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Abstract: The decreasing cost of and increasing capacity of DNA sequencing has led to

vastly increased opportunities for population-level genomic studies to discover novel geno-

mic alterations associated with both Mendelian and complex phenotypes. To translate

genomic findings clinically, a number of health care institutions have worked collaboratively

or individually to initiate precision medicine programs. These precision medicine programs

involve designing patient enrollment systems, tracking electronic health records, building

biobank repositories, and returning results with actionable matched therapies. As cancer is a

paradigm for genetic diseases and new therapies are increasingly tailored to attack genetic

susceptibilities in tumors, these precision medicine programs are largely driven by the urgent

need to perform genetic profiling on cancer patients in real time. Here, we review the current

landscape of precision oncology and highlight challenges to be overcome and examples of

benefits to patients. Furthermore, we make suggestions to optimize future precision oncology

programs based upon the lessons learned from these “first generation” early adopters.

Keywords: next-generation sequencing, pathogenic variant, driver mutation, actionable

mutation, cancer disparities

Introduction
Driven by the precipitous drop in the cost of next-generation sequencing (NGS),1 it

has become possible to perform genetic studies on a population scale to identify

rare2 and common genetic variants3 associated with Mendelian disease and com-

plex traits.4–9 This “omics” revolution has yielded a wealth of information that has

catalyzed efforts in precision medicine, allowing for characterization of patients at

the genomic level for more precise diagnosis and treatment.

In cancer research, whole exome sequencing (WES) and whole genome sequen-

cing (WGS) have been successfully used to identify germline and somatic variants

that drive cancer initiation or cancer progression,10–12 as well as copy number

variations (CNVs) and other structural variations (SV) important in cancer progres-

sion or chemoresistance.13–18 Large-scale sequencing studies have defined clini-

cally relevant cancer subtypes in a variety of oncology studies, such as for

pancreatic cancer,19 ovarian cancer,20 breast cancer,21 and hematopoietic

malignancy.22 Furthermore, by sequencing a single cancer patient at multiple time

points, it is possible to study clonal evolution and tumor heterogeneity in relation to

cancer etiology,23 metastatic potential,24 and drug resistance.25

Genomic aberrations in cancer are either germline or somatic mutations that can be

detected in blood, other normal tissue, or malignant tissue from an affected patient.

Among germline variants, those classified as pathogenic or likely pathogenic are
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associated with high-penetrance susceptibility to cancer.26–28

Among somatic (ie, acquired) variants found in a tumor but

not in corresponding normal tissue, many are thought to be

“passenger” mutations that have no functional effect but are

the consequence of the genomic instability that characterizes

cancer cells. Some somatic mutations are driver mutations

that are actively involved in the evolution or progression of a

tumor. A subset of these driver mutations are actionable

genetic alterations that are sensitive to targeted therapies

and have significant clinical implications in cancer treatment.

By allowing for the discovery of pathogenic germline

variants, driver mutations, and other variants influencing,

for example, drug metabolism, NGS studies in cancer have

revealed numerous novel insights with significant clinical

implications for cancer prevention, prognosis, and treatment.

These discoveries, however, open new questions regarding

the relationship between genetics, tumor biology, and clinical

outcomes. Does an actionable mutation in one tumor type,

for example, imply that the same mutation is actionable in

another tumor type? To answer questions of this sort, it is

necessary to integrate genomic data with clinical and family

history data and follow individual patients longitudinally.

Prior to new initiatives in precision medicine led by the

United States government in 2015,29 integration of genomic

medicine programs with electronic health records (EHR) was

done largely through independent efforts. Currently, some

research-oriented health care systems are collaborating on a

large scale to develop revolutionary clinical precision medi-

cine practices. In this review, we highlight the lessons

learned, the challenges of running these programs, and future

directions where precision oncology may lead.

Current precision oncology programs
Overall goals
Population genomics studies (Figure 1A) aim to identify

germline or somatic genetic variants that confer an increased

risk of disease or other phenotypes, such as an improved

response to therapy.10,11 However, while the results of these

studies may achieve statistical significance, they often do not

translate clinically, as the effect sizes of associated variants

are either small or limited to specific patient subsets which

are rarely readily discernable because of incomplete or miss-

ing clinical data. To move population genomics towards

precision oncology, three additional components are required

(Figure 1B). The first is a biobank comprised both identified

germline and multiple fresh-frozen tumor samples (ie, pre-

treatment diagnostic samples, relapse samples, and meta-

static samples) from as many patients as possible and across

many ethnicities. The second is a comprehensive clinical

data warehouse linking all samples to patients and including

family history and longitudinal clinical data abstracted from

the EHR, obtained in a standardized manner and using har-

monized language. The final component is the capacity to
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Figure 1 From population genomics to precision medicine. (A) Current population genomics strategies. (B) Essential components for the translation of population

genomics to precision oncology.
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return results to patients and their caregivers, in order to

facilitate the use of targeted or other molecular therapies,

clinical trials, and other follow-up studies. Importantly, an

informatics infrastructure is necessary to ensure high-quality

precision data.

Many hospitals and research institutes have indepen-

dent programs integrating population genetics into preci-

sion medicine. While these programs have reported similar

results, there has been a large amount of redundant work,

potentially resulting in suboptimal use of funding

resources, clinician efforts, and patient participation.30

The availability and application of NGS technologies in

clinical care have prompted the development of common

standards such as the American College of Medical

Genetics and Genomics (ACMG) and Association for

Molecular Pathology (AMP) guidelines31 for reporting

clinically actionable variants, and have led to the genera-

tion of massive datasets. Furthermore, NGS technologies

have led to the development of novel algorithms and tools

facilitating data mining and interpretation through inter-

disciplinary collaborations among clinicians, molecular

pathologists, computational biologists, medical geneticists,

bioinformaticians, statisticians, and laboratory technicians,

producing a precision medicine ecosystem.32

Strategies and study designs
We have listed many of the current large-scale precision

oncology projects in Figure 2. Investigational strategies con-

sist largely of two study designs: 1) a disease-agnostic

approach in which the participants are mostly healthy,33 not

ascertained for a specific status,34 and broadly recruited from

primary care and specialty clinics9 and 2) a disease-focused

approach where patients are recruited with a specific disease

in mind at the outset. Examples of disease-focused studies in

pediatric oncology include BASIC3,35 GREAT KIDS,36

INFORM,37 iCat,38,39 Peds-MiOncoSeq,40 and PIPseq.41 In

adult oncology, studies (eg, SHIVA42) seek to identify targets

for molecular therapies in patients with advanced cancer.

Treatment studies such as these generally have one of the

two designs. A basket trial recruits participants who share the

same genetic mutation across multiple cancer types, whereas

an umbrella trial recruits patients with a single type of cancer

and assigns them to different arms based upon specific muta-

tions for which therapies are being tested.42

Each investigational strategy has pros and cons. Disease-

agnostic studies require a larger sample size than do disease-

focused studies, because the prevalence of any given cancer

in the general population is generally quite low.

Consequently, disease-agnostic studies generally require sig-

nificantly more resources. Disease-agnostic approaches

allow researchers to explore a different set of questions

compared to disease-focused studies. While it can be easier

to access and share information within a single-center study,

a multi-center study can typically access a broader patient

population and a larger pool of resources.

Beyond disease-agnostic and disease-focused studies,

many research programs aim to identify disease risks and

other personal health information through pre-symptomatic

Figure 2 Precision medicine programs stratified by study design and organization scale. This figure includes the 14 programs from USA, Europe, and Asia cited in this review.
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genomic screening (eg, The PeopleSeq Consortium).43

Instead of enrolling patients diagnosed with or suspected of

having specific diseases, this consortium initiated a predis-

positional personal genome sequencing program to sequence

the genomes of ostensibly healthy participants who can

directly access their genomic data for sequencing-derived

genetic findings.

Patients, samples, and clinical data
The implementation of a precision oncology program starts

with efficient patient enrollment. This includes patient selec-

tion, informed consent, centralized sample collection (a bio-

bank), and a computerized laboratory information

management system (LIMS) for tracking these components.

Integrating patient enrollment, family history, and clinical

information into a patient-centric data warehouse is an essen-

tial requirement for precision medicine, but is only feasible

within organized health systems (Figure 2), eg, the GREAT

KIDS program at The University of Chicago,36 BASIC3

clinical study at Baylor College of Medicine,44 and MyCode

community health initiative at the Geisinger Health System.45

After enrollment, a unique and secure identification num-

ber is assigned to each patient,36 which is then associated

with EHR information and clinical specimens that are col-

lected in either an identified or de-identified manner, depend-

ing upon the study consenting process and participant

preference. However, even within a single health system, a

patient’s EHR is typically fragmented and distributed in

different clinical and research departments with specialized

information systems, such as LIMS, radiology imaging (pic-

ture archiving and communication systems, PACS) and phar-

macy (prescription systems).46 With the commitment of

decision-makers in a cancer center, data exchange and inte-

gration are facilitated by common standards (Health Level

Seven) and tools of ETL (Extract, Transform, Load).46 The

Electronic Medical Records and Genomics (eMERGE) net-

work was recently organized to facilitate linking EHR phe-

notype data to biobanked samples and genotype information

across multiple health systems.47 In pharmacogenetic studies

to investigate drug efficacy and safety, the eMERGE strategy

has been shown to be more cost-effective than traditional

single-institution study designs.48

As coupling EHR systems with biobank data for dis-

covery in genome science has become increasingly pre-

valent, a major challenge has emerged in how to define

clinical human traits or symptoms in EHR systems. The

ICD codes, currently in their tenth iteration, were devel-

oped and are maintained by the WHO for universal

diagnosis and procedure documentation in the EHR.

Human Phenotype Ontology classifications allow standar-

dization of phenotypic trait nomenclature. The adoption of

standards in coding and documenting traits and the har-

monization of these terms across EHRs and data ware-

houses have facilitated phenome-wide association studies,

where many phenotypes can be compared to a single

genetic variant.49–51 Using this method, the DiscovEHR

study9 of the Geisinger MyCode community45 success-

fully identified novel rare protective variants in PCSK9

that reduce the risk of cardiovascular disease by decreas-

ing levels of low-density lipoprotein cholesterol (LDL-C),

and developed a drug to lower LDL-C in the healthy

population.52

Return of information
Patient follow-up, whereby personalized genomic results

are returned, is an essential component of a precision

medicine clinical program or trial, and has already been

implemented in the MyCode community,45 BASIC3

study,44 and the GREAT KIDS program.36

For the return of results to patients, in general, research

sequencing results must be confirmed in a CLIA-certified

laboratory.53 Furthermore, before genomic data can be

returned, it must be subjected to expert review by a multi-

disciplinarymedical board, which often includes oncologists,

molecular pathologists, genetic counselors, laboratory tech-

nicians, and biostatisticians. Generally, germline and somatic

results are returned separately, because they generally have

different implications (risk and therapy, respectively).

However, it is increasingly clear that germline variants can

have therapeutic implications, such as in the burgeoning field

of pharmacogenomics, or in BRCA status and the use of poly

ADP ribose polymerase (PARP) inhibitors.54

A germline report returns one of the five pathogenicity

annotations for genomic variants (pathogenic, likely patho-

genic, unknown significance, likely benign, or benign).35,45

In 2013, the ACMG issued recommendations for the standar-

dized reporting of actionable germline information, by releas-

ing a list of 56 genes that harbor known pathogenic and/or

likely pathogenic variants leading to severe diseases. This list

is regularly updated as more genomic information is gathered;

currently, there are 59 reportable genes (ACMG SF v2.0).55

The ACMG recommendations are only guidelines, however,

as some studies (such as the DiscovEHR study) report the

Geisinger-76 genes, which significantly overlap the ACMG

list.9 Based on a joint consensus recommendation from the

ACMG and the AMP, these standards and guidelines31 have
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been established for use by genetic review boards and genomic

annotation tools, such as InterVar56 and CharGer,28 used to

properly classify germline variants into the aforementioned

five categories.

A somatic report returns clinically actionable acquired

variants. Currently, these are mostly identified through the

panel sequencing of a predefined gene list, and are typically

performed on samples obtained at diagnosis. These genetic

alterations can be annotated with four tiers of actionability

(as in the GREAT KIDS program64 and BASIC3 study62) or

five tiers of actionability (as in the iCat study59,73) based on

evidence of their clinical utility, which assists physicians

with proper decision-making in patient care. Researchers

are working to harmonize and establish standards and knowl-

edge databases with respect to clinical actionability of mole-

cular targets, and to leverage that information to facilitate the

implementation of precision medicine in the clinical manage-

ment of cancer patients.57–59 For example, the ESMO Scale

of Clinical Actionability for molecular Targets (ESCAT)57

project defines six tiers of clinical evidence and ranks geno-

mic alterations as molecular targets for FDA-approved or

investigational drugs. Recently, these knowledge databases

and rules of evidence for clinical interpretation have been

integrated and coordinated to annotate cancer variants using

an ontology-based modeling framework.60 One limitation of

most current approaches is that most sequenced tumor sam-

ples are obtained as part of the initial diagnostic evaluation of

a patient (for solid tumor patients, this is typically the only

time point at which a sample is obtained), but the data

obtained are used to guide therapeutic decision-making for

relapsed, refractory, or metastatic tumors in patients who no

longer respond to conventional therapies. This lack of re-

sequencing may result in the targeting of mutations common

in drug-sensitive clones that have been eradicated in relapsed

or in metastatic tumors, or conversely, the masking of muta-

tions found in the drug-resistant clones that may have com-

prised only a minor subpopulation within the pre-treatment

tumor. Alternatively, the mutations acquired during solid

tumor progression and drug therapy can be detected as bio-

markers for patient prognosis using liquid biopsies, with the

caveat that the noisy background that impacts data quality

and utility must be defined in prospective clinical trials.61,62

Challenges to clinical implementation
Data challenges
Clinically favorable responses to therapies targeting action-

able mutations are limited due to a dearth of FDA-approved

companion therapies, ambiguous scientific contexts, and

imperfect treatment algorithms.63

One of the first targeted therapies was an anti-EGFR

monoclonal antibody for metastatic colorectal cancer

(mCRC). About 75% of mCRC patients overexpress EGFR

within their tumors, suggesting that targeted inhibition of

EGFR may improve outcomes. However, initial response

rates to anti-EGFR monotherapy in heavily pretreated

mCRC patients were only 10%.64 A subsequent study demon-

strated a minor improvement in response rates (cetuximab

with supportive care versus supportive care alone) of patients

bearing wild type KRAS, a gene downstream of EGFR.65

However, most mCRC patients carrying wild type KRAS in

their tumors did not respond to anti-EGFR therapy. Other

studies showed that mutations in other genes downstream of

EGFR (BRAF, NRAS, and PIK3CA) are also significantly

associated with a low response rate in patients with KRAS

wild type tumors.66 Thus, these findings show that EGFR

status alone is insufficient to assess the likelihood that a patient

will benefit from anti-EGFR therapy, but rather that a broader

pathway-based genomic profile is required to identify those

mCRC patients most likely to respond. Besides mutations at

EGFR and KRAS as therapeutic targets in mCRC or lung

cancer, the anti-HER2 antibody trastuzumab, and adjuvant

chemotherapy, are beneficial in cases of HER2 overexpression

detected by immunohistochemistry and in situ hybridization,

as well as amplified ERBB2 (HER2) copy number character-

ized by DNA/RNA-seq67 in breast cancer patients. A famous

example of a SVas a molecular target is in genomic rearrange-

ment at anaplastic lymphoma kinase (ALK)68 or receptor

tyrosine kinase (ROS1)69 through gene fusion. Targeted ther-

apy led to constitutive activation of tumor growth pathways in

a subgroup of non-small cell lung cancer (NSCLC) patients

responsive to crizotinib or ceritinib therapy. A variety of

genomic variants in the relevant genes within a pathway may

reveal potential matched therapies or new indications for

existing approved drugs.

This finding inspired further clinical trials to determine

whether pathway-based molecular profiling (MP)-guided

therapy can be beneficial to advanced or refractory cancer

patients.70–73 Von Hoff et al conducted a pilot study which

showed that 27% of patients treated with MP-based tar-

geted therapies exhibited longer progression-free survival

than did patients treated similarly without initial MP.70 The

BATTLE Phase II clinical trial extended this observation

by trying to match targeted therapies based on biomarkers

from needle biopsies with positive results for sorafenib

treatment in NSCLC patients harboring KRAS mutations.71
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These pioneer projects demonstrated the potential feasibil-

ity and predictive utility of MP for targeted therapy.

Tourneau et al further investigated off-label use of mole-

cularly targeted therapy based on tumor MP in comparison

with conventional therapy for advanced cancer, by per-

forming a feasibility trial in the SHIVA cohort randomized

Phase II clinical trial.72,74 However, MP-guided targeted

therapy did not significantly improve progression-free sur-

vival, and more grades 3–4 adverse events were reported

in patients receiving targeted therapy than in the control

group.72 Reviewing these MP clinical trials indicates that

existing treatment algorithms for selecting molecularly

targeted agents might be inadequate.30,63,75

Clonal diversity and biological challenges
Because of current technical limitations, only the genetics of

the dominant clones within a tumor can be assessed using MP.

Tumor heterogeneity and clonal diversity within cancers has

been shown across sample types obtained from a single indi-

vidual, including blood25,76–78 and tumor biopsy,23,79 and in

primary tumors andmetastases.24,80,81Mutational shifts during

treatment and in metastasis can select for minor clones and

thereby reduce the efficacy of treatments chosen solely using

the profile of the original tumor. NGS has been shown to

reliably detect driver mutations of clones/subclones of differ-

ing variant allele frequencies (VAF) with high depth and

coverage,25,82 although very deep sequencing may introduce

artifacts that are difficult to distinguish from minor subclones.

Introduction of artifacts inNGS can be avoided by using newer

methods that implement unique molecular identifiers.83,84

Clonal heterogeneity within tumors is a roadblock to

precision oncology, as treating the dominant clone could

potentially spur the growth of a resistant subclone. Griffith

et al tracked tumor evolution and refined the clonal architec-

ture of acute myeloid leukemia over approximately 500 days

within a single patient (treated with an induction chemother-

apy and four rounds of consolidation chemotherapy) to

demonstrate that: 1) all clonal populations originated from

clones existing prior to therapy and no new subclones

emerged following treatment and 2) dominant TP53-mutant

clonal populations observed at relapse but difficult to detect

at diagnosis were selected for by chemotherapy, likely

because the TP53 mutations conferred a drug resistance

phenotype and resultant growth advantage.

A similar story emerges in NSCLC, where tumors

become resistant to first-generation EGFR tyrosine kinase

inhibitors (TKIs) gefitinib and erlotinib by acquiring an

EGFR T790M mutation.85 Third-generation EGFR TKIs,

such as rociletinib, were developed to treat patients with

these EGFR T790M resistance mutations.86 However,

rociletinib-resistant biopsies show both wild type and

T790M clones coexisting prior to treatment, suggesting

that clonal heterogeneity can impart resistance.87

Furthermore, tracking and profiling circulating tumor

DNA, using liquid biopsy technology, and incorporating

this data into personalized polygenetic trees reveal early-

stage cancer evolution by showing the contribution of

clonal heterogeneity to adjuvant chemotherapy resistance

and metastasis in high-risk patients.88

These studies imply that overcoming clonal diversity is a

major hurdle to the successful adoption of precision oncology.

Cancer disparities and population

diversity challenges
Cancer disparities are differences in cancer measures—inci-

dence, prevalence, mortality, and others—among specific

populations. The actions of and interactions between nonge-

netic factors (eg, socioeconomic status, culture, diet, stress,

geography, environment) and genetic factors contribute to

cancer phenotypes. Precision oncology programs that do not

account for population heterogeneity are likely to propagate

health disparities by mistakenly ascribing a genetic founda-

tion to outcomes or other clinical measures that actually

result from nongenetic factors. The reference genome was

built from a global reference population where 86% of geno-

mic variants were restricted to a single continental group.89

When performing sequence alignment and variant calling,

population-specific genetic variation may be ignored, result-

ing in a reference genome biased toward the European popu-

lation and against non-European populations.

Despite the critical modifying role of nongenetic fac-

tors in explaining population differences in cancer etiology

and response to therapy, genetic factors also contribute to

disparities. For example, a cohort study using Children’s

Oncology Group outcomes data reported that children of

African ancestry have a higher prevalence of high-risk

neuroblastoma and poorer outcomes than do patients of

European ancestry.90 Later, Gamazon et al demonstrated

that differences in the VAF of a risk variant in SPAG16

between African and European populations contributed

significantly to this observed disparity. Similar findings

have been reported in populations of African ancestry

with prostate cancer.91

Moreover, differences in the genomic architecture of

different populations can be a useful tool for fine-mapping
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studies of disease-associated loci. For example, using data

obtained through the 1000 Genomes Project, it was found

that individuals of African ancestry have smaller haplo-

type blocks and higher genetic heterogeneity than

European and Asian populations at the 11q13 breast can-

cer susceptibility.92 Asimit et al performed a transethnic

fixed-effects meta-analysis on simulated data of varying

ancestral composition, allelic heterogeneity, and minor

allele frequency.93 They concluded that inclusion of

African genomes yields a significant improvement in

fine-mapping resolution. Hungate et al employed a similar

polyethnic strategy to discover a novel locus associated

with pediatric B-lineage ALL and the risk variant defining

the region, which they then functionally analyzed.94

Currently, non-European populations are underrepre-

sented in virtually all population health studies, thereby

limiting our capacity to deconvolute the relative roles of

genetic and nongenetic factors in human health and dis-

ease. This discrepancy remains as one of the most impor-

tant barriers to overcome in the path towards precision

oncology. Only through inclusiveness will it be possible

to learn from and benefit everyone.

Opportunities and future
developments
Translating genetic variants into

actionable therapies
The results of clinical trials to test the feasibility of MP-

guided targeted therapies have frequently been unsatisfac-

tory. The intuitive hypothesis in these trials is that patients

with alterations in genes and pathways that render them

sensitive to targeted therapies should be treatable with

these therapies. However, the lack of success may indicate

that our current knowledge of molecular disease etiologies

and drug mechanisms of action has not kept pace with the

technological advances in genomics.75

Typically, driver mutations are identified in patient sam-

ples by comparing paired germline and somatic samples from

the same patient following review by an expert panel.44

However, manual variant refinement by a tumor board is

labor-intensive and non-reproducible. To scale up and enhance

reproducibility, Ainscough et al developed a deep learning

approach to automate and increase the efficiency of review

processes for refinement of somatic variants.95 Prediction of

therapeutic response from diagnostics and prognostics in

breast cancer is demonstrated by machine learning that com-

bines genomic data including copy number, mutations, and

isoform expression.67 By incorporating tumor heterogeneity,

we propose a bioinformatics framework (Figure 3) to identify

actionable mutations for targeted therapy using genomic pro-

filing. The first part of this framework uses ultra-deep sequen-

cing of tumor tissue to characterize driver mutations/genes

within each tumor subclone (Figure 3A). These driver muta-

tions are annotated and filtered by functional impact (using

ANNOVAR96 or VEP97) and clinical interpretation (using

OncoKB58 or CIViC59). Once mutations have been character-

ized in the tumor subclones, a multi-pronged precision oncol-

ogy approach includes (Figure 3B–D): 1) finding genes that

harbor driver mutation(s) that might be directly druggable or

exclusive to drug targeting by repositioning drugs described in

the literature98; 2) finding genetic defects where inhibition of

another gene would cause death via synthetic lethality, as in

the use of PARP inhibitors in breast cancer patients with

BRCA1/2 mutations54; 3) using mutations as biomarkers to

monitor drug response; 4) identifying residues mutated within

multiple clones, which imply shared etiology99; and 5) model-

ing drug–protein interactions in order to predict potential

mechanisms of resistance (eg, the structural changes in the

EGFR ectodomain in tumors resistant to anti-EGFR therapy in

NSCLC were accurately modeled before crystal structures

were available).100 Notably, these five approaches are not

mutually exclusive and indeed should be utilized in parallel.

Also, therapies that attack targets shared among clones should

be used. Furthermore, this approach should be repeated for

each relapse or metastatic sample in order to identify muta-

tions enriched at relapse or in metastasis, as these mutations

are likely to point towards the drivers of these processes.

One consideration is the cost of ultra-deep sequencing.

To address the need for compromise between cost and

exploration of tumor heterogeneity, we suggest performing

ultra-deep targeted sequencing using a gene panel—a

focused set of target genes derived from tiered annotations

of actionable genetic alterations.36,101 By implementing

these considerations, it may be possible to use genomic

profiles to develop matched therapies with greater efficacy

and safety.

Genomic and clinical data aggregation
The Exome Aggregation Consortium (ExAC) is an alliance

of genomic scientists accumulating and harmonizing WES

data sets from a multitude of sequencing projects.102 With

the addition of WGS data, this association is referred to as

the Genome Aggregation Database (gnomAD) (http://gno

mad.broadinstitute.org/). Data from ExAC have been used

in the discovery of naturally occurring knockout variants in
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human protein-coding genes,102 the characterization of

rates and properties of genetic intolerance to rare CNV,103

and the discovery of individuals with pathogenic variants

implicated in a number of Mendelian disorders.104

Although the goal of ExAC and gnomAD is to make refer-

ence data sets of diverse populations available for study by

the wider scientific community, this is largely limited to

genomics data. To facilitate collaborations and consortia to

catalyze precision oncology, clinical information (EHR and

disease phenotype) with long-term follow up is required in

addition to genomic data. This will allow for the identifica-

tion of genotype-phenotype associations. The technical bar-

riers to the sharing of clinical information include a disuse

of common standardized disease terms, definitions, and

ontologies across health care systems and EHRs.

Consequently, it is often unclear if a term used by one

provider in reference to one patient has the same meaning

when used by a second provider in reference to a second

patient. Moreover, it is often impossible to discern whether

unrecorded clinical data are negative or simply missing.105

To promote sharing of high-quality and standardized geno-

mic and clinical data, the Global Alliance for Genomics and

Health—an international coalition of over 470 stakeholder

organizations from more than 60 countries (http://genomic

sandhealth.org/)—was founded to develop interoperable

solutions. Instead of building centralized repositories, the

Global Alliance suggests that shared data could be stored by

their originating institutions and assessed and analyzed by

members of the global research community through secure

cloud-embedded network solutions.105 Besides integrating

clinical information with genomic data across each health

system, this international alliance points towards a path for

publicly accessible clinical and genomic data resources.

Concluding thoughts
The goal of precision oncology is to use genetics to guide

cancer prevention and treatment, in order to maximize

positive outcomes and minimize adverse events. Many
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Figure 3 Translating pathogenic variants into matched molecularly targeted therapy. (A) Upon ultra-deep sequencing data, driver mutations/genes can be discovered by

modeling tumor evolution, and further annotated by tools and databases. (B) Literature-based drug repurposing98 is used to target the driver genes by integrating drug and

compound bioassays (PubChem: https://pubchem.ncbi.nlm.nih.gov/) and function genomics (NCI-60: https://dtp.cancer.gov/discovery_development/nci-60/, and CCLE:

https://portals.broadinstitute.org/ccle) databases. (C) Synthetic lethality is a novel anticancer strategy to increase the specificity of a drug target in cancer cells harboring

actionable mutations while decreasing off-target effects on normal tissues (eg, inhibiting PARP in breast cancer with BRCA1/2 mutations).54 (D) Structural modeling is used to

evaluate whether drug–target interactions are directly mediated by actionable mutation(s) or other mutated residue(s).
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lessons, both expected and unexpected, have emerged

from the early forays into large-scale precision oncology

programs. Here, we have discussed some of the major

findings and barriers to success resulting from these mas-

sive efforts. We avoided including topics such as

pharmacogenomics,106 immuno-oncology,107 and

epigenomics108 in this review, as each necessitates a sepa-

rate review article.

The first generation of precision oncology programs

has demonstrated significant benefits to patients, showing

that >30% of cancer patients have at least one actionable

variant,109 and the use of WGS or WES data can influence

management for >50% of patients.9,35,37,39–41 By further

using circulating tumor DNA sequencing (as in the

TARGET study),110 drug combination for targeting multi-

ple actionable variants (as in the I-PREDICT study),111 or

tumor microenvironment with RNA sequencing (as in the

WINTHER trial),112 three recent innovative precision

oncology studies demonstrate not only high rates of

actionability (41%, 49%, and 52%, respectively) but also

relatively high efficacy of identifying matched therapies

(4%, 11%, and 4%, respectively).113

Despite the evidence of success of precision oncology

as outlined in this article, significant barriers remain before

precision oncology can become a standard of care.

Paramount among these obstacles are the significant cost

and infrastructure requirements of genomics, and the

urgent need for inclusivity to overcome biases and limita-

tions inherent in studies comprised largely individuals of

European ancestry. Furthermore, even after clinical and

genomic data have been collected, there remain the diffi-

culties of data standardization and harmonization.

Despite these challenges, there is considerable cause

for optimism. The costs of NGS technologies and assays

continue to decline, and clinicians and scientists continu-

ally form consortia which use common terminology in the

prospective collection of clinical data. Moreover, there is

increasing recognition of the importance of inclusivity in

studies to overcome disparities in cancer treatment. This is

an exciting time in the development of precision oncology,

as new technologies make it possible to explore the geno-

mic landscape of cancer at a resolution and scale unim-

aginable just a few years ago. The challenge is to translate

these discoveries into clinical practice.
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