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Purpose: We aimed to enhance the solubility, dissolution rate, oral bioavailability, and

α-glucosidase inhibition of glimepiride (Glm) by fabricating its nanosuspension using a

precipitation–ultrasonication approach.

Methods: Glm nanosuspensions were fabricated using optimized processing conditions.

Characterization of Glm was performed using Malvern Zetasizer, scanning electron micro-

scopy, transmission electron microscopy, differential scanning calorimetry, and powder X-

ray diffraction. Minimum particle size and polydispersity index (PDI) values were found to

be 152.4±2.42 nm and 0.23±0.01, respectively, using hydroxypropyl methylcellulose: 6 cPs,

1% w/v, polyvinylpyrrolidone K30 1% w/v, and sodium lauryl sulfate 0.12% w/v, keeping

ultrasonication power input at 400 W, with 15 minutes' processing at 3-second pauses. In

vivo oral bioavailability was assessed using rabbits as a model.

Results: The saturation solubility of the Glm nanosuspensions was substantially enhanced 3.14-

fold and 5.77-fold compared to unprocessed drug in stabilizer solution and unprocessed active

pharmaceutical ingredient. Also, the dissolution rate of the nanosuspensions ws substantially

boosted when compared to the marketed formulation and unprocessed drug candidate. The results

showed that >85%ofGlmnanosuspensions dissolved in thefirst 10minutes compared to 10.17%of

unprocessed Glm), 42.19% of microsuspensions, and 19.94% of marketed tablets. In-vivo studies

conducted in animals, i.e. rabbits, demonstrated that maximum concentration and AUC0–24 with

oral dosing were twofold (5 mg/kg) and 1.74-fold (2.5 mg/kg) and 1.80-fold (5 mg/kg) and 1.63-

fold (2.5 mg/kg), respectively, and compared with the unprocessed drug formulation. In-vitro α-

glucosidase inhibition results showed that fabricated nanosuspensions had a pronounced effect

compared to unprocessed drug.

Conclusion: The optimized batch fabricated by ultrasonication-assisted precipitation can be

useful in boosting oral bioavailability, which may be accredited to enhanced solubility and

dissolution rate of Glm, ultimately resulting in its faster rate of absorption due to

nanonization.

Keywords: glimepiride nanosuspension, precipitation–ultrasonication approach, boosted

bioavailability

Introduction
It has been observed that many active pharmaceutical ingredients (APIs) dis-

play low aqueous solubility and bioavailability during the drug-development

stage.1 Recently, nanosuspension has been successfully fabricated to overcome
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this challenge in either a top-down or bottom-up

fashion.2,3 The last decade witnessed the bottom-up

approach being used to accomplish APIs in the nano-

sized range.4,5 To prepare nanosized or micronized

drug particles, antisolvent precipitation is considered

an effective method. One antisolvent-precipitation

approach involves dissolution of the drug candidate in

the solvent phase, followed by it being introduced into

an antisolvent phase, ultimately leading to the drug’s

precipitation. This approach is an effective and com-

monly employed bottom-up approach for fabricating

nanosuspension, owing to simplicity and low cost.6,7

However, the approach still faces issues of maintaining

accurate particle size, obtaining stability after precipi-

tation, and scaling up of batches.6,8–10 Ultrasonication

combined with precipitation is an effective approach to

attain improved particle-size reduction. This process is

responsible for controlling the two processes of nuclea-

tion and crystallization. When applied on fluid, ultra-

sonic notes are characterized by two phases:

● expansion: a cyclic series that exerts negative pressure
● compression: positive pressure holding molecules

together

By initiating cavitation bubbles, ultrasound notes also

intensify mass transfer, which is formed during the expan-

sion phase. A large magnitude of energy is released, due to

the formation, growth, and consequent collapse of bubbles.

Powerful shock waves are released once a bubble col-

lapses, then a confined hot spot with high temperature

and pressure is formed. Consequently, mixing of the two

phases (solvent and antisolvent) is boosted, leading to

“supersaturation” of the mixture. Moreover, the collapse

of vacuum bubbles causes the breakdown of the particles.

The process depends on the duration and intensity of

sonication energy, horn length and depth of immersion,

and temperature.11–14

Soluble polymers, such as cellulosic polymers, hydroxy-

propyl methylcellulose (HPMC), polyvinylpyrrolidone

(PVP), and polyvinyl alcohol, are among the common poly-

mers/stabilizers used to achieve stability.15 These stabilizers

are used at 1%–7.5% w:v in nanosuspension formulations.-
16,17 Glimepiride (Glm) is an oral sulfonylurea derivative, as

shown in Figure 1. It has been used in the treatment of type 2

diabetes mellitus for many years. It is practically insoluble in

water and is a biopharmaceutical classification–system class

2 drug.18,19 As such, it will be essential to produce a stable

Glm nanosuspension (GN) to enhance low water solubility

and ultimately boost bioavailability. In this study, stabilized

GNs were fabricated using ultrasonication-assisted precipita-

tion with the aim of increasing solubility, in vitro dissolution,

and ultimately oral bioavailability of Glm.

Methods
Materials
Glm (batch 004092013) and (sodium lauryl sulfate (SLS)

were a generous gift from Bryon Pharmaceuticals,

Peshawar, Pakistan. HPMC grade 6 cPs, PVP K30, acetone,

and methanol were purchased from a market in Peshawar,

Khyber Pakhtunkhwa, Pakistan. All experimental studies on

animals were conducted as per protocols (Pharm/AEC/G-04–

17) approved by the Animal Ethical Committee, University

of Malakand, Khyber Pakhtunkhwa, Pakistan and relevant

bye-laws (2008).

Fabrication of glimepiride nanosuspension
GN was fabricated using a precipitation–ultrasonication

method. In brief, 50 mg Glm solutions were fabricated in

acetone and methanol 6 mL (1:1) as organic solvents, added

dropwise to the antisolvent phase, precooled at 4°C,

Figure 1 Chemical structure of glimepiride.
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containing different concentrations of polymers ie PVP K30,

HPMC grade 6 cPs, and SLS at 1,500 rpm using a magnetic

stirrer. Later, ultrasonication was carried out for the fabri-

cated suspension at different intervals (10–30 minutes) at

different ultrasonic energy input, i.e. 100, 200, 300, 400,

and 500 W, at 3-second pauses. The initial particle size of

the suspension was measured using a Malvern Zetasizer.20

Subsequently, after optimizing the processing parameters

and conditions for preparation of GN, the size of the batch

was successfully scaled up from 5 mL to 400 mL.

Drying of glimepiride nanosuspensions
The milky GN prepared earlier was centrifuged at 5,000

rpm for 10 minutes. Then, the supernatant was discarded

and sedimented particles oven-dried for 60 minutes and

stored in borosilicate glass vials at room temperature for

further analysis in a desiccator.

Characterization of glimepiride

nanosuspension
Particle-size analysis and ζ-potential measurement

The Zetasizer was used for evaluation of ζ-potential and
particle size of GNs. GNs were diluted with water before

measurement.21

Content analysis of glimepiride

Mohd et al22 method was used. An HPLC system with an

ultraviolet-visible detector was used. Conditions were

acetonitrile: 0.2 M hosphate buffer (pH 7.4) for the mobile

phase, Hypersil BDS C18 (250×4.6 mm) column 5 μm, and

at 1 mL/min flow rate, injection volume 20 μL at 25°C

temperature with 25-minute run time, and 228 nm detec-

tion wavelength.

Scanning electron microscopy
Unprocessed Glm was subjected to scanning electron micro-

scopy (Quanta 400) for morphological analysis. Glm images

were observed at suitable magnification powers.23

Transmission electron microscopy
Transmission electron microscopy (TEM; TEM 1200) was

used for evaluation of Glm. Nanosuspensions were

dropped on copper–gold carbon grids and dried at room

temperature, followed by taking photographing at suitable

magnification.24

X-ray diffraction
X-ray diffraction (XRD) studies of unprocessed drug,

physical mixture, and GN were carried out using

PANalytical X’pert powder.24

Differential scanning calorimetry
Thermal properties of both unprocessed and GN were

recorded using differential scanning calorimetry (DSC)

(Shimadzu TA60). In aluminum pans, 5 mg samples

were heated at a scanning rate of 10°C/min at 40°C–200°

C under a nitrogen flow of 50 mL/min.25

Saturation solubility
GNs (1.5 mL) were put into centrifugation tubes and cen-

trifuged at 14,800 rpm for 60 minutes. Then, of Glm con-

centrations in the supernatant already filtered through 0.2

µm filters were determined using HPLC. Likewise, the

saturation solubility of Glm in the stabilizer (w/v) solution

(ie, HPMC, PVP K30, SLS) and aqueous medium was

assessed to find out the impact of nanoparticles on drug

(Glm) solubility. All samples were evaluated in triplicate.24

Stability
Stability studies were conducted to evaluate particle

growth caused by aggregation and Ostwald ripening.

Physical stability of GNs was assessed by keeping them

stabile for 90 days at 2°C–8°C, 25°C, and 40°C, while

chemical stability of was evaluated by active pharmaceu-

tical contents of the stored samples for 3 months using the

method mentioned earlier. At different time intervals (10,

15, 30, 45, 60, 75, and 90 days), particle size and PDI

values were recorded using the Zetasizer.23

In vitro dissolution
The dissolution (in-vitro) was conducted in dissolution

medium, i.e., PBS (900 mL, pH 7.4) for Glm, GN, and a

marketed product, ie, tablets. GN was prepared by disper-

sing crushed tablets of Glm in stabilizer solution (HPMC

0.5 w/v) in medium, as used for the raw drug, nanoformu-

lation, and tablets, keeping the temperature at 37°C±0.5°C

with paddles operating at 100 rpm. Sample aliquots (5 mL)

were collected and filtered via 0.4 µm membrane filter at

0, 5, 10, 15, 30, 45, and 60 minutes. Each time, fresh

medium (5 mL) was added to the dissolution medium.

The amount of drug was determined by HPLC.22

Dovepress Rahim et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
6289

R
E
T
R
A
C
T
E
D

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


In vivo bioavailability
In sum, 24 rabbits weighing 2.5–3.0 kg were divided into

four groups (six per group) and housed in cages with free

access to water and food. Glm was given in doses of 5 and

2.5 mg/kg, and the fabricated optimized GN given orally at

doses of 5 and 2.5 mg/kg. Blood was collected in hepar-

inized tubes at 0, 0.5, 1, 1.5, 2, 4, 6, 8, 12, and 24 hours, after

dosing. Plasma was separated from blood immediately by

centrifugation at 3,000 rpm for 20 min and frozen until

analysis using the HPLC method of Mohd et al. All animal

experiments were carried out in accordance with the

approved protocols mentioned earlier.22,26 The main phar-

macokinetic parameters were acquired with the help of PK

Solutions 2.0 noncompartmental pharmacokinetic data-ana-

lysis software. Statistical analysis was done using ANOVA

followed by Tukey’s post hoc testing to determine the sig-

nificance of any differences.

In vitro α-glucosidase inhibition
α-Glucosidase inhibition was assessed as per Artanti et al.27

Samples (amount 0.1 mL) were added to test tube containing

0.1 mL 20 mM pNPG (p-nitrophenyl α-D-glucopyranoside)
and 100 mM PBS (2.2 mL) at pH 7 followed by incubating it

at 37°C for 5 minutes. The reaction was initiated by addition

of 0.1 mL enzyme solution (1 mg/0.1 mL), followed 15

minutes' incubation at 37°C. The reaction was stopped by

addition of 200 mM Na2CO3 (2.5 mL). Absorbance of

p-nitrophenol released from p-nitrophenyl α-D-glucopyrano-
side, was measured spectrophotometrically at 400 nm.

Inhibition of α-glucosidase was calculated:

1� A=Bð Þ½ � x100%
where B represent absorbance in absence of the sample

and A absorbance in presence of the sample.

Results and discussion
Optimum processing parameters for

preparation of glimepiride

nanosuspension
Initially, a concentration (w/v) of 0.5% of each of

HPMC and PVP K30 was used while keeping 0.12%

SLS to fabricate suspension. The optimized GN was

stabilized by 1% HPMC, 1% PVP K30, and 0.12%

SLS, as represented in Figure 2. Further increasing the

concentration of stabilizers enhanced particle size.

Furthermore, particle size increased with further increas-

ing the concentration of polymer used, e.g. PVP K30

which might have been due to the higher viscosity of

the resulting solution.29 TEM clearly displayed even

particle-size distribution <200 nm (Figure 4B). A

noticeable reduction was observed in the final particle

size (152.4±2.42 nm) of fabricated GN from 15–25 μm
and 110–120 μm, as revealed in Figure 4A. The impact

of ultrasonication power on particle size was evaluated.

Duration was kept at 15 minutes and ultrasonication at

400 W, respectively, as depicted in Figure 3A and B.

The duration of sonication had a vital effect on particle

size when power was fixed at 400 W, 5 minutes' sonica-

tion being too short to fabricate a nanosuspension of

desired particle size. Sonication temperature similarly

affected particle size. Commonly, at lower temperatures

smaller crystals are formed. High temperatures enhances

drug solubility, with subsequent reduction in supersa-

turation and numbers of nuclei. The temperature effect

may be explained by relating it to a higher rate of

diffusion and kinetic reaction at crystal surfaces, ulti-

mately resulting in improved crystal growth.30

Boosted erosion on large crystal surfaces and agglom-

erates resulted from this precipitation-assisted ultrasonica-

tion. These results can be easily explained. First, a higher

precipitation temperature improved the saturation solubi-

lity of Glm in the solution and thereafter decreased super-

saturation, which resulted in a lower nucleation rate and

consequently larger crystals. Secondly, once nucleation

had been achieved, crystal growth was believed to occur

in the following steps:

Step I: diffusion of drug molecules from bulk solution

to solid crystal interface

Step II: assimilation of drug molecules into crystal

lattice with release of heat of crystallization

Step III: conductance of heat of crystallization into

bulk solution

At higher temperatures, faster crystal growth occurred,

owing to higher diffusion and improved reaction kinetics

at the crystal interface. Moreover, the extent of Ostwald

ripening was reduced, owing to reduction in saturation

solubility with falling temperature, leading to smaller

PDI values.31

DSC
Unprocessed Glm exhibited an endothermic peak at 212°C,

conforming to its melting point, as the thermogram depicts in

Figure 5.32 GN (optimized nanoformulation) exhibited a
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minor shift in melting point at 205°C. Alterations in melting

points might have been due to particle-size variance between

the unprocessed API and fabricated optimized GN. The DSC

peak–broadening result may have been due to the presence of

traces of polymeric materials on the surfaces of drug

particles.33,34

Powder XRD
Powder-XRD patterns displayed that processed Glm was

of crystalline nature (Figure 6). However, peak intensities

of nanoparticles were comparatively low in comparison to

unprocessed Glm. This outcome was due to the nanonizing

process.

Moreover, smaller particles and the presence of trace

amorphous polymeric materials caused decreases in GN

peaks (Figure 6).21,35,36 Additionally, the powder-XRD

pattern of the physical mixture exhibited dominant peaks

for Glm particles, whereas peaks for small amounts of

polymeric materials (amorphous nature) disappeared.

Saturation solubility
The low solubility of Glm in aqueous medium was

boosted significantly (P<0.05) by reducing its particle

size. The solubility (µg/mL) of the unprocessed drug

(Glm) in water was 25.83±4.79, GN in water 149.0

±5.96, and unprocessed Glm in stabilizer solution 43.81

±4.75, while GN exhibited almost 5.97-fold improved

saturation solubility in comparison to the unprocessed
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Figure 2 Influence of polymer concentration on particle size.
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Figure 3 Impact of ultrasonic energy power input (A) and time length (B) on

particle size of fabricated GN.

Abbreviation: GN, glimepiride nanosuspension.
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Glm and 3.50-fold boosted in comparison to Glm in the

stabilizer solution as depicted in Figure 7.

Stability
The physical stability of GN stored at 2°C–8°C and 25°C

(Figure 8, A and B) showedmaximum stability with preserved

PDI values when compared with the samples stored at 40°C

(Figure 8C). At high temperatures, interparticle interaction of

suspended particles increased, owing to an increase in kinetic

energy.37 Freitas andMüller suggested that to attain a stabilized

nanosuspension formulation, 2°C–8°C is favorable.38

The ζ-potential values were −24.1±1.2 mV and −28.02
±1.09 mV for the batch size of 100 and 300 mL respec-

tively, as displayed in below Figure 9.

The value of ζ-potentials is a judgment of the electrical

charge at the surface of particles that ensures the physical

stability of fabricated nanosuspensions. This has been reported

as ±30 mV for an electrostatically stabilized nanoformulation

and ±20 mV for a sterically stabilized one.39,40 The active

contents of GN were 98.05%±2.50%, which proved the effi-

cient use of technology and stability of GN using the combi-

native technique (Table 1).
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HV WD Magnification
4,000× SE (U)

Glm 5 µm

400 µm

20 kV 11.3 mm

Figure 4 SEM of raw glimepiride (Glm) (A); TEM of Glm nanosuspension (B).
Abbreviations: SEM, scanning electron microscopy; TEM, transmission electron

microscopy; HV, high vacuum; WD, working distance.
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Figure 5 DSC thermogram of GN and unprocessed Glm.

Abbreviations: DSC, differential scanning calorimetry; Glm, glimepiride; GN, Glm

nanosuspension.
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Abbreviations: Glm, glimepiride; GN, glimepiride nanosuspension.
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In vitro dissolution
Dissolution profiles of raw Glm, GN, and an available mar-

keted formulation, i.e. tablets, are presented in Figure 10. A

significantly enhanced dissolution rate for fabricated GNwas
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Table 1 Chemical stability of glimepiride nanosuspension

Day Active content (%) Day Active content (%)

0 99.25±1.55 45 95.88±1.22

10 98.31±1.08 60 94.14±1.42

15 97.94±1.15 75 93.66±1.06

30 96.76±1.04 90 92.62±1.18

Note: Values expressed as means ± SD.
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shown in comparison to unprocessed Glm and the marketed

tablets. In the first 10 minutes, >85% of GN was dissolved

compared to 10.17% of unprocessed Glm, 42.19% of micro-

suspension, and 20.44% of the marketed tablets. When par-

ticles are reduced to nanosize, the solubility of the drug

candidate will be improved, as described by Xia et al, who

explained the connection between particle size and drug

solubility.41

In vivo bioavailability
GN exhibited boosted absorption in comparison to unpro-

cessed Glm. At 5 mg/kg oral dose, there was a doubling of

Cmax and 1.8-fold enhancement in the AUC0–24 of GN-I in

comparison to the unprocessed API. Also, GN-II at a dose of

2.5 mg/kg orally resulted in 1.74-fold enhanced Cmax and

1.63-fold boosted AUC0–24 when compared to the unpro-

cessed API. The results verified a marked improvement in

Cmax of Glm after oral administration of API at different

doses, as depicted in Figure 11 and Table 2.

In vitro α-glucosidase inhibition
The α-glucosidase inhibition–assay results showed that

fabricated GN had marked potential compared to unpro-

cessed Glm (Table 3). GN showed markedly enhanced α-
glucosidase inhibition (IC50=21.30 µg/mL) compared to

Glm (IC50 = 49.52 µg/mL).
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Abbreviations: Glm, glimepiride; GN, Glm nanosuspension.
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Conclusion
Precipitation–ultrasonication was utilized in fabrication of

stabilized GN. Optimized processing was found at 1% (w/

v) PVP K30 , 1% (w/v) HPMC, 0.12% (w/v) SLS, ultraso-

nication input 400 W, and 15 minutes' processing with 3-

second pauses. A 300 mL batch size can be scaled up effec-

tively utilizing this technology. The in-vitro dissolution rate

and bioavailability of Glm via the oral route were boosted

distinctly by utilizing this approach for efficiently reducing

the particle size to a suitable level. GN showed markedly

enhanced α-glucosidase inhibition IC50 compared to Glm.

Glm nanosuspensions are a promising candidate for improv-

ing therapeutic activity in human volunteers. This study

could play a key role in clinical evaluation of nanosuspen-

sions in future research.
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