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Abstract: Sleep inertia, or the grogginess felt upon awakening, is associated with significant

cognitive performance decrements that dissipate as time awake increases. This impairment in

cognitive performance has been observed in both tightly controlled in-laboratory studies and

in real-world scenarios. Further, these decrements in performance are exaggerated by prior

sleep loss and the time of day in which a person awakens. This review will examine current

insights into the causes of sleep inertia, factors that may positively or negatively influence

the degree of sleep inertia, the consequences of sleep inertia both in the laboratory and in

real-world settings, and lastly discuss potential countermeasures to lessen the impact of sleep

inertia.
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Introduction
“ … immediately after getting up, irrespective of the hour, one is not at one’s best,”

Kleitman1 observed, in perhaps the earliest known description of sleep inertia in the

sleep literature. Sleep inertia is the term used to refer to the temporary time of

sleepiness, disorientation and impaired cognitive performance experienced upon

awakening.2 Early investigations3–8 of the paradoxical phenomenon of “waking up

tired”, although somewhat limited by low participant numbers and methodological

design, have had their findings of impaired performance upon awakening supported

by a wealth of subsequent, more rigorous studies. Understanding the underlying

causes, consequences, and countermeasures to sleep inertia is important for mana-

ging this period of impaired performance for those working on-call or napping on-

shift who are then required to perform safety-critical tasks soon after waking. The

aim of this review is to summarize decades of research that have led to current

insights into the following areas of sleep inertia: characterization of neurophysio-

logical correlates; contributing factors influencing severity; neurobehavioral and

real-world consequences; and finally, proactive and reactive countermeasures. The

review will first define sleep inertia as part of the three-process model of sleep

regulation9 and then address each of the topics listed above.

Sleep inertia: the third process of sleep regulation
The propensity for sleep and sleepiness is governed by two main processes: a

homeostatic drive or pressure for sleep (Process S), and a circadian rhythm of

arousal (Process C).10,11 Process S promotes sleepiness as hours of wakefulness

accumulate and is dissipated with time spent asleep. Process C is driven by a

circadian pacemaker, the suprachiasmatic nucleus, to promote sleep at night and

alertness during the day.12 Thus, the well-accepted two-process model of sleep
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regulation would theoretically predict higher alertness and

performance following depletion of the homeostatic drive,

which often coincides with a rise in the circadian drive for

alertness following habitual morning awakenings. What is

observed at this time, however, is a short, yet salient,

decrease in alertness and performance immediately after

waking.4–6 Therefore, a third-process (Process W; or

Process I, in some descriptions)9 is necessary to better

describe these fluctuations in sleepiness. In a three-process

model (Figure 1), sleep inertia (green line) is immediately

present at sleep offset, briefly counteracting the low

homeostatic drive for sleep (red line) and the rising circa-

dian drive for wakefulness (blue line).

The exact function of sleep inertia remains largely

unknown.13,14 From an evolutionary perspective, one

might posit that the ability to rapidly awaken from sleep

would be advantageous, for example when awakening in

response to a potential threat.13,14 A more gradual awaken-

ing, however, may also be protective given the complexity

of neural circuitry in transitioning from one state to

another,14 as is discussed in the neurophysiology section

below. Sleep inertia may, therefore, be an adaptive

mechanism to promote sleep upon awakening so that

sleep is maintained when the awakening is undesired.

For example, as with the timing of the circadian nadir,15

sleep inertia may help to maintain sleep in the later part of

a nocturnal sleep episode when homeostatic sleep pressure

has largely dissipated. It is only when the restoration of

wakefulness needs to be rapid that the process of sleep

inertia appears maladaptive. Vyazovskiy et al14 also pro-

pose that the gradual awakening following rapid eye

movement (REM) sleep may be a “reset” function to

minimize hypnopompic intrusions into wakefulness.

These theories as to the function of sleep inertia require

further research. Animal studies investigating the evolu-

tionary progression of sleep inertia across species may be

useful in addressing this gap in the literature. Currently,

neurophysiological studies have provided perhaps the best

insights into this area, as summarized in the next section.

Neurophysiological basis of sleep
inertia
While the transition from sleep to wakefulness has

received comparatively little attention relative to the tran-

sition from wakefulness to sleep, there is growing evi-

dence for the underlying neurophysiological causes of

sleep inertia. For example, spectral analyses of electroen-

cephalography (EEG) after waking have offered insight

into the encephalographic substratum of sleep inertia.

Compared to pre-sleep wakefulness, post-sleep EEG typi-

cally contains higher delta power (associated with deep

sleep) and lower beta power (associated with

wakefulness).16–19 Reported changes in theta power (asso-

ciated with drowsiness or REM sleep) have been less

consistent.16,17,19 Regional differences in power have

also been discovered, with a greater increase in delta

waves observed in the posterior regions, which may sug-

gest slower reactivation of these areas after waking.16–18

Further, a recent study by Vallat et al19 assessed the func-

tional connectivity of different brain regions post-awaken-

ing and observed that, compared to those waking from

lighter N2 sleep (non-REM stage 2 by Rechtschaffen &

Kale scoring),20 participants waking from deeper N3 sleep

(non-REM Stage 3 and 4) had higher connectivity between

the default mode network and brain regions responsible for

sensory-motor control and attention. The authors posited

that this reduction of functional brain network segregation

from the default mode network, which is also observed

during sleep and periods of elevated sleepiness,21 may be

responsible for the physical and cognitive effects observed

during sleep inertia.

Studies of brain activity upon awakening have

observed that cerebral blood flow velocity is lower than

pre-sleep levels for up to half an hour after waking,

Figure 1 A schematic of the three-process model of sleep regulation.
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reflecting the typical dissipation of cognitive effects.22–24

Additional investigation of these changes discovered

brain-region dependent changes, with the prefrontal corti-

cal regions (responsible for executive function) taking

longer to return to baseline levels.23,25 Another theory

for the neurological basis of sleep inertia came from Van

Dongen et al's observation that sleep inertia is suppressed

by caffeine consumed just prior to the sleep opportunity.26

Given caffeine acts as an adenosine receptor antagonist,

sleep inertia observed following awakenings in sleep

restriction scenarios may be partly due to left over adeno-

sine stores that have not been removed during sleep.

While there are few animal studies investigating the

transition from sleep to wake, Vyazovskiy et al14 looked at

neuronal activity in rodents following spontaneous arou-

sals from sleep. Their study found lower neuronal activity

after waking at a population level, but that individual

neurons varied, with a subset of neurons being silent for

1 min after waking. Further, the authors observed that

neuronal silence was higher following REM sleep com-

pared to waking from non-REM sleep.

Thus, the neurobehavioral impairments observed after

waking appear to be due to a delay in transitioning several

independent neurophysiological processes and that this

transitional lag is most evident in regions related to higher

order processes necessary for cognitive tasks.14,16–19,21–26

These transitions could be targeted in the development of

novel interventions to enhance the transition from sleep to

a fully alert state.

Contributing factors: the influence
of sleep and circadian rhythms on
sleep inertia
There are several factors influencing the severity and dura-

tion of sleep inertia. However, as is discussed at the end of

this section, sleep inertia can still occur in the absence of

these exacerbating factors.

Waking after prior sleep loss
Sleep inertia is worse under conditions of prior sleep loss.

In studies comparing sleep inertia following an 8-h sleep

opportunity to partial sleep deprivation, performance upon

waking was significantly worse after the partial sleep

deprivation night.27,28 Extended wakefulness prior to a

recovery sleep episode can also exacerbate the sleep iner-

tia observed following recovery sleep.29,30 In a between-

subjects design, Dinges et al30 allocated a 2-h nap to

participants after varying durations of prior wakefulness

(6, 18, 30, 42 and 54 hrs). Reaction times slowed and the

number of correct subtractions decreased as time awake

prior to the nap increased. In a within-subjects design,

Rosa et al29 also measured performance after a 2-h nap

opportunity following either 16 hrs of wakefulness, or up

to 64 hrs of wakefulness, with worse performance

observed after waking from the nap following 64 hrs.

Sleep inertia is also worsened by cumulative sleep loss.

Balkin and Badia’s31 observation of increased sleep inertia

effects across four nights of disrupted sleep was recently

supported by an in-laboratory study in which participants

were studied under conditions of chronic sleep restriction

(equivalent to sleep opportunities of 5.6 hrs per 24-h day).

Notably, compared to a control condition (equivalent to

sleep opportunities of 8 hrs per 24-h day), participants

undergoing chronic sleep restriction experienced a 10%

worsening of performance immediately upon awakening,

with average levels of performance failing to reach base-

line levels at 70 mins post awakening.32 Together, these

studies suggest that sleep loss, in the form of restricted

sleep, extended wakefulness, or cumulative sleep loss,

contributes to increased sleep inertia effects.

Waking during the night
Sleep inertia effects are greatest during the biological night,

near the circadian low in core body temperature.30,33–35

Using a protocol designed to spread behaviors evenly across

all hours of the 24-h day (ie, forced desynchrony protocol),

Scheer et al33 found that circadian rhythms significantly

influenced the number of correct responses on an addition

task performed within two minutes of waking. In this study,

amplitude in circadian variation observed immediately after

waking was greater than that observed at later testing points.

This finding suggests that circadian rhythms exert an effect

on sleep inertia, independent to its effect on background

performance. This effect has also been observed in older

participants (>55 y).34

While Scheer et al33 independently assessed the effects

of circadian rhythms and sleep pressure on sleep inertia,

Dinges et al30 investigated the interaction between the two

processes. In their study, participants took a 2-h nap near

the peak (approximately 15:00) or trough (approximately

03:00) of the circadian cycle, following varying amounts

of prior sleep loss (6–54 hrs of prior wakefulness). This

study found that during the peak in alertness, the effect of

prior sleep deprivation on sleep inertia appeared to be

attenuated. Meanwhile, during the trough, these effects
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were exacerbated. This interaction between sleep loss,

circadian timing, and performance during sleep inertia

has also been found under conditions of chronic sleep

restriction.32 The results of these studies suggest that cir-

cadian rhythms have a direct effect on sleep inertia, and

also moderate the effects of sleep deprivation. This inter-

action creates a non-linear trend in performance as sleep

deprivation increases.

Studies designed to systematically assess the impact of

circadian rhythms on sleep inertia show clear support for a

time-of-day influence, with worse performance immedi-

ately after waking during the circadian low. This effect

has also been demonstrated to be in addition to circadian

effects on background performance and to modulate the

influence of homeostatic pressure.

Waking from deep sleep
Mixed observations have been reported on whether the

depth of sleep, or the stage of sleep, at awakening has a

significant effect on sleep inertia. The increased amount

of, and greater propensity to wake from, slow wave sleep

(SWS) under conditions of sleep pressure may be asso-

ciated with the observed increase in sleep inertia following

sleep loss. Similarly, the observation that sleep inertia is

less likely to occur after short naps (≤30 mins)36–38 may be

due to the typical delay in SWS onset of 30 mins.39 This

section explores the evidence for and against the influence

of SWS on sleep inertia.

Perhaps the most frequently cited evidence for an

effect of sleep depth on sleep inertia is Dinges et al's30

study of 2-h naps during 54 hrs of sleep deprivation. Their

study measured reaction time by the speed with which

participants answered a wake-up phone call and showed

that increasing sleep depth was associated with slower

response speed. This was particularly evident for awaken-

ings from slow wave Stage 4 sleep (now classified as N3

under the AASM scoring guidelines).40 Furthermore, the

amount of SWS during the preceding nap was associated

with worse performance on a descending subtraction task

performed immediately after answering the phone. Several

other studies have also observed sleep stage at awakening

as a key predictor of performance impairment upon wak-

ing. Stampi41 reported that participants waking from SWS

showed a 41% reduction in performance upon awakening

compared to performance pre-nap, whereas participants

waking from Stage 2 (N2) sleep showed similar perfor-

mance to those who were already awake. Sleep depth as

assessed by power spectral analysis showed that the

amount of delta activity (a marker of SWS) in the

10 mins prior to waking from a restricted sleep episode

was negatively correlated with performance immediately

after waking.27 Further, performance on a decision-making

task was significantly worse upon waking from SWS

compared to REM sleep.42 Together, the results from the

above studies suggest a positive relationship between

greater sleep depth and greater sleep inertia.

Many more-recent studies have also found an associa-

tion between sleep depth and sleep inertia. However, these

studies were not necessarily designed to systematically

investigate this relationship and therefore rarely support

their observations with statistical analysis.36,37,43 In parti-

cular, studies of afternoon naps showing that the amount

of SWS and the severity of sleep inertia increase with nap

length have not confirmed the role of SWS with further

analysis.36,37 Regardless of the mechanisms underlying the

relationship between greater nap length and greater sleep

inertia, these observations lend support to the use of short

naps in an effort to minimize sleep inertia.

In contrast, some studies have reported no associa-

tion between sleep depth33,44,45 or sleep stages at

awakening33,45,46 and post-sleep performance. This lack

of association has been demonstrated at all times of day

under controlled prior sleep–wake conditions.33 and fol-

lowing extended wakefulness during the night and

day.45 This lack of association is particularly prevalent

in the napping literature (for review see Hilditch et al,

201747).45,48–50 Perhaps the most striking observation

comes from Lovato et al48 who, despite 91% of partici-

pants waking from SWS and over 50% of the prior

sleep period containing SWS, did not observe any per-

formance impairment following a nap taken during a

simulated night shift.

The debate in the literature as to whether sleep depth

influences sleep inertia may be due to variations in meth-

odologies and definitions of sleep depth. A direct comparison

of the studies presented here, however, reveals some com-

mon factors that may help to explain the apparent discrepan-

cies. For example, the effects of sleep depth on sleep inertia

tend to be observed following longer naps (2 hrs)27,30 com-

pared to shorter naps (20–60 mins),45 and under higher

homeostatic pressure27,30 but rarely under reduced homeo-

static pressure.27,33,51,52 These studies suggest that the influ-

ence of sleep depth on sleep inertia may be mediated by the

lengths of both prior wakefulness and prior sleep. From the

limited studies reviewed, the effect of time of day does not

appear to interact with this relationship;33,44,45 however, its
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direct influence on sleep inertia33 might still obscure mea-

surement of the direct influence of sleep depth. Thus, inter-

actions with prior sleep–wake factors appear to change the

relative influence of sleep depth on subsequent performance,

although a direct investigation of these interactions has not

been conducted.

Overall, it is difficult to synthesize a clear conclusion as

to the role of SWS in sleep inertia. There is long-standing

evidence supporting the association between greater sleep

depth and greater sleep inertia.27,30,41 This traditional view,

however, is now being challenged by more recent literature

which suggests that this relationship may not be as robust as

initially thought.33,45 Different study designs and measures

of sleep depth make it difficult to compare between studies.

However, the current literature suggests that the lengths of

prior wakefulness and prior sleep may influence the associa-

tion between sleep depth and sleep inertia.

Impact of contributing factors on sleep

inertia duration
The majority of studies examining sleep inertia were not

designed to directly assess the duration of sleep inertia and

therefore include too few data points to make firm conclu-

sions about the impact of contributing factors on the dura-

tion of sleep inertia. In addition, most studies directly

observing the time course of sleep inertia have not directly

compared contributing factors. One study, however, did

directly observe the duration of sleep inertia under two

different conditions. Achermann et al's study44 observed

that the time course of sleep inertia following an 8-h

nocturnal sleep episode and a 2-h evening nap was the

same, suggesting that circadian timing and sleep duration

under these conditions did not impact duration. Brooks

and Lack37 compared four different short, afternoon nap

lengths and found that while a 10-min nap resulted in

immediate performance improvements, a 30-min nap did

not provide improvements until 35 mins or up to 95 mins

after waking, depending on the task. This suggests that the

duration of sleep inertia is dependent on both length of nap

and type of task. Comparing across studies, Hilditch et al38

found that both a 10-min and 30-min nap terminated at

04:00 following acute sleep loss provided no improve-

ments to performance throughout the sleep inertia testing

period (up to 60 mins) nor across the remainder of the

night (up to 2.5 hrs).53 Taken together, these studies sug-

gest that circadian timing and prior sleep-wake history

influence sleep inertia duration as well as severity,

although the relative influence of these factors cannot be

determined from these observations.

Sleep inertia in the absence of high

homeostatic and circadian pressures
While the factors discussed above have been shown to

exacerbate sleep inertia effects, it is important to note

that sleep inertia has been observed even in the absence

of these factors. For example, Wertz et al's54 striking

demonstration of the impact of sleep inertia relative to

24 hrs of wakefulness was observed in healthy partici-

pants, following an 8-h, habitually-timed sleep opportu-

nity. Similarly, studies have demonstrated sleep inertia

effects lasting at least one hour under unremarkable,

well-rested conditions.44,51 Results from studies measuring

performance and alertness after waking from daytime naps

also show signs of sleep inertia, even when the prior night

of sleep is unrestricted.44,55 Scheer et al33 demonstrated

the circadian influence on sleep inertia magnitude in non-

sleep restricted conditions, but also showed that sleep

inertia is present, albeit less severe, during times outside

of the circadian low. Finally, Hilditch et al50 observed

performance impairment immediately following a 10-min

nap taken at 07:00 following extended wakefulness,

demonstrating that a short nap, depending on the context,

does not always avoid sleep inertia. Together, the findings

from these studies suggest that sleep inertia is a ubiquitous

phenomenon that, while exacerbated by certain factors,

can potentially occur at any time.

Consequences: effects of sleep
inertia on neurobehavioral
outcomes
Despite its relatively short-acting effects, sleep inertia is a

notable cause of performance impairment and has been

associated with severe, real-world consequences.

Time course of sleep inertia effects
Studies comparing sleep inertia to pre-sleep values have

typically shown a return to these levels within 30 mins of

awakening36,37,46,48,56 and sometimes as soon as 15 mins

after awakening.45,52,57 Studies that have systematically mea-

sured alertness and performance across the period after wak-

ing, however, report an asymptotic dissipation of sleep

inertia.9,44,51 While the initial dissipation of impairment is

rapid, full recovery does not appear to be complete until at

least an hour after awakening. Jewett et al51 investigated the
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time course of sleep inertia in a constant routine protocol in

which measures of subjective alertness and cognitive

throughput were taken regularly from one minute to four

hours after scheduled awakening. Under these conditions,

Jewett et al51 found, as in the findings of Folkard and

Åkerstedt,9 that subjective alertness continued to improve

for up to two hours after awakening. Performance impair-

ment on an addition task, however, took up to 3.5 hrs to

dissipate.51 These tests were performed following a habitual

morning awakening, so the influence of the rise in circadian

alertness across this period cannot be extricated from this

observation.

Interestingly, subjective alertness recovered faster than

objective performance in Jewett et al's51 study, but was

slower in Achermann et al's44 study. Achermann et al44 also

reported that there was no correlation between objective

performance and subjective sleepiness. The difference in

time course in performance measures between the two stu-

dies may be explained by differences in the tasks performed.

However, the desynchronization of time course between

subjective and objective measures in both studies highlights

a concern when using self-assessment after waking, espe-

cially if alertness recovers faster than cognitive performance.

Subjective ratings of alertness and performance have been

shown to be inconsistent predictors of objective performance

under conditions of partial58 and chronic59 sleep loss.

Achermann et al's44 study suggests that subjective ratings

might also be a poor indicator of performance across the

dissipation of sleep inertia. Hilditch et al38 reported a self-

rating scale of performance (as opposed to alertness) across

the dissipation of sleep inertia and found that despite worse

objective performance after waking from a 30-min night-

time nap compared to pre-nap, participants rated their per-

formance as significantly better during this period. These

findings highlight the need to measure both subjective and

objective outcomes when investigating sleep inertia effects.

Furthermore, a recent study by Ritchie et al60 suggests that a

participant’s morning or evening preference (chronotype)

should also be measured when estimating the time course

of sleep inertia, with the observation that later chronotypes

took longer to recover from sleep inertia than early types.

Comparison of the effects of sleep inertia

with the effects of sleep loss
Despite a relatively rapid recovery from sleep inertia in the

first 15–30 mins after waking, impairment during this

initial period can be equivalent to, or worse than, the

effects of sleep loss. For example, Wertz et al54 showed

that performance on an addition test immediately after

waking was significantly more impaired than after one

night of sleep deprivation. Similarly, Miccoli et al28

found no difference in mean response times on a 10-min

psychomotor vigilance test (PVT; a simple response time

task) for the first hour following a night of sleep depriva-

tion compared to waking from a night of restricted sleep.

This indicates that any benefits of the three hours of sleep

in the partial sleep restriction condition were masked by

sleep inertia for at least an hour after waking. Remarkably,

Rosa et al29 found that waking from two hours of recovery

sleep following 64 hrs of sleep deprivation was associated

with worse performance on both a memory task and audi-

tory reaction time task compared to before the recovery

sleep. Performance after waking was also worse than at the

same time of day during the prior sleep deprivation period

(ie after approximately 41 hrs of wakefulness).

In another study involving 64 hrs of sleep deprivation,

a group given 20-min naps every six hours across this

period performed worse after waking than the total sleep

deprivation group. Furthermore, the sleep inertia experi-

enced after short naps was so intolerable that six partici-

pants in the nap condition withdrew from the study,

whereas all participants in the sleep deprivation group

completed the study.61

Together, the findings from these studies highlight the

potential severity of sleep inertia performance deficits

relative to extreme sleep loss. Furthermore, these results

suggest that, at least in the short term, performance impair-

ment after waking from recovery sleep can actually be

worse than the impairment caused by the prior sleep loss

itself. Therefore, following prior sleep loss, observable

benefits from recovery sleep may be delayed by sleep

inertia for up to an hour after waking.

Impact of sleep inertia on different

measures of cognitive performance
As the sleep inertia literature expands, a debate has begun

as to whether all cognitive tasks are equally affected

immediately after waking. Some studies have found that,

in contrast to the impairment observed after sleep depriva-

tion, only the reaction time or “speed” component of tasks

is negatively affected during sleep inertia.28,46,52,55,61,62

However, several other studies have found equal effects

on both speed and accuracy27,31,45 or greater effects on

accuracy.63 Variations between studies such as task type,
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time of testing, instructions to the participants (eg

instructed to perform as fast and/or as accurately as pos-

sible), and the length and timing of sleep may account for

these discrepancies. Two studies have also claimed that,

while overall average response speed may slow as a result

of sleep inertia, lapses, which represent a substantial delay

in response speed, are not a neurobehavioral feature of

sleep inertia, but rather are only associated with sleep loss

induced microsleeps.28,52

It has also been argued that higher cognitive tasks that

require greater attentional load are more susceptible to the

effects of sleep inertia than simple tasks.64,65 Studies have

reported the effects of sleep inertia on complex cognitive

performance tasks such as memory,44 calculations,30,54,65

decision making,42,66 and a spatial-configuration visual

search task.65 However, sleep inertia has also been observed

using simple reaction time tasks.26,45,62 Conflicting results

have also been obtained with regard to effect sizes across

different tasks. Santhi et al62 showed the largest effect sizes

for simpler tasks such as PVT and a 1-back working mem-

ory task compared to a 3-back working memory task. In

another study, medium effect sizes were found for moder-

ately complex tasks such as addition and digit-symbol sub-

stitution, but the largest effect size was reported for

cognitive throughput on a higher-order spatial-configuration

task.65 Given the range of methodologies used across these

studies, a clear hypothesis for the differential effects

observed across tasks has yet to be put forward.

Real-world impacts of sleep inertia
Sleep inertia is a challenge to workers who need to per-

form safety-critical tasks, make important decisions, or

operate a vehicle soon after waking. To this end, several

reviews of alertness management in operational settings

have highlighted the need to manage sleep inertia in order

to maintain safety.64,67–69

While some facets of cognition may be more affected

by sleep inertia than others,62,65 real-world tasks often

involve a combination of multiple cognitive domains. For

example, operating a vehicle safely requires situational

awareness, information processing, decision making,

memory and, in some instances, rapid response times.

Studies of complex psychomotor tasks that better emulate

tasks in the real world, for example, a fire management

task,42 a military enemy attack exercise,66 or putting on a

space suit,8 have all been shown to be susceptible to the

effects of sleep inertia. Further, interviews with nurses70

and surveys of emergency service pilots71 have identified

sleep inertia as a prevalent issue amongst on-call and night

shift workers. In the military, a retrospective analysis of

more than 400 US Air Force accidents showed that acci-

dents associated with pilot error were most common dur-

ing the first hour after waking, suggesting a potential sleep

inertia effect.72 Sleep inertia has also been cited as a

contributing factor in several commercial incidents across

multiple industries which have resulted in damage,73,74

injuries,75 and deaths.76

Taken together, these findings suggest that the effects

of sleep inertia on simple, complex, and operational tasks

has the potential to negatively impact upon safety-critical

activities in the real world.

Countermeasures to sleep inertia
Our knowledge of the factors influencing sleep inertia can

help to develop proactive strategies for managing sleep

inertia, such as optimal sleep length and timing of awaken-

ing. For example, based on the literature summarized

above, a planned awakening should take into account as

many of the following criteria as possible: limit the dura-

tion of the period of wakefulness before the sleep episode;

minimize the amount of sleep loss prior to the sleep

episode – both acute and chronic; avoid waking during

the circadian low in alertness (biological night); and, if

waking from a nap, limit sleep duration to less than

30 mins. While following these guidelines can reduce the

risk of sleep inertia, as discussed earlier, they do not

guarantee a sleep inertia-free wake up. Thus, the most

effective proactive countermeasure appears to be caffeine.

When taken before a short nap (eg 20 mins), caffeine has

been shown to alleviate the symptoms of sleep inertia

following the nap.26,77 The limitation of these proactive

strategies is that they often require a planned sleep oppor-

tunity, a designated wake time, and control over prior

sleep-wake history. For many on-call shift workers it is

not always feasible to plan the length and timing of a sleep

opportunity, and in many cases prior sleep-wake history

may be poor. Thus, there is a need for countermeasures

that can be implemented upon waking (“reactive”

countermeasures).

Hilditch et al78 recently reviewed the literature inves-

tigating reactive countermeasures and concluded that there

is currently no clear empirical evidence to fully support

the use of any reactive countermeasure to provide immedi-

ate and objective effects. As mentioned above, when admi-

nistered before sleep, caffeine has been shown to eliminate

the effects of sleep inertia.26 However, there are several
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limitations to the effectiveness and application of this

countermeasure in a reactive scenario. When administered

after sleep, even in a rapidly-absorbed chewing gum for-

mat, the effects of caffeine are delayed such that while the

duration of sleep inertia may be truncated, the initial, most

severe period of effects are unaffected by caffeine.79

Furthermore, while caffeine is indeed a field-deployable

and operationally viable countermeasure in many cases,

the relatively long-lasting stimulant effects may be

unwanted in situations in which it is preferable for the

worker to fall back asleep within a few hours of waking.80

Other countermeasures such as light, sound, and tem-

perature have been investigated. The outcomes of the

trials, however, have been either unsuccessful, or uninter-

pretable due to methodological limitations such as lack of

a control group, not enough testing points, or no evidence

of sleep inertia in the control condition.81–86 We below

summarize findings of the most commonly investigated

countermeasures.

To date, two studies have investigated the use of brief81

and sustained82 light exposure after waking to reduce sleep

inertia. Bright light exposure has been shown to directly

improve alertness and cognitive performance during the

day, night and following sleep restriction.87 Therefore,

there is potential for bright light to improve alertness and

performance during the sleep inertia period. One study

reported a significant improvement to subjective alertness,

however, neither study observed a significant improvement

on objective performance measures. While these results

suggest that both brief and sustained light exposure after

waking is of limited effectiveness in reducing sleep inertia

effects, it is worth noting that the exposures in these

studies were during the day (~07:00 and 13:00). The use

of light during nocturnal awakenings may, therefore, have

a different effect.

Noise can promote arousal and has previously been shown

to attenuate hypo-vigilance during sleep deprivation.88,89 Early

investigations on the use of sound to reduce sleep inertia effects

have been promising. Tassi et al83 exposed participants to pink

noise after a 1-h nap at 01:00 and observed that pink noise

eliminated the sleep inertia effect observed in the no-noise

group. This effect was less obvious when tested at 04:00. The

sleep stage at waking was not controlled in this study and may

have contributed to the mixed results at different test times.

Hayashi et al84 took a different approach, playing music after

waking from a short afternoon nap. While playing music has

not been shown to have a long-term alerting effect,90 its short-

term effects may be useful in the context of sleep inertia.

Indeed, the researchers reported that music reduced subjective

sleepiness, and that music preferred by the participants led to

improved cognitive performance for up to 20 mins after wak-

ing. Sound may be an operationally viable (ie delivered

through headphones) and relatively brief and immediate alert-

ing strategy for use in the field.

While the relationship of body temperature to sleep

onset has been extensively investigated, its relationship

to sleep offset has received less attention. Some studies

have shown, however, that changes in the distal-proximal

temperature gradient (DPG) after waking correlate with

subjective sleepiness.85 This relationship has been demon-

strated across different circadian phases in a multi-nap

protocol but has yet to be tested with objective perfor-

mance measures.86 It has been proposed that cooling the

extremities immediately after waking may accelerate the

DPG changes and, in turn, accelerate recovery from sleep

inertia effects. This theory has yet to be tested with an

intervention study. Manipulating body temperature may

also be a useful deployable strategy, the effects of which

may be reversible in situations where a sleep opportunity

is presented later in the night.

While there are no studies to our knowledge that have

investigated the effectiveness of exercise to reduce sleep

inertia effects, anecdotally this is an avenue that may be

worthy of research. Sleep inertia is associated with a slow

return to waking levels of cerebral blood flow in the

anterior cortical regions of the brain;23 therefore, moderate

cardiac activity may accelerate this process.

Implementation of this strategy would also be relatively

convenient in most work place settings.

Given the potential for catastrophic events associated

with sleep inertia, the need to develop preventative strate-

gies and reactive countermeasures to minimize both the

severity and duration of sleep inertia effects in safety-

critical scenarios is crucial.

Summary
As discussed in the previous sections, sleep inertia is char-

acterized by impaired performance and reduced alertness

immediately after waking. These effects dissipate asympto-

tically with the most significant effects occurring within

30 mins of waking. Sleep inertia interacts with the homeo-

static and circadian processes to influence performance

immediately after waking. Evidence suggests that waking

after acute or chronic prior sleep loss, during the circadian

low, or from deeper stages of sleep can exacerbate sleep

inertia. Sleep inertia is of great importance as the associated
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performance impairment can be equivalent to, or greater

than, that observed after up to 40 hrs of sleep deprivation.

Sleep inertia effects have been observed on a range of tasks

from simple reaction time tests to complex cognitive tasks.

While field studies of sleep inertia are lacking, evidence of

sleep inertia in real-world scenarios has been demonstrated

in several operational incidents, often with catastrophic

consequences. While there is evidence that caffeine can

help to reduce the impact of sleep inertia, there is a need

for further research into reactive countermeasures that can

be deployed in operational scenarios.
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