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Purpose: This study aimed to investigate the potential prognostic impact of nuclear factor

erythroid 2-related factor 2 (NRF2) and progesterone receptor A (PRA)/progesterone recep-

tor B (PRB) in ovarian cancer patients which might be the rationale for putative new

treatment strategies.

Patients and methods: The presence of NRF2 and PRA/PRB was investigated in 156

ovarian cancer samples using immunohistochemistry (IHC). Staining of NRF2 and PRA/

PRB was rated using the semi-quantitative immunoreactive score (IR score, Remmele’s

score) and correlated to clinical and pathological data. NRF2 and PRA/PRB expression

were compared with respect to the overall survival (OS).

Results: NRF2 staining was different in both, the cytoplasm and nucleus between the

histological subtypes (p=0.001 and p=0.02, respectively). There was a significant difference

in the PRA expression comparing all histological subtypes (p=0.02). Histological subtypes

showed no significant differences in the PRB expression. A strong correlation of cytoplasmic

NRF2 and PRA expression was detected (cc=0.247, p=0.003) as well as of cytoplasmic

NRF2 and PRB expression (cc=0.25, p=0.003), confirmed by immunofluorescence double

staining. Cytoplasmic NRF2 expression was associated with a longer OS (median 50.6 vs

32.5 months; p=0.1) as it was seen for PRA expression (median 63.4 vs 33.1 months;

p=0.08), although not statistically significant. In addition, high PRB expression (median

80.4 vs 32.5 months; p=0.04) and concurrent expression of cytoplasmic NRF2 and PRAwere

associated with a significantly longer OS (median 109.7 vs 30.6 months; p=0.02). The same

relationship was also noted for NRF2 and PRB with improved OS for patients expressing

both cytoplasmic NRF2 and PRB (median 153.5 vs 30.6 months; p=0.009). Silencing of

NFE2L2 induced higher mRNA expression of PGR in the cancer cell line OVCAR3 (p>0.05)

confirming genetic interactions of NRF2 and PR.

Conclusion: In this study, the combination of cytoplasmic NRF2 and high PRA/PRB

expression was demonstrated to be associated with improved overall survival in ovarian

cancer patients. Further understanding of interactions within the NRF2/AKR1C1/PR path-

way could open new additional therapeutic approaches.

Keywords: nuclear factor erythroid 2-related factor 2, progesterone receptor, ovarian cancer,

immunohistochemistry

Introduction
Ovarian cancer is one of the five most frequent cancer deaths among women with a

five-year survival rate of less than 45%.1,2 The non-specific symptoms combined with

an insufficient screening method often lead to a diagnosis in advanced tumor stage with

a consecutively impaired prognosis. Recommended therapeutic approaches include

primary cytoreductive surgery and platinum-based chemotherapy with anti-angiogenic
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agents or PARP inhibitors. Most reliable prognostic markers

include volume of residual disease after initial debulking

surgery, the International Federation of Gynecology and

Obstetrics (FIGO) stage, ascites volume, patient age, and

histological subtype.3–6 Epithelial ovarian carcinomas

(EOC) are classified as serous, mucinous, endometrioid,

and clear-cell histology, being distinguished in terms of

phenotype, molecular background, and etiology.7 Research

to identify new molecular prognostic markers needs to take

this heterogeneity of ovarian cancer into account. A better

understanding of the differences between ovarian cancer

subtypes appears crucial to enable new diagnostic and ther-

apeutic approaches.

Current investigations attribute an important impact for the

development of ovarian cancer to oxidative stress.8 The

nuclear factor erythroid-2-related factor 2 (NRF2) is a well-

known regulator of antioxidant and cytoprotective genes med-

iating cellular coping of oxidative stress. Whereas NRF2 is

ubiquitously expressed at low levels in all human organs, tight

regulation of this major cellular defense mechanism is crucial

to maintain cellular homeostasis. Different cancer entities and

cell lines exhibit high constitutive levels of NRF2.9–13 Our

research group recently demonstrated that cytoplasmic NRF2

expression in its inactive cytoplasmic form is associated

with improved survival in ovarian cancer patients.14

Overexpression of NRF2 might protect cancer cells from the

cytotoxic effects of anticancer therapies, resulting in resistance

to chemo- and radiotherapy.15,16

Progesterone inhibits cell growth andmetastasis in ovarian

cancer cells and is considered as an established protective

factor for the development of ovarian cancer as part of com-

bined oral contraceptives.17–20 The detailed molecular back-

ground of this mechanism has not yet been fully understood.

The progesterone receptor (PR), a member of the steroid

hormone receptor superfamily, is expressed in two isoforms,

the PRA and PRB differing in their molecular weight. Studies

show an up to date functional unknown dominant expression

of PRB in ovarian carcinomas.21–23 Progesterone receptor

expression has been described to be associated with improved

overall (OS) and progression-free survival (PFS) due to its

putative anti-proliferative effect.24–27 To our knowledge, inter-

actions between NRF2 and PR are not well understood so far,

but warrant further investigation based on the results of our

present data.

This study aimed to investigate the potential prognos-

tic impact of NRF2 and PR in ovarian cancer patients

which might be the rationale for putative new treatment

strategies.

Materials and methods
Patients and specimens
Tissue samples of 156 patients who underwent surgery for

EOC at the Department of Obstetrics and Gynecology,

Ludwig-Maximillian’s-University Munich from 1990 to

2002, were analyzed in this study. Clinical data were

obtained from the patient’s charts and follow-up data

from the Munich Cancer Registry. All samples had been

formalin-fixated and paraffin-embedded (FFPE). Patients

with benign or borderline tumors were excluded and no

patients had neoadjuvant chemotherapy. Specialized

pathologists for EOC examined and classified the samples

for tumor grading: low (n=38), high (n=117), and histolo-

gical subtypes: serous (n=110), endometrioid (n=21), clear

cell (n=12), mucinous (n=13). Staging was performed

using TNM and FIGO (WHO) classification: I (n=35), II

(n=10,) III (n=103), IV (n=3). Data on primary tumor

extension were available in 155 cases: T1 (n=40), T2

(n=18), T3 (n=93), T4 (n=4) as well as data on lymph

node involvement in 95 cases N0 (n=43), N1 (n=52). Data

on distant metastasis were available in nine cases M0

(n=3), M1 (n=6).

Ethical approval
This study was approved by the Ethics Committee of the

Ludwig-Maximilians-University, Munich, Germany

(approval number 227-09). All tissue samples used for

this study were obtained from material from the archives

of the Department of Obstetrics and Gynecology,

University Hospital, LMU Munich, Munich, Germany,

initially used for pathological diagnostics. The diagnostic

procedures were completed before the current study was

performed. All patients´ data were fully anonymized, and

the study was performed according to the standards set in

the Declaration of Helsinki 1975. The ethics committee

approved this consent process. During the analysis, the

observers were fully blinded for patients’ data.

Immunohistochemistry
Immunohistochemistry was performed as previously

described by our lab.28 For NRF2 staining, paraffin-

embedded and formalin-fixed EOC samples were incubated

with Anti-NRF2 (Abcam, Cambridge, UK, rabbit, monoclo-

nal, clone EP1808) at a final concentration of 5.93 µg/mL

(1:100 dilution) for 1 hr at room temperature. Afterward,

slides were incubated with isotype-matching MACH 3

Rabbit AP Polymer Detection (Biocare Medical, Pacheco,
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CA, USA, catalog-number M3R533). The Permanent AP

Red Kit (Zytomed Systems GmbH, Berlin, Germany, cata-

log-number ZUC-001) was used as chromogen. Slides were

then counterstained with Gill´s hematoxylin (Vector

Laboratories, Burlingame, CA, USA). System controls

were included.

For the detection of PR, paraffin-fixed tissue sections

were dewaxed with xylol for 15 mins, then dehydrated in

ascending concentrations of alcohol (70–100%). Afterward,

they were exposed for epitope retrieval for 10 mins in a

pressure cooker using sodium citrate buffer (pH 6.0) con-

taining 0.1 M citric acid and 0.1 M sodium citrate in

distilled water. After cooling, slides were washed in PBS

twice. Endogenous peroxidase activity was quenched by

dipping in 3% hydrogen peroxide (Merck, Darmstadt,

Germany) in methanol for 20 mins. Non-specific binding

of the primary antibodies was blocked by incubating the

sections with “diluted normal serum” (10 mL PBS contain-

ing 150 μL horse serum; Vector Laboratories, CA) for

20 mins at room temperature. Then, slides were incubated

with the primary antibodies (PRA: 1:250 dilutions, Sigma-

Aldrich, St. Louis, MO, USA, rabbit, polyclonal, clone

R04125; PRB: 1:50 dilutions, Novocastra Reagents,

Wetzlar, Germany, mouse, monoclonal, clone SAN27) at

room temperature for 60 mins. After washing with PBS,

slides were incubated in diluted biotinylated anti-serum

secondary antibody (10 mL PBS containing 50 μl horse
serum, Vector Laboratories, CA) for 30 mins at room tem-

perature. After incubation with the avidin-biotin-peroxidase

complex (diluted in 10 mL PBS, Vector Laboratories, CA)

for 30 mins and repeated PBS washing, visualization was

conducted using substrate and chromagen 3,3ʹ-diaminoben-

zidine (DAB; Dako, Glostrup, Denmark, catalog-number

K3468) for 8–10 mins. Slides were then counterstained

with Mayer’s acidic hematoxylin (Waldeck-Chroma,

Münster, Germany, catalog-number 2E-038) and dehydrated

in an ascending series of alcohol followed by xylol. System

controls were included.

Staining evaluation
All EOC specimens were examined with a Leitz (Wetzlar,

Germany) photomicroscope and specific NRF2 and PR

immunohistochemically staining reaction was observed in

the nuclei and cytoplasm of the cells. The intensity and

distribution pattern of NRF2 and PR staining were rated

using the semi-quantitative immunoreactive score

(IR score, Remmele’s score). To obtain the IR score result,

the optional staining intensity (0=no, 1=weak, 2=moderate,

and 3=strong staining) and the percentage of positive-stained

cells (0=no staining, 1=<10% of the cells, 2=11–50% of the

cells, 3=51–80% of the cells, and 4≤81%) were multiplied.

NRF2 staining was successfully performed in 145 (93%) of

156 EOC tissue specimens. Cut-off points for the IR scores

were selected for the cytoplasmic and nuclear NRF2 staining

considering the distribution pattern of IR scores in the col-

lective. Nuclear and cytoplasmic NRF2 staining were

regarded as negative with an IR score 0–2, as low with IRS

4–8, and as high with IRS >8. PRA and PRB stainings were

successfully performed in all 156 (100%) EOC specimens.

Cellular PRA and PRB stainings were considered as negative

with an IR score 0 and as positive with IRS >0.

Immunofluorescence staining
Mouse anti-NRF2 IgGs were diluted at 1:200 with a diluting

medium (Dako, Hamburg, Germany), while rabbit anti-PRB

polyclonal IgGs were diluted at 1:200. After washing, slides

were incubated with Cy2-/Cy3-labeled antibodies (Dianova,

Hamburg, Germany) as fluorescent secondary antibodies for

30mins at room temperature in darkness to avoid fluores-

cence quenching. Cy2-labeled secondary antibodies were

used at a dilution of 1:100 and Cy3-labeled antibodies at a

dilution of 1:500. Finally, the slides were embedded in

mounting buffer containing 4′,6-diamino-2-phenylindole

(DAPI, Vectastain, Vector Laboratories) for blue staining of

the nucleus after washing and drying. Confocal laser scan-

ning microscope images were acquired with Zeiss LSM 880

with Airyscan model for high-resolution visualization and

analyzed with ZEN blue software.

Cell line
The human serous ovarian cancer cell line OVCAR3 was

purchased from the American Type Culture Collection

(ATCC, Rockville, MD, USA). Cells were maintained in

culture in RPMI 1640 medium (ThermoFisher Scientific,

Waltham, MA, USA) supplemented with 10% FBS in a

humified incubator at 37°C under 5% CO2.

PCR
RNA isolation was performed using the RNeasy Mini Kit

(Qiagen, Venlo, Netherlands) and 1 µg RNA was con-

verted into first-strand cDNA using the MMLV Reverse

Transcriptase 1st-Strand cDNA Synthesis Kit (Epicentre,

Madison, WI, USA) according to the instructions of the

manufacturer. The basal mRNA expressions of NFE2L2

and PGR were quantified by qPCR applying FastStart

Essential DNA Probes Master and gene-specific primers
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(Roche, Basel, Switzerland). For normalization of expres-

sions the housekeeping genes β-Actin and GAPDH were

used as reference controls.

si-RNA
The specific siRNA for NFE2L2 (Silencer Select Pre-

designed and Custom Designed siRNA, Ambion, Carlsbad,

CA, USA) was kindly provided by Beate Niesler

(Department of Human Molecular Genetics, University of

Heidelberg). Cells were transfected with siRNA using

Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad,

CA, USA) to silence the expression of NFE2L2 in the cell

line. RNA Isolation and mRNA quantification by qPCR was

repeated as outlined earlier. mRNA expression levels of

NFE2L2 and PGR in NFE2L2 downregulated cells were

compared with NFE2L2 containing cells.

Statistical analysis
Statistical analysis was performed using SPSS 25.0 (v25,

IBM, Armonk, New York). Distribution of clinical patholo-

gical variables was evaluated with the Chi-Square test.

Mann–Whitney U test was used to compare IR scores of

NRF2/PR between different clinical and pathological sub-

groups. Correlations between findings of immunohisto-

chemically staining were calculated using Spearman’s

analysis. Survival times were analyzed by Kaplan–Meier

(log-rank) estimates. To identify an appropriate cut-off, the

ROC curve was drawnwhich is considered as one of themost

reliable methods for cut-off point selection. In this context,

the ROC curve is a plot representing sensitivity on the y-axis

and (1-specificity) on the x-axis.29 Consecutively, Youden

index, defined as the maximum (sensitivity+specificity-1),30

was used to find the optimal cut-off maximizing the sum of

sensitivity and specificity.31,32 For multivariate analyses, a

Cox-regression model was applied, with P-values less than

0.05 considered to be significant. Ct values of each gene were

obtained with qPCR and the relative expressions were calcu-

lated using the 2−ΔΔCt formula. Statistical data were acquired

using Graph Pad Prism 7.03 (v7, La Jolla, California).

Results
NRF2/PR expression correlates with

clinical and pathological data
Clinicopathologic characteristics of the analyzed ovarian

cancer patients are listed in Table 1. Nuclear staining of

NRF2 was observed in 144 of 145 evaluable cases (99%),

and cytoplasmic staining of NRF2 was observed in 139

(96%) of these 145 cases. Median (range) immunoreactiv-

ity scores (IRS) for NRF2 in nuclei and cytoplasm were 8

(2,12) and 8 (4,12), respectively.

NRF2 staining in both cytoplasm and nucleus was

different between the histological subtypes (p=0.001 and

p=0.02, respectively) with low nuclear NRF2 expression

in serous, clear-cell, and endometrioid histology and high

expression in mucinous subtype. In comparison, strongest

and weakest cytoplasmic NRF2 staining were found in the

serous and clear-cell subtypes, respectively. Cytoplasmic

NRF2 expression was significantly higher expressed in

patients with low-grade histology (p=0.03) and low

nuclear NRF2 expression was associated with age

(p=0.045).

All 156 cases could be successfully stained for PRA

(100%) and PRA expression could be detected in 63 of

156 (40%) specimens with a median (range) IRS of 0

(0,12) and mean (range) IRS of 2 (0,12) (Figure 1).

There was a significant difference in the PRA expres-

sion comparing all histological subtypes (p=0.02) with

the highest expression in the serous subtype. All other

Table 1 Clinicopathologic characteristics of the ovarian cancer

patients

Clinicopathologic parameters N Percentage

Histology

Serous 110 70.5%

Clear cell 12 7.7%

Endometrioid 21 13.5%

Mucinous 13 8.3%

Lymph node

pN0/X 104 66.7%

pN1 52 33.3%

Distant metastasis

pM0/X 150 96.2%

pM1 6 3.8%

Grading

Low 38 25.0%

High 117 75.0%

FIGO

I 35 22.4%

II 10 6.4%

III 103 66.0%

IV 3 1.9%

Age

≤60 years 83 53.2%

>60 years 73 46.8%
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parameters like grading, FIGO, lymph node involve-

ment (pN), and distant metastasis (pM) showed no

significant differences in the PRA expression. Of

note, a strong correlation of cytoplasmic NRF2 and

PRA expression was detected (cc=0.247, p=0.003,

Table 2 and Figures 1 and 3).

PRB staining was successfully performed in all 156

cases (100%) and PRB expression was observed in 63 of

156 (40%) specimens with a median (range) IRS of 0

(0,12) and mean (range) IRS of 2 (0,12) (Figure 1).

Parameters like histological subtypes, grading, FIGO,

lymph node involvement (pN), and distant metastasis

(pM) showed no significant differences in the PRB

expression. Again, NRF2 cytoplasmic expression was

correlated with PRB expression (cc=0.25, p=0.003,

Table 2 and Figures 1–3).

Figure 1 Detection of NRF2 and PRA/PRB with immunohistochemistry.

Notes:High cytoplasmicNRF2 staining (A) correspondswith high PRA (B) and high PRB
(C) staining found in specimens from the same individual. NRF2 cytoplasmic expression

correlated with PRA (cc=0.247, p=0.003) and PRB expression (cc=0.25, p=0.003).
Abbreviations: cc, correlation coefficient, p = two-tailed significance.

Table 2 Correlation analysis

Staining NRF2 cytoplasm PRA PRB

NRF2 cytoplasm

cc 1.000 0.247 0.25

p . 0.003 0.003

n 146 142 144

PRA

cc 0.247 1.000 0.622

p 0.003 . 0.0001

n 142 152 152

PRB

cc 0.25 0.622 1.000

p 0.003 0.0001 .

n 144 152 154

Notes: IR-scores of NRF2 and PRA/PRB staining were correlated to each other

using Spearman’s correlation analysis.

Abbreviations: cc, correlation coefficient, p, two-tailed significance, n, number of

patients.

Figure 2 Double immunofluorescence of NRF2 and PRB.

Notes: Red stained cytoplasmic NRF2 expression, green stained PRB expression in

ovarian cancer tissue. Co-expression of NRF2 and PRB + DAPI (triple filter excitation)
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High NRF2/PR expression is associated

with improved overall survival
Median age of the patients was 58.7 (standard deviation

[SD] 31.4) years with a range of 31–88 years. Median

follow-up OS of the EOC patients was 34.4 (SD 57.8)

months. Although not statistically significant, cytoplasmic

NRF2 expression was associated with a longer OS (Figure

4, median 50.6 vs 32.5 months; p=0.1) as it was seen for

PRA expression (Figure 4, median 63.4 vs 33.1 months;

p=0.08). In addition, high PRB expression was associated

with increased OS (Figure 4, median 80.4 vs 32.5 months;
p=0.04).

Due to the biological relationship between NRF2 and

PRA, concurrent expression of cytoplasmic NRF2 and

PRA was evaluated revealing significantly longer OS for

patients expressing both, NRF2 and PRA (Figure 4, med-

ian 109.7 vs 30.6 months; p=0.02). The same relationship

was also noted between NRF2 and PRB with improved OS

for patients with the combined expression of cytoplasmic
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Notes: Correlation analysis of NRF2 and PRA (A)/PRB (B) in ovarian cancer tissue. A significant correlation of cytoplasmic NRF2 expression with PRA/PRB expression was

noted. For better visualization, dots have been jittered.

Abbreviations: r = correlation coefficient, p = two-tailed significance, n = number of patients.
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Figure 4 Kaplan–Meier estimates.

Notes: Kaplan–Meier estimates of NRF2 expression (A), PRA expression (B), PRB expression (C) and combined NRF2 and PRA/PRB (D, E) expression were analyzed.

Although not statistically significant, cytoplasmic NRF2 expression was noted with a longer overall survival (A) as it was seen for PRA expression (B). High PRB expression

was associated with increased overall survival (C). Patients with combined high NRF2 expression in the cytoplasm and PRA/PRB expression had significantly increased

overall survival compared with those with low cytoplasmic expression (D/E).
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NRF2 and PRB (Figure 4, median 153.5 vs 30.6 months;

p=0.009).

Clinical and pathological parameters are

independent prognostic factors
Cancer grading, the FIGOclassification, and patient’s agewere

independent prognostic factors in the present cohort (Table 3).

In contrast, the prognostic impact of histological subtype as

well as NRF2 and PRA/PRB expressionwere not confirmed to

be of independent significance.

Downregulation of NFE2L2 influences

PGR expression confirming their genetic

interaction
Following effective silencing of NFE2L2 with siRNA to eval-

uate the impact on PGR expression (Figure 5), an elevated

expression of PGR in the NFE2L2 downregulated cancer cell

line OVCAR3 was noted, although not statistically significant

(p=0.41).

Discussion
The present study investigating the expression patterns of

NRF2 and PRA as well as PRB demonstrates that cyto-

plasmic NRF2 expression is significantly correlated with

the expression of both PRA and PRB and that this correla-

tion seems to be associated with a significant impact on

OS of ovarian cancer patients. Silencing of NFE2L2

induced a higher mRNA expression of PGR in the

NFE2L2 downregulated cancer cell line OVCAR3.

Therefore, these results might corroborate a possible func-

tional interaction between NRF2 and PR which merits

further investigations.

As a main cellular defense mechanism against meta-

bolic, xenobiotic, and oxidative stress, NRF2 has been

generally regarded as a tumor suppressor.33,34 NRF2 acti-

vation avoids excessive cellular damage under abovemen-

tioned conditions.34 Thus, NRF2/Keap1 pathway is

essential in cancer chemoprevention underlining NRF2/

Keap1 mutations at pre-neoplastic stages in experimental

models.35 In comparison, recent studies revealed that

Table 3 Multivariate analysis

Covariate Coefficient (bi) [HR Exp(bi)] 95% CI p-Value

Lower Upper

Histology (serous vs other) −0.124 0.883 0.678 1.188 0.35

Grade (low vs high) 0.472 1.604 1.158 2.138 0.002

FIGO (I, II vs III, IV) 0.679 1.972 1.550 3.096 0.000

Patients’ age (≤60 vs >60 years) 0.008 1.008 1.003 1.013 0.001

NRF2 cytoplasmic/PRA −0.090 0.914 0.382 2.332 0.85

NRF2 cytoplasmic/PRB −0.422 0.656 0.276 1.639 0.35
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Figure 5 siRNA downregulation of NFE2L2.
Notes: siRNA downregulation of NFE2L2 in the ovarian cancer cell line OVCAR3 (A) and the effect on PGR expression following NFE2L2 downregulation (B).
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NRF2 hyperactivation may facilitate conditions favoring

the survival of normal as well as malignant cells, protect-

ing them from apoptosis following oxidative stress by

chemotherapeutic agents or radiotherapy.36,37

Hence, this potential dual role of NRF2 in cancer biology

should be taken into account in interpretation of its molecular

role. Studies revealed that nuclear or activated NRF2 expres-

sion is associated with upregulation of multiple target genes

with negative prognostic effects leading to impaired overall as

well as progression-free survival (PFS). In accordance, patients

with high cytoplasmic NRF2 expression (inactive form of the

transcription factor) displayed improved OS and PFS.14,38

Progesterone plays an anti-proliferative effect via its

receptor and has hereby been reported to be associated with

improved OS and PFS in ovarian cancer patients.24–27 These

findings are supported by studies showing that PR mediates

apoptotic cell death.39,40 Furthermore, upregulation of

Forkhead-box transcription factor (FOXO1) through proges-

tin activated PR causes cell cycle arrest by increasing of

mediators of cell senescence.40,41 A potential interaction

between NRF2 and PR is not well understood yet, but can

be conceived as a hypothesis-generating approach based on

the presented evidence. NRF2 activates its target gene aldo-

keto reductase family 1 member C1 (AKR1C1) amongst

others via an antioxidant response element (ARE) in a spe-

cific promoter region. AKR1C1 converts progesterone to

its inactive form, the 20-alpha-dihydroxyprogesterone

(20-alpha-OHP).42,43 Moreover, AKR1C1 can bind to the

promoter region of PR and decreases hereby receptor

activity.44 In this study, silencing of NFE2L2 induced a

higher mRNA expression of PGR supporting this data. In

endometrial cancer patients, concurrent NRF2/AKR1C1

overexpression was proposed to be part of the molecular

mechanisms underlying progestin resistance.45

Accordingly, increased expression of AKR1C1 is associated

with the development of platinum resistance in human ovar-

ian carcinoma cells as well as colon carcinoma cells.46,47 In

contrast, progesterone facilitates the toxicity of cisplatin in

ovarian cancer cells and a preclinical murine xenograft

model.48 Taken together, the interaction of NRF2 and PR

might represent a potential pathway significantly influencing

platinum response being mediated by AKR1C1 in ovarian

cancer which should be followed in future studies. NRF2/

AKR1C1 expression can be downregulated by metformin

treatment as described in endometrial and lung cancer

cells.45,49,50 Interestingly, recent studies show that metfor-

min, usually applied in diabetic patients, prevents tumor

growth, induces apoptosis and increases sensitivity to che-

motherapy in ovarian cancer cells.51–57 Mechanisms under-

lying these cellular effects include suppression of cancer

stem cells, inhibition of epithelial-to-mesenchymal transition

and interference with neoplastic cell metabolism.58–62

Following promising data of epidemiological studies show-

ing a favorable effect of metformin on ovarian cancer

Platinum sensitivity

Progesterone
PR

NRF2

ARE
AKR1C1

Metformin

20-alpha-dihydroxyprogesterone

Figure 6 Summary of the hypothesized interaction within the NRF2/AKR1C1/PR pathway.

Notes: Activated NRF2 (high nuclear, low cytoplasmic expression) activates aldo-keto reductase family 1 member C1 (AKR1C1) via an antioxidant response element (ARE).

AKR1C1 converts progesterone to its inactive form, the 20-alpha-dihydroxyprogesterone, and decreases PR receptor activity with consecutive platinum resistance.

Metformin treatment counteracts this pathway, which may reverse the effects and consecutively lead to platinum re-sensitization.
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incidence and survival, it was proposed that metformin

should be followed as an additional approach in ovarian

cancer treatment.63–65 As metformin treatment is associated

with an increased PR expression, these results further support

future investigations of the above-described relationships in

the NRF2/AKR1C1/PR pathway and their impact on ovarian

cancer biology and the clinical behavior.

Conclusion
In summary, based on the results of the present study, we

hypothesize that the interplay between NRF2/AKR1C1/PR

might serve as an important pathway with significant impact

on ovarian carcinogenesis elucidating additional therapeutic

perspectives (Figure 6). With the rationale described earlier,

metformin might have favorable effects on ovarian cancer

biology and open new approaches to overcome platinum

resistance which needs to be proved in future studies.
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