (B) Total apoptosis is the sum of the percentage of annexin V only and annexin V/propidium iodide stained

cells. Data represent as mean±SD from three independent experiments. **p<0.01. (C) Representative flow cytometry histograms indicating Rhod2-AM staining signals of

EDNRB isoform 3-depleted and control A375 cells after treated with 10 µM A23187 for 24 hrs. Rhod2 fluorescence intensity was monitored by flow cytometry.
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