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Introduction: Type 2 diabetes (T2D) is a widely distributed disease that affects large

population worldwide. This study aimed to verify the role of Ginkgo biloba (GB) extract

and magnetized water (MW) on the survival rate and functional capabilities of pancreatic β-

cells in type 2 diabetic rats.

Materials and methods: T2D was induced by feeding the rats on a high-fat diet (20% fat,

45% carbohydrate, 22% protein) for eight weeks followed by intra-peritoneal injection of a

single low dose of streptozotocin (25mg/Kg). Forty rats were randomly assigned to four

groups (n=10 rats) as follows: non treated control and three diabetic groups. One diabetic

group served as a positive control (diabetic), while the other two groups were orally

administered with water extract of GB leaves (0.11 g/kg/day) and MW (600 gauss) for

four weeks, respectively.

Results: The β-cell mass and insulin expression in these cells increased markedly after both

treatments, particularly in GB treated group. In addition, the immune-expression of the two

antioxidant enzymes; glutathione and superoxide dismutase 2 (SOD2) in the pancreatic tissue

demonstrated a down-regulation in GB and MW treated groups as compared with the

diabetic group.

Conclusion: A four-week treatment of GB and MW protected pancreatic β-cell cells and

improved their insulin expression and antioxidant status in type 2 diabetic rats.
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Introduction
Diabetes mellitus (DM) is classified into two main subtypes: 1 and 2. Type 1 DM

results from the destruction of the pancreatic β-cells and lack of insulin secretion; it

is accompanied by high blood glucose concentrations and ketoacidosis.1,2 However,

Type 2 DM (T2D) is more common and is frequently linked to obesity.3,4

It has been previously shown that T2D could affect the pancreatic endocrine

(islets of Langerhans) and exocrine systems (pancreatic acini). T2D in many cases is

accompanied by a decrease in body weight and many digestive disturbances, which

may rely on the enzymatic functional defect of the pancreatic exocrine system.5–7

Even more, T2D is accompanied by high blood insulin levels and

hyperlipidemia.8 Maintaining optimal blood glucose levels can delay further DM

progression. Whereas, a steady rise in plasma glucose levels occurs regardless of

the degree of control or type of treatment. Therefore, β-cell function declines

linearly with time, and it was reported that after 10 years more than 50% of patients
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require insulin therapy.9 The underlying changes in β-cell
function have been well described,10,11 and β-cell mass

decreases steadily during the course of T2D.12,13 It is

strongly accepted that T2D is a worldwide chronic pro-

gressive syndrome. Therefore, a high likelihood demand

for insulin therapy is important to maintain at optimal

glycemic status.14

Free radicals play a major role in the pathogenesis of T2D

and most likely its further complications. Nevertheless, the

formation of reactive oxygen species (ROS) is a direct con-

sequence of hyperglycemia.15 Increased ROS and decreased

antioxidant systems induce a critical oxidative stress in dia-

betic patients. Substances having ROS scavenging ability can

have potential effectiveness in diabetic animals with high

oxidative stress level.16 Modulation of the levels of common

antioxidants including vitamins A, C, and E, glutathione, and

the enzymes superoxide dismutase, catalase, glutathione per-

oxidase, and glutathione reductase can be applied to counter-

act this oxidative stress condition.17–19

It has been suggested that dietary antioxidants may

play a role in reducing the risk of T2D as well as its

complications.20 The extracts derived from Ginkgo biloba

(GB) have been frequently used in traditional medicine

and has been shown to exhibit antioxidant potency.21 GB

extract leads to significant alterations in antioxidant

enzymes (superoxide dismutase, catalase, and glutathione

peroxidase) and total antioxidant status.22

The magnetized water (MW), however, has been also

reported to reduce blood glucose, improve antioxidant status,

and lipid profiles in streptozotocin-induceddiabetes in rats.21,23

This protective effect of MW is induced by elevating the

concentration of glutathione peroxidase (GSH-Px) in serum

after one or two months of exposure.24

The role of natural antioxidants ie GB and MW in

protecting β-cells is so far not mentioned in the available

literature. This novel study was designed to verify the

protective role of administration of GB and MW on pan-

creatic β-cells.

Materials and methods
Animals and experimental design
This experiment was performed on 40 adult males Wister

rats weighing 200±20 g. The experiment was performed in

the animal house, Jazan University, KSA, and was

approved by the ethical committee of Jazan University.

We followed our previously published protocol for design-

ing the current experiments.21 Shortly, animals were

housed in separate cages under normal day and night

cycles. The animals were divided into two main groups:

a control group (n=10) and a diabetic group (n=30). The

control group was fed standard laboratory ration and

allowed free access to water. The diabetic group was

further subdivided into three groups (10 rats each).

Group I was kept as non-treated control, diabetic group.

Group II was orally administered with water extraction of

GB leaves (0.11 mg/kg/day/four weeks) purchased from

Novo Mesto Company, Slovenia, Diabetic+ GB. Group III

was orally administered magnetic treated (magnetized)

water for four weeks, Diabetic+ MW.

Ethical statement
All experiments were carried out in accordance with Jazan

University, KSA laws and University guidelines for the

care of experimental animals. The data used to support the

findings of this study are included within the article.

Induction of T2D
T2D was induced by feeding the rats on a high-fat diet

(20% fat, 45% carbohydrate, 22% protein) for eight weeks

At the beginning of the ninth week, animals fasted for

12 hrs then injected intraperitoneally by a single dose (25

mg/kg) of streptozotocin (STZ) purchased from Sigma

Chemical Co, St. Louis, MO, USA. After injection, rats

were given 10% glucose for the next 24hours to avoid fatal

hypoglycemia that may result from the massive pancreatic

insulin release following STZ injection.25 After three days,

the development of diabetes was confirmed by measuring

glucose levels in blood samples obtained from the tail

vein. Rats with blood glucose level over 200 mg/dl were

considered diabetic.

Preparation of MW
The MW was prepared by passing drinking water through

our hand-made electro-magnet unit.21 A transistor-con-

trolled DC current is flowing in two coils connected in

series. A potentiometer was used to control magnetic field

strength. Water was pumped through a flexible tube by a

water pump installed inside the unit. The distance between

the magnetic coils was about 15 mm. The produced mag-

netic strength was 600 G (measured by WT10A

Teslameter), it was uniform and perpendicular to the

water flow. Water flow was at a relatively low speed

(0.34 L/min) to avoid overflow. The 600G is an average

strength that has been tested to cause no pathological

lesions in experimental rats.26
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Semithin sectioning
Small tissue samples (2 mm thick) of the pancreas were

processed for semithin sectioning and stained with 1%

Toluidine Blue according to our published protocol.27

Sections were examined and photographed with a light

microscope.

Histology and immunohistochemistry
Tissue samples from the pancreas were fixed in 4% parafor-

maldehyde solution, dehydrated in ascending graded ethanol,

embedded in paraplast. Thin sections (3-5 μm thick) were

sectioned by a Leica RM 2125RT microtome. For H&E

(Roche) and immunostaining, paraffin sections (3-5 µm)

from the pancreas were used.We detected insulin in pancrea-

tic β-cells, according to our previous protocol28 by using the
specific primary antibodies (polyclonal anti-insulin) obtained

fromChongqing Biospes Co., Ltd, China. Power-StainTM 1.0

Poly HRP DAB Kit for Mouse + Rabbit was obtained from

Genemed Biotechnologies, Inc, San Francisco, CA USA.

Image J software was used for histological sections

analysis as well as measuring of protein expression

intensities.

Statistical analysis
The data were analyzed by means of one-way analysis of

variance (ANOVA) and presented as mean ± standard

error. Statistical analysis was done following Student’s t-

test. A difference was considered significant when P<0.05.

Results
GB and MW protect the pancreatic

structure against T2D
To investigate the effect of T2D on the rat pancreatic

structure, we used paraffin sections stained with H&E. We

found that diabetes-induced structural changes in the

Endocrine portion (islets of Langerhans) and Exocrine

(Acinus) portion as well when compared to control (Ctrl).

The % size of islets of Langerhans and its cellular contents

reflects the healthy condition of the endocrine pancreatic

system. We observed that the size of islets of Langerhans

was markedly decreased in the diabetic animals compared

to Ctrl (Figure 1A a, b). Furthermore, we found a marked

decrease in the cellular contents of islets of Langerhans in

diabetic rats compared to Ctrl (Figure 2A a, b, e, f). Using

Image J software, we measured the correlation of the whole

islets of Langerhans size in Ctrl and other rat groups. In

addition, with image J, we counted the cellular content of

islets of Langerhans. The size of islets of Langerhans was

significantly decreased in diabetic pancreas compared to

Ctrl. Furthermore, the cell number of diabetic islets of

Langerhans was markedly decreased compare to control

(Figure 1C). Furthermore, we have noticed that the acidic

staining of the pancreatic acini in diabetic rats was mark-

edly decreased compared to Ctrl (Figure 1A a, b). With

Image J, we measured the intensity of the acinar acidic

staining and we noticed a significant decrease in the diabetic

rats compared to Ctrl (Figure 1A e, f).

To study the protective effect of GB and MW on the

pancreas, we treated diabetic rats with GB and MW. We

observed that the pancreatic phenotype was partially rescued

in GB and MW treated rats compare to control (Figure 1A c,

d, g, h). Furthermore, the islets of Langerhans (size and

cellular contents) in GB and MW treated groups were nearly

comparable to control (Figure 1A a, c, d). In addition, with

Image J we were able to confirm the comparable changes in

the size of islets of Langerhans and the cellular contents in

GB and MW groups compared to Ctrl (Figure 1C).

Furthermore, we found that the pancreatic acinar staining

intensity after GB and MW treatment was significantly

increased compared with the diabetic rats (Figure 1B).

GB and MW maintain the pancreatic

structure against T2D
Histologically, the pancreas of the normal control group,

which appears formed of an exocrine portion (pancreatic

acini and ducts) and an endocrine portion (islets of

Langerhans).The islets were randomly distributed amidst

the pancreatic acini and were frequently neighboring the

pancreatic ducts. The islets were formed of clusters or cords

of cells of varying size and staining intensities. We found

that, in the diabetic group, the frequency of occurrence and

areas occupied by the islets of Langerhans were drastically

reduced. Each islet contained few β-cells demonstrating a

degenerative alteration as compared to Ctrl (Figure 2A a, b).

The degenerative changes were represented by a form of

nuclear pyknosis and cytoplasmic vacuolization (Figure 2A

b arrow). The GB and MW treated groups (Figure 2A c, d),

however, showed more or less restoration of the normal

morphology of the β- cells seen in the normal control with

a comparatively better picture in GB treated group.

Furthermore, the GB and MW treated groups showed less

autophagy cytoplasmic vacuoles compared to the diabetic

group (Figure 2A f-h). Image analysis showed that the %

size of islets of Langerhans and the number of ß-cells were
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Figure 1 GB and MW protective effects against the diabetic nephrotoxic effect. (A) Paraffin sections stained against H&E. (A-D) islets of Langerhans (IL) (green bordered) was

decreased in size in the diabetic pancreas and comparable to control in Diabetic+GB and Diabetic+MW. Scale bar 200 µm. Magnification of pancreatic acini (E-H). Image J

measurements of acinar staining intensity (B), islets of Langerhans size and its cellular content in relation to Ctrl (C). *P<0.05, **P<0.01 and ***P<0.001 vs control group.

Abbreviations: GB, Ginkgo biloba; MW, magnetized water; Ctrl, control.
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Figure 2 In the diabetic pancreas, cellular disturbances in islets of Langerhans rescued after GB and MW treatment. (A a-h) Semithin sections stained with Toluidine Blue. In
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significantly decreased in diabetic islets compared to Ctrl

(Figure 1C). The GB and MW treated groups (Figure 2A c,

d), showed a marked protective effect which included an

increase in the cell number and the % size of islets of

Langerhans (Figure 1C).

GB and MW are able to rescue low levels

of pancreatic insulin caused by T2D in

rats
In order to investigate the pancreatic insulin after T2D

induction, we stained against insulin in the pancreatic

β-Cell. We found a marked decrease in insulin

expression in diabetic pancreas compared to control

(Figure 3A a-b).

Image analysis using Image J showed that the intensity

of the insulin expression was significantly decreased up to

10 folds in diabetic pancreas compared to Ctrl (Figure 3B).

Interestingly, insulin expression was almost comparable

to control after GB and MW treatment (Figure 3A c, d).

Image J analysis confirmed the induction in the intensity of

the insulin after GB and MW treatment (Figure 3B).

Altogether, GB and MW treatments were able to

induce insulin expression in diabetic pancreas.

GB and MW treatment decreased

diabetic effect on the pancreatic

glutathione reductase and SOD2 protein

expression
In order to investigate the pancreatic oxidative stress after

T2D induction, we stained against glutathione reductase

and SOD2 antibodies.

We found a marked increase in glutathione reductase

and SOD2 expressions in diabetic pancreas compared to

control (Figure 4A a-b, e-f, respectively).

Image analysis using Image J showed that the intensity

of the glutathione reductase expression was significantly

increased up to 10 folds in STZ-treated pancreas compared

to Ctrl (Figure 4B). Furthermore, we noticed a significant

increase in SOD2 intensity up to 6.6 folds in diabetic

pancreas compared to control (Figure 3B).

Interestingly, glutathione reductase (Figure 4A c, d)

and SOD2 (Figure 4A g, h) expressions were almost
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Figure 3 GB and MW treatment rescue insulin expression in islets of Langerhans. (A a-d) Paraffin sections stained with anti-insulin antibody. The expression of insulin was

decreased in diabetic pancreas and back to almost normal after the use of GB and MW compare to Ctrl. Scale bar 100 µm. Image J analysis displayed a significant decrease of

insulin expression intensity in diabetic islets of Langerhans compared to Ctrl. In Diabetic+GB and Diabetic+MW pancreas, insulin protein expression intensity was increased

to be comparable with Ctrl (B). *P<0.05, **P<0.01 and ***P<0.001 vs control group.

Abbreviations: GB, Ginkgo biloba; MW, magnetized water; Ctrl, control.
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comparable to control after GB and MW treatment. Image

J analysis confirmed the reduction in the intensity of the

glutathione reductase and SOD2 after GB and MW treat-

ment (Figure 4B).

Altogether, GB and MW treatments were able to

reduce the oxidative stress in the diabetic pancreas.

Discussion
In this study, we investigated the expected effects of the

extract of GB and MW in the restoration of β-cell mass and

amelioration of their functions after induction of T2D in rats.

Our results verified a dramatic pancreatic (β-cells and acinar
cells) failure in non-treated diabetic (positive control) rats. β-
cells showed a marked pyknosis with signs of autophagy and

apoptosis. These findings coincide with the data has been

published previously,29 it was reported that β-cell failure in
T2D occurs when islets were unable to sustain β-cells

compensation as a result of insulin resistance. Furthermore,

the failure is progressive, particularly after hyperglycemia

was established, where β-cells become poorly functioning,

de-differentiated and apoptotic.29

In the current study, diabetic rats showed a drastic

decrease in acinar staining intensity reflecting the defect in

the pancreatic digestive effect which could explain the

decreased body weight of diabetic rats. Furthermore, diabetic

rats showed a drastic decrease of β-cells masses and staining

intensity of acinar cells. Moreover, insulin granules and their

intensity in β-cells, as shown by immunohistochemistry, were

downregulated in these animals. In this concern, it was

reported that T2D starts by increasing insulin resistance and

then β-cells will undergo apoptosis or necrosis.14,29,30 In our

diabetic rat, β-cells succumbed necrotic changes (cytoplasmic

vacuolation and nuclear pyknosis) with a subsequent apop-

tosis and/or autophagy. Autophagy has been reported to play
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Figure 4 GB and MW protective effect against oxidative stress induced by type 2 diabetes. (A a-d) Paraffin sections stained with anti-glutathione reductase antibody. The

expression of glutathione reductase was increased in diabetic pancrease and back to almost normal after the use of GB and MW. Furthermore, (A e-h) Paraffin tissue sections

stained with anti SOD2 antibody. SOD2 expression was intensively increased in diabetic pancreas while with the use of GB andMWwas comparablewith control. Scale bar 100 µm.

Image J analysis displayed a significant increase of glutathione reductase and SOD2 intensities in diabetic pancreas compared to Ctrl. In Diabetic+GB and Diabetic+MW pancreas,

glutathione reductase and SOD2 protein expression intensities were decreased to be comparable with Ctrl (B). *P<0.05, **P<0.01 and ***P<0.001 vs control group.

Abbreviations: GB, Ginkgo biloba; MW, magnetized water; Ctrl, control.
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an important role in pancreatic β-cell dysfunction and insulin

resistance in T2D.31 Autophagy was stimulated at the begin-

ning of T2D as a protective mechanism for β-cell32 and then

the accumulation of autophagosomes in β-cells will lead to

cellular damage and apoptosis.33,34

The β-cell dysfunction and failure of insulin secretory

capacity in T2D could be attributed to glucotoxicity, lipo-

toxicity and/or oxidative stress.29,35,36 Our observation of

hyperglycemia in diabetic rats,21 could be attributed to

exhaustion and failure of β-cells. A similar explanation

has been suggested by Wang J & Wang H (2017), who

mentioned that hyperglycemia leads to glucotoxicity to β-
cells and induction of their apoptosis or necrosis. Reduction

of serum glucose levels, however, has been supposed to

increase survival of β-cells,37,38 a suggestion that agrees

with our findings where GB and MW treatments reduced

blood glucose21 and increased β-cells survivals.
Our suggestion that the damage of β-cells results from

dyslipidemia and lipotoxicity was concomitant with what

has been mentioned before.38–40 The latter authors added

that elevation of triglycerides leads to elevation of free

fatty acids which causes lipotoxicity that impairs the sur-

vivals of β-cells, insulin secretion and subsequently

damages β-cells.
Even more, our previous observation of the marked

improvement of dyslipidemic and high glucose status in

diabetic rat,21 could be attributed to our current findings

of the ameliorating effects of GB and MWon the pancreatic

β-cells. Similarly, it was reported that GB reduced

hyperlipidemia41 that has been suggested to be due to its

content of flavonoid components.42 The MW has been also

reported to have a powerful hypolipidemic action in T2D.43

However, in our present study the improvement of both

morphological picture of β-cells as well as serum glucose

level and the lipid profile as revealed in our previous,21

were comparatively better in GB treated rats than those

treated with MW.

A possible factor for destroying β-cell function is the

increasing free radical or oxidative stress that accompanies

T2D.39 Immunohistochemically, our findings demonstrated

an overexpression of antioxidant enzymes; glutathione per-

oxidase and SOD2 in pancreatic islets of diabetic rat. These

results coincide with Wang J & Wang H (2017), who

reported that hyperglycemia, hyperlipidemia, hypoxia, and

endoplasmic reticulum (ER) stress lead to ROS generation

in β-cells. Hyperglycemia, in particular, can be directly

associated with increased ROS generation.39 In chronic

hyperglycemia, β-cells are exposed to high glucose

concentrations for long time, where the normal route of

glycolysis gets saturated and excess glucose is shifted

towards alternative ROS-forming pathways including

glycosylation,44 glucose autoxidation,45,46 and glucosamine

pathway,47 all of them lead to the accumulation of ROS and

induction of oxidative stress. Furthermore, increase ROS

production has been reported to decreases β-cell mass.48

According to Mancini et al (2018), the total antioxidant

capacity of the diet may play a role in reducing the risk of T2D

as well as its complication. Our results demonstrated that

treatment with GB or MW ameliorated antioxidant status in

β-cells and hence downregulated antioxidants enzymes; glu-

tathione and SOD2. We suggest that both treatments scavenge

ROS with a subsequent decrease in the expression of both

enzymes in pancreatic islets. In the same context, GB has

been suggested to scavenge free radicals in vivo.22 The cur-

rently increased survival of β-cells could be also attributed to

the amelioration of the antioxidant status in these cells.

In conclusion, treatment with GB or MW protects

pancreatic exocrine and endocrine systems against the

damaging effect of T2D in rats.

Disclosure
The authors report no conflicts of interest in this work.
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