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Background: Consumption of industrially produced trans-fatty acids (iTFAs) can result in

alteration to lipid profile and glucose metabolism. Moreover, a diet high in iTFAs could

increase the risk of obesity, cardiovascular diseases (CVDs) and type 2 diabetes mellitus.

Glucose and lipid metabolism are closely linked in white adipose tissue (WAT), yet the

underlying mechanisms of the effect of iTFAs in WAT are poorly understood.

Materials and methods: Parameters of glucose homeostasis, lipid profiles and markers of

endoplasmic reticulum (ER) stress of WAT were measured in rats maintained on a high-fat

diet containing margarine (HFD-M) (n=10) compared to controls maintained on standard

chow (n=10) over 16 weeks.

Results: Fat mass and body weight was significantly increased in rats maintained on the

HFD-M compared to controls (P<0.01). HFD-M rats had increased levels of insulin (INS),

homeostasis model assessment of insulin resistance and serum lipid profile was significantly

altered. The expression of glucose-regulated protein 78 (GRP78) and the phosphorylation of

inositol-requiring enzyme 1-alpha and c-Jun N-terminal kinase (JNK) were significantly

increased in subcutaneous and retroperitoneal adipose depots of HFD-M-fed rats. In vitro,

wider ER lumens were observed in 100μmol/L elaidic acid (EA)-treated human mature

adipocytes. We observed activation of ER stress markers, impaired INS receptor signaling

and increased lipogenesis in adipocytes after EA exposure. These effects could be alleviated

by inhibiting ER stress in adipocytes in vitro.

Conclusion: Collectively these data suggest that ER stress may be involved in INS

resistance and lipid metabolism disorders induced by high-fat diet containing iTFAs. These

findings suggest that WAT could be regarded as a key target organ for inhibiting ER stress to

reverse the impaired INS receptor signaling, alleviate lipid metabolism disorders, and

provide a novel approach to prevent and treat INS resistance and dyslipidemia-related

chronic diseases such as T2MD and CVDs.
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Introduction
Despite recent successful attempts at reducing intake of trans-fatty acids in many

countries,1 industrially produced trans-fatty acids (iTFAs) are still present in a

number of manufactured foods which contain partially hydrogenated oils or their

products added such as margarine, snack foods, and packaged baked goods. High-

fat diets containing iTFAs have received attention due to their potential impact on
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health outcomes associated with alterations to lipid pro-

files and glucose homeostasis.2 Diets high in iTFAs can

result in higher rates of obesity3 and are associated with

chronic diseases, such as cardiovascular diseases (CVDs)

and type 2 diabetes mellitus (T2DM).4,5

Disorders of glucose homeostasis and lipid metabolism

are commonly seen in CVDs and T2DM. Lipid profile

abnormalities including representative markers such as

triglyceride (TG), high-density lipoprotein-cholesterol

(HDL-C), and low-density lipoprotein-cholesterol (LDL-C),

are important indicators of cardiac metabolic risk and play a

significant role in the development of CVDs.6 Insulin (INS)

resistance is the main etiology and pathogenesis of T2DM.7

Individuals with obesity (excessive white adipose tissue

(WAT)) have increased risk of CVDs and T2DM.8,9 WAT is

the major metabolic organ responsible for energy utilization

and storage, in which glucose and lipid metabolism are

closely linked. Yet, the underlying mechanisms of the effect

of iTFAs on WAT remain poorly understood.

Recent studies suggest that ER stress links obesity,

CVDs, INS action, and T2DM. ER stress has also been

demonstrated to be a novel mechanism and therapeutic

target for CVDs.10 ER stress is a major contributor to the

development of INS resistance and diabetes by triggering

JNK activity via inositol-requiring enzyme 1-alpha

(IRE1-α) and inhibition of INS receptor signaling

pathways.11 Multiple markers of ER stress have been

observed to be activated in human adipose with obesity.12

It has been demonstrated that ER stress is associated with

de novo lipogenesis and lipid accumulation in HepG2

cells13 and INS resistance in B cells in vitro.14

The aim of this work is to examine the underlying

mechanisms of INS resistance and lipid metabolism disor-

ders of WAT induced by high-fat diets containing iTFAs. In

vivo, wemeasured the parameters of lipid profile and glucose

homeostasis and markers of ER stress in subcutaneous and

retroperitoneal adipose tissue of rats fed with HFD-M. In

vitro, human mature adipocytes were treated with EA,

known as a biomarker of iTFAs intake,15 to observe the

effects on INS receptor signaling and lipogenesis.

Materials and methods
Animals and diets
Twenty healthy, SPF-grade-weaned male Wistar rats, were

obtained from the Center for Experimental Animals at

China Medical University (Shenyang, China) with a

National Animal Use License number of SCXK 2013-

0001. All experiments were approved by the Animal Use

and Care Committee at China Medical University with a

protocol number of CMU 62043006 and in accordance

with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals.

All rats were randomly divided into two groups: the

control group (CON, n=10) and the treated group fed with

high-fat diets containing margarine (HFD-M, n=10). Rats

were maintained on their respective diets for 16 weeks. The

rats in CON groupwere given standard chow containing 10%

of kcal from fat. And the HFD-M rats were given homemade

high-margarine chow as described before,16 which contained

45% of kcal from fat and were composed of 73% standard

chow diet plus 20% margarine (1.5% iTFAs in margarine

according to the manufacture’s indicated nutrition facts, pur-

chased from a local supermarket), 7% casein (01-003,

Aoboxing Biotech Company Ltd, Beijing, China), and trace

amounts of multiple vitamins. All animals were housed at

21–24°C, with 55–60% humidity, 12-hr light/dark cycle, and

free access to food and water. There was no difference in

initial start weights between groups.

Processing of serum and tissues
At the end of the 16th week, all experimental animals were

sacrificed under anesthesia with carbon dioxide after

12 hrs of fasting. Fasting blood samples were drawn via

the abdominal aorta for the separation of serum. The sub-

cutaneous and retroperitoneal fat tissues were dissected

and weighed in grams and expressed as a percentage of

total body weight. Retroperitoneal fat mass (% of total

body weight) = the weight of retroperitoneal WAT (g)/

body weight (g) ×100.17 Tissues were stored at −80°C
immediately for the following analysis.

Measurements of INS resistance and lipid

profile markers
Markers of lipid profiles and INS resistance were measured

using commercially available kits. Triglycerides (TG, catalog

no. 6030), total cholesterol (TCHO, catalog no. Y014), high-

density lipoprotein-cholesterol (HDL-C, catalog no. 6328),

low-density lipoprotein-cholesterol (LDL-C, catalog no.

6340), glucose (GLU, catalog no. Y012) (Beijing BHKT

Clinical Reagent Co., Ltd) and INS (IQR-Insulin-1,

RayBiotech, Inc., China). Homeostasis model assessment

of insulin resistance(HOMA-IR) was determined by the for-

mula: HOMA-IR = serum insulin (mIU/L)×(blood glucose

(mmol/L)/22.5.
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Cell culture and treatments
Human mesenchymal stem cells were obtained from

Cyagen Biosciences Inc. (HUXMD-01001) and main-

tained in DMEM/Nutrient Mixture F-12 Ham (DMEM/

F-12) containing 10% heat-inactivated FBS and 1% peni-

cillin/streptomycin. The cells were maintained at 37°C in a

humidified 5% CO2 atmosphere.The process of differen-

tiation was operated as described by Wang.16 After

14 days of differentiation, mature adipocytes were treated

with EA (100 μmol/L; E4637, Sigma, USA) for 24 hrs.

Transmission electron microscope was then used to

observe the cells’ ultrastructure. For the following tests

of glucose intake, TG, relative quantitative real-time and

Western-blot analyses, 10 mmol/L 4-PBA (SML0309,

Sigma, USA) was preincubated for 2 hrs. After EA expo-

sure for 24 hrs, the cells were collected.

Transmission electron microscopy analysis
The cells fixed with 2.5% glutaraldehyde were post-fixed in

1% osmium tetroxide, dehydrated through graded ethanol

series, and embedded in Spurr’s resin. Sections were stained

with uranyl acetate and lead citrate. Ultrastructural changes

were examined using transmission electron microscope

(JEM-1200EX, Hitachi Ltd., Tokyo, Japan). ER luminal

diameter was analyzed as previously described, using

ImageJ2x software (Version 2.1.4.7, Wayne Rasband,

National Institutes of Health, USA) on six electron micro-

graphs taken at 12,000× magnification from three indepen-

dent studies.18

Cellular glucose uptake and TG

measurements
Cellular glucose uptake was assessed using 2-NBDG (11046,

Cayman, USA). The screening system was performed as

previously described, with some modifications.19 Briefly,

the cells were seeded in 96-well flat-bottomed plates with

1×104 cells /well in 100 μL culture medium. After exposure

to 100 μmol/L EA for 24 hrs, the adipocytes were starved for

1 hr in glucose-free media. Starved adipocytes were washed

three times with PBS and then preincubated with INS

(10 nmol/L, 91077C, Sigma, USA) for 15 mins. All cells

were then treated for 1 h with serum-free media containing

150 μg/mL of the 2-NBDG. After 1 hr, cells were washed

with PBS and the fluorescence was read at wavelength 475/

550 nm as instructed by the manufacturer. The level of TG

was measured using Triglyceride kit (A110-1, Nanjing

Jiancheng Bioengineering Institute, China).

Relative quantitative real-time RT-PCR
The cells were lysed in Trizol® Reagent (15,596,018,

Invitrogen, Carlsbad, CA, USA) and RNA was purified

according to the manufacturer’s instructions. Total RNA

was subjected to a reverse transcription reaction using

Prime Script RT reagent Kit With gDNA Eraser (Perfect

Real Time) (RR047A, TaKaRa, Dalian, China). Random

primers were obtained from (DINGGUO, Beijing, China).

The following PCR primers were used for real-time: sterol

regulatory element-binding protein (SREBP-1c, forward:

CTTCCGCCCTTGAGCTG, reverse: CTGGTGTGTCCG

TGTGG) and GAPDH (forward: GGATGATGTTCTGG

AGAGCC3, reverse: CATCACCATCTTCCAGGAGC).

The generated cDNA was carried out using a SYBR

green PCR kit (RR820A, TaKaRa, Dalian, China) on the

7500 Real-Time PCR system (Becton, Dickinson and

Company, USA), and the relative gene expression was

calculated by the 2−ΔΔCT method after normalization to

normalized to internal control GAPDH.

Western blot analyses
The cells were lysed in ice-cold lysis buffer. Samples with

approximately 30 μg of proteins were electrophoresed in 8%

SDS–PAGE gels, followed by transfer to polyvinylidene

difluoride membranes (0.4 μm) and blocking with 5% BSA

for 1 hr. After blocking, the membranes were incubated

overnight with FAS (1:1000 dilution, 3180S, Cell Signaling

Technology, USA), GRP78 (1:1000 dilution, 3183S, Cell

Signaling Technology, USA) IRE1-α (1:1000 dilution,

3294S, Cell Signaling Technology, USA), p-IRE1-α

(1:1000 dilution, ab124945, Abcam, UK), JNK (1:1000 dilu-

tion; 9252S, Cell Signaling Technology, USA), p-JNK

(1:1000 dilution, 4668S, Cell Signaling Technology, USA),

IRS-1 (1:1000 dilution, 2382S, Cell Signaling Technology,

USA), p-IRS-1 (Ser307) (1:1000 dilution, 2381S, Cell

Signaling Technology, USA), GLUT4 (1:1000 dilution,

A7637, ABclonal, China), GAPDH (1:1000 dilution;

5174S, Cell Signaling Technology, USA) at 4°C. Then, per-

oxidase-conjugated goat anti-rabbit IgG (1:5000

dilution, ZB-5301, Beijing Zhongshan Golden Bridge

Biotechnology Co, China) was used for 1 hr at room tem-

perature. Protein bands were detected by using ECLWestern

blotting chemiluminescent detection reagents (170–5060,

BIO-RAD, USA) and then quantified by ImageJ2x software

(Version 2.1.4.7, Wayne Rasband, National Institutes of

Health, USA). GAPDH was used as the internal standard to

normalize the signals.
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Statistical analysis
Statistical analyses were performed with SPSS software

(version 19.0, SPSS Inc., Chicago, IL, USA). The data are

expressed as mean ± SD. Student’s t-test and one-way

ANOVA were carried out, and significance was indicated

at P<0.05.

Results
Body weight
After 16-week feeding, rats treated with high-fat diets

containing margarine (HFD-M) gained significantly more

weight than those fed with standard chow (Figure 1A

and B). Similarly, rats maintained on the HFD-M group

accumulated significantly more retroperitoneal fat (total

(g) and % of total body weight) compared to CON rats

(Figure 1C and D).

Insulin resistance and serum lipids
The data are shown in Table 1. No significant differ-

ences were observed in fasting GLU level between the

CON and HFD-M groups. Compared with the CON

group, the levels of INS, HOMA-IR, TG, TCHO,

LDL-C, and HDL-C in HFD-M group were significantly

increased.

Markers of ER stress in subcutaneous and

retroperitoneal adipose tissue
Compared with the CON group, the expression level of

GRP78, known as an ER stress response indicator, was

markedly higher in HFD-M group. The same patterns of

change were observed for IRE1-α phosphorylation and

JNK phosphorylation, indicating that margarine feeding

caused ER stress in subcutaneous (Figure 2A-D) and retro-

peritoneal (Figure 3A-D) fat tissues of rats.

The effects of EA on the ultrastructure in

human mature adipocytes in vitro
Transmission electron microscope analysis of the ultra-

structure of the human mature adipocytes is shown in

Figure 4. The adipocytes exhibited normal integral

Figure 1 Body weight and retroperitoneal fat mass in control (n=10) and HFD-M (n=10) rats. The comparison between CON and HFD-M groups in (A) Body weight;

(B) body weight gain; (C)retroperitoneal fat weight; (D) retroperitoneal fat mass (% of total body weight). *P<0.05, **P<0.01.
Abbreviations: CON, control; HFD-M, high-fat diets containing margarine.
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structures, the central nucleus, the well-developed

organelles, and the presence of small lipid droplets

(Figure 4A and B). Compared with the control, the

width of the ER lumens in the treated group was sig-

nificantly larger (Figure 4C), indicating that ER stress

may occur after exposure to 100μmol/L EA for 24 hr in

human mature adipocytes.

Activated ER stress markers in mature

adipocytes exposed by EA
In vitro, indications of ER stress were tested in human

mature adipocytes. Compared with the control group, the

expression of ER stress-related protein GRP78, IRE1-α,

and JNK phosphorylation in EA exposure group was sig-

nificantly increased (Figure 5A–D). These results sug-

gested that ER stress occurred after exposure to

100 μmol/L EA for 24 hrs in human mature adipocytes.

Meanwhile, the administration of 4-phenylbutyric acid

(4-PBA) reduced GRP78 expression and the

Figure 2 Effects of HFD-M on the expression of ER stress-related proteins in subcutaneous fat tissue of rats. (A) Representative GRP78, p-IRE1-α, p-JNK Western blots;

Quantification of the Western blot membranes for (B) GRP78; (C) p-IRE1-α; (D) p-JNK. Data were presented as mean ± SD, n=6 each group; *P<0.05, **P<0.01.
Abbreviations: ER, endoplasmic reticulum; GRP78, glucose-regulated protein 78; p-IRE1-α, phosphorylated Inositol-requiring enzyme 1-alpha; p-JNK, phosphorylated c-Jun

n-terminal kinase.

Table 1 The comparison of serum glucose and lipid metabolism

measurements (mean±SD, n=10)

CON HFD-M

GLU (mmol/L) 10.16±2.72 11.10±1.03

INS (mIU/L) 17.85±8.55 28.82±10.54*

HOMA-IR 8.56±5.66 14.26±5.42*

TG (mmol/L) 0.27±0.04 0.33±0.05**

TCHO (mmol) 0.94±0.13 1.48±0.31**

LDL-C (mmol/L) 0.61±0.12 1.01±0.24**

HDL-C (mmol/L) 0.58±0.11 0.70±0.19**

Notes: *P<0.05, **P<0.01, compared with CON group using an independent

groups Student's t-test.
Abbreviations: CON, control; HFD-M, high-fat diets containing margarine; GLU,

glucose; INS, insulin; HOMA-IR, homeostasis model assessment of insulin resis-

tance; TG, triglyceride; TCHO, total cholesterol; LDL-C, triglyceride; HDL-C,

high-density lipoprotein-cholesterol.
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phosphorylation of IRE1-α and JNK, which indicated that

4-PBA reversed ER stress in mature adipocytes.

ER stress involves in impaired INS

receptor signaling induced by EA in

mature adipocytes
Capacity for glucose uptake was assessed. No significant

difference was seen between the treated groups

(Figure 6A). Changes in glucose transporter 4 (GLUT4)

expression were not obvious (Figure 6B and C). However,

the expression of serine phosphorylated INS receptor sub-

strate 1 (p-IRS-1) was significantly increased by EA expo-

sure (Figure 6D). Additionally, the administration of

4-PBA reduced p-IRS-1(ser) level in mature adipocytes.

ER stress involves in fat accumulation of

adipocytes induced by EA
Compared with the control group, TG level increased

after exposure to100 μmol/L EA for 24 hrs in human

mature adipocytes (Figure 7A). Compared with the EA

group, cells preincubated with 4-PBA have significantly

lower TG content (Figure 7A). The relative expression

of SREBP-1c mRNA was upregulated after EA exposure

and could be downregulated by 4-PBA administration

(Figure 7B). Compared with the control group,

the expression of fatty acid synthase (FAS) was

increased significantly by EA exposure and could be

effectively reduced by 4-PBA administration (Figure 7C

and D).

Figure 3 Effects of HFD-M on the expression of ER stress-related proteins in rat retroperitoneal fat tissue. (A) Representative GRP78, p-IRE1-α, p-JNK Western blots;

Quantification of the Western blot membranes for (B) GRP78; (C) p-IRE1-α; (D) p-JNK. Data were presented as mean ± SD, n=6 each group; **P<0.01.
Abbreviations: ER, endoplasmic reticulum; GRP78, glucose-regulated protein 78; p-IRE1-α, phosphorylated Inositol-requiring enzyme 1-alpha; p-JNK, phosphorylated c-Jun

n-terminal kinase.
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Discussion
The aim of the current research was to examine the under-

lying mechanisms of INS resistance and lipid metabolism

disorders of WAT induced by high-fat diets containing

iTFAs. In line with previous research on saturated fatty

acids rich diets,16,20 we observed that the rats maintained

for 16 weeks on the HFD-M gained significantly more body

weight and retroperitoneal fat mass compared to controls.

Retroperitoneal fat is an active endocrine organ that is

associated with the development of INS resistance and

dyslipidemia in patients with metabolic syndrome.21

HFD-M rats demonstrated significantly increased INS,

HOMA-IR, TG, TCHO, LDL-C, and HDL-C compared to

controls. Additionally, in the HFD-M-maintained rats,

increased expression of GRP78 and the phosphorylation of

IREI-α and JNK were significantly elevated. Together, these

findings indicate the potential for diets high in iTFAs to

induce positive energy balance and ER stress in rodents.

Further, human adipocytes exposed to EA for 24 hrs

demonstrated increased ER lumens width and expression

of ER stress markers. Interestingly, ER stress was reversed

by 4-PBA suggesting a potential therapeutic effect.

In the current study, INS resistance occurred in the rats

fed with HFD-M. Fasting GLU, INS, and HOMA-IR are

acknowledged as effective indicators associated with glu-

cose metabolism disorder. As we reported previously,16

INS levels and HOMA-IR were increased significantly

after the 16-week HFD-M regimen. Our findings support

previous animal studies demonstrating that high-TFA diets

induce insulin resistance in rodents22 and results in

impaired INS sensitivity in monkeys.23 Previous work on

humans also demonstrates that increased iTFAs consump-

tion is associated with INS resistance and lipid metabolism

disorder.24,25 A survey carried out in US adults reported

that higher plasma concentrations of total TFAs were

associated with T2DM.5

TFAs are known to affect lipid metabolism. In recent

years, enough evidence has been accumulated to reveal the

unfavorable effects of dietary iTFAs on lipid profiles.26 EA

is widely used as a specific biomarker of margarine intake

in several investigations and can sufficiently reflect the

bioavailability and the subsequent harmful effects of mar-

garine or iTFAs.27 Data from human studies have demon-

strated a positive relationship between blood EA level and

lipid parameters, such as LDL-C and TG.28 High iTFAs

intake is detrimental to cardiovascular health,29 and a strong

correlation between high dietary intake of iTFAs and a high

risk of CVDs has been consistently demonstrated.30 Lipid

profile including TCHO, LDL-C, and TG are routine bio-

chemical tests used to predict the risk for lipid metabolism

disorder. In the present study, the HFD-M rats had increased

concentrations of serum TG, TCHO, LDL-C, and HDL-C.

Similar results were reported in mouse models (Hwang et

al) where rodents fed HFD-M also demonstrated elevated

HDL-C and LDL-C levels.31 HDL consists of a heteroge-

neous group of particles with major differences in their

structural, biological and functional properties.32 Earlier

studies have indicated that higher HDL-C level is beneficial.

However, more recent evidence has challenged this idea. It

has been suggested that the high HDL-C levels may actu-

ally be associated with increased risk for coronary artery

Figure 4 ER stress induced by EA in human mature adipocytes. (A) Control group; (B) treated with 100 μmol/L of EA for 24 hrs; (C) quantitative analysis of ER luminal

diameter, as a surrogate marker for ER stress per cell using transmission electron microscope images. Results are representative averages of at least six images performed

from three independent experiments and are displayed as mean ± SD. **P<0.01. White arrow shows the ER lumen.

Abbreviations: ER, endoplasmic reticulum; EA, elaidic acid; LD, lipid droplets.

Dovepress Zhu et al

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
1631

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


disease.33 Although the current study did not perform

further examinations, recent research has indicated that

HDL particle subpopulations and HDL functionality play

a much more important role in atheroprotection than circu-

lating HDL-C levels.33

WAT is currently recognized as an active endocrine

organ with complex physiological functions in systemic

homeostasis, which also plays an important role in regu-

lating lipid release and storage.34 Excessive WAT mass,

either in peripheral or in visceral depot, is the consequence

of lipid accumulation in white adipocytes, which is the

central part of obesity development.35 Previous research

has suggested that multiple markers of ER stress have

been activated not only in the liver36 and hippocampus37

but also in obese adipose tissues of animals by diet

enriched lard.38

ER is a membrane-bound organelle in mammalian cells

that is responsible for proper folding, processing, and

trafficking of proteins. Numerous environmental, physio-

logical, and pathological insults disturb ER homeostasis,

known as ER stress, in which a collection of conserved

intracellular signaling pathways is activated to maintain

ER function for cell survival.15 The characteristic of ER

stress is that unfolded or misfolded protein retention in the

ER causes an unfolded protein reaction (UPR). The UPR

is mediated through three ER transmembrane receptors,

which are classified as types I and II. IRE1 and double-

stranded RNA-activated protein kinase-like endoplasmic

Figure 5 EA exposure activated markers of ER stress pathways in human adipocytes. (A) Representative GRP78, p-IRE1-α, p-JNK Western blots; quantification of the

Western blot membranes for (B) GRP78; (C) p-IRE1-α; (D) p-JNK. Results are representative averages of at least three independent experiments and displayed as means ±

SD. Compared to control group *P<0.05, **P<0.01; compared to EA-treated group, #P<0.05, ##P<0.01.
Abbreviations: ER, endoplasmic reticulum; EA, elaidic acid; 4-PBA, 4-phenylbutyric acid; GRP78, glucose-regulated protein 78; p-IRE1-α, phosphorylated Inositol-requiring

enzyme 1-alpha; p-JNK, phosphorylated c-Jun n-terminal kinase.
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reticulum kinase are type I proteins possessing protein

kinase activities. Activating transcription factor 6 is a

type II transmembrane protein encoding a transcription

factor, which corresponds to nonfunctional misfolded

proteins.39 GRP78 is the master of the UPR and can be

found in all eukaryotes.40 In the standard conditions of

balance in the cell, GRP78 is bounded in an inactive form

to IRE1 which is a transmembrane stress sensor of UPR.

When unfolded or misfolded proteins accumulate in the

ER, GRP78 is released from IRE1 to assist with the fold-

ing of accumulated proteins,41 resulting in activation of

p-IRE1 and signal transduction to the nucleus.42 IRE1

ultimately induces the activation of the JNK pathway.43

Previous work has reported the presence of IRE1-α in

adipose tissue44 and IRE1-α plays a crucial role in INS

receptor signaling.38 The IRE1-JNK branch activity of the

UPR could inhibit INS receptor signaling through direct

activation of serine phosphorylation of IRS-1.38,45 JNK

also plays an important role in lipid metabolism in

adipocytes.46,47 The current study demonstrates that the

expression levels of GRP78 and the phosphorylation of

IRE1-α and JNK were significantly increased in HFD-M

group. These activated markers indicate that margarine

feeding caused UPR to increase ER stress in rat subcuta-

neous and retroperitoneal fat tissues.

The increase of ER stress-related proteins plays a cau-

sal role in the development of obesity-associated meta-

bolic disorders in lean INS-sensitive and obese

INS-resistant patients.48 ER stress has been regarded as a

central feature of peripheral INS resistance and T2DM at

Figure 6 ER stress involves impaired insulin receptor signaling in human adipocytes. (A) Glucose uptake capacity; (n=6); (B) representative Western blots of GLUT4 and

IRS-1 in human mature adipocytes; (C) quantification of the Western blot for GLUT4; (D) quantification of the Western blot for IRS-1. (n=3); *P<0.05 compared to control

group. #P<0.05 compared to EA group.

Abbreviations: EA, elaidic acid; 4-PBA, 4-phenylbutyric acid; GLUT4, glucose transporter 4; IRS-1, insulin receptor substrate 1; p-IRS-1, phosphorylated insulin receptor

substrate 1.
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the cellular and organismal levels.38 It is also involved in

lipid metabolism through modulating the expression levels

of key enzymes involved in lipid synthesis or

modification.49 In the current investigation in vitro, EA,

as a typical biomarker of iTFAs, was used to assess

whether ER stress involves in INS action and lipid meta-

bolism in differentiated human adipocytes.

The results from the transmission electron microscopy

analysis demonstrated that the width of the ER in the

treated adipocytes was larger compared to the control.

We also demonstrated that expression of ER stress-related

protein GRP78, IRE1-α, and JNK phosphorylation in the

EA exposure group was significantly increased compared

to controls. Overall, our results verified that ER stress was

induced by EA in human mature adipocytes. 4-PBA is

regarded as a chemical or pharmaceutical chaperone

which is good at stabilizing protein conformation, improv-

ing ER folding capacity and facilitating the trafficking of

mutant proteins.50 It is used to repress ER stress activation

in vitro and in vivo.51,52 In our experiment, we found that

increased GRP78, IRE1-α, and JNK phosphorylation

induced by EA could be significantly downregulated

after preincubating with 4-PBA, illustrating that ER stress

is potentially reversible.

Glucose uptake in peripheral tissues is largely

mediated by an intrinsic membrane protein known as

facilitative glucose transporters (GLUTs),53 and GLUT4

is selectively expressed in INS-sensitive tissues such as

Figure 7 Effects of EA exposure on fat accumulation of human mature adipocytes. (A) TG content. (n=6); (B) relative expression of SREBP-1c mRNA. (n=6); (C)

representative FAS Western blots. (D) Quantification of the Western blot membranes for FAS. (n=3); Data are presented as means ± SD; Compared to control group

**P<0.01; compared to EA group ##P<0.01.
Abbreviations: TG, triglyceride; EA, elaidic acid; 4-PBA, 4-phenylbutyric acid; SREBP-1c, sterol regulatory element binding protein 1c; FAS, fatty acid synthase.
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muscle and adipose cells.54 It has been confirmed that the

ability of glucose uptake is associated with the expression

quantity of cellular GLUT4 in adipose.55 Similar to pre-

vious reports, we did not observe a prominent increase in

glucose uptake ability and the expression of GLUT4 in the

presence of EA in the present vitro experiment.56,57 These

results confirmed that the glucose uptake capacity was

functioning properly after EA exposure in mature adipo-

cytes. Moreover, previous research has suggested that the

INS-signaling cascade has sufficient plasticity to accom-

modate significant changes in specific components without

further altering glucose uptake.58 We explored whether the

INS action was altered by EA incubation since adipose

tissue is one of the three major target organs of INS.

Previous work has verified the role of ER stress in INS

resistance in several experimental systems by triggering

JNK activity via IRE-1 and inhibition of INS receptor

signaling.59,60 INS sensitivity can be improved by 4-PBA

through reversing ER stress in adipose tissue.61 It has been

shown that IRS-mediated INS receptor signaling dysregu-

lation is a common underlying mechanism that can pro-

duce and exacerbate INS resistance in many genetic and

physiological factors.62,63 INS signaling in adipocytes is

critical for the development of obesity.64 ER stress pro-

motes a JNK activity, which in turn inhibits INS receptor

signaling through direct activation of serine phosphoryla-

tion of IRS-1.38,45 In the present study, we observed that

EA exposure could stimulate the serine phosphorylation of

IRS-1 via activating ER stress, thereby impairing INS

receptor signaling. In addition, impaired GLUT4 translo-

cation to the membrane has also been reported to contri-

bute to INS resistance.65 Despite the fact that this was not

fully explored in the current study, the ability of glucose

uptake was maintained properly. Conflicting results exist

for the involvement of IRS-1 in INS-stimulated glucose

uptake. Evidence from studies of 3T3 L1 adipocytes as

well as adipocytes from non-INS-dependent diabetes mel-

litus patients suggested that other mechanisms that activate

phosphatidylinositol 3-kinase, such as through docking to

IRS-2, could play an important role in INS-stimulated

adipocytes glucose uptake.66,67 Furthermore, researchers

observed that superactivation of Rac-1, known as one of

the important signaling molecules in cascade activated by

INS, could trigger INS-independent GLUT4 translocation

via membrane accumulation of PI(3,4,5)P3, which results

in phosphorylation of Akt and AS160 that rescues INS

resistance in muscle cells.68

The ER is the major site of lipid metabolism, as many

enzymes involved in lipid metabolism are located in the ER.

Sterol regulatory element-binding proteins (SREBPs) are

transcription factors that belong to the basic helix-loop-

helix leucine zipper family and are involved in the tran-

scriptional regulation of lipogenic enzymes.69 SREBP-1c,

an isoform of SREBPs, is expressed in the adipocytes.70

Prior reports have suggested that an understanding of

SREBP-1c activation in the accumulation of TG

appears to be essential.71 ER stress can cause SREBP-1c

activation.72 Ning et al73 also observed that phosphorylation

of IRE1α (an upstream activator of X-box-binding protein

1, known as XBP1) and splicing (activation) of XBP1 was

elevated in the liver of mice with INS resistance/hyperinsu-

linemia induced by a high-fat diet; overexpression of the

activated XBP1 elevated the promoter activities of the

SREBP-1c and FAS genes. Researchers have confirmed

that JNK depletion affects basal levels of gene expression

involved in lipid metabolism in mouse adipocytes.46 And

JNK2/SREBP-1c pathway mediates INS-induced fatty acid

synthesis in human adipocytes.47 We found that the relative

expression of SREBP-1c mRNA is significantly upregu-

lated via EA induced ER stress. The expression of FAS,

known as SREBP-1c targeting enzymes for de novo fatty

acid synthesis,74 was also upregulated in adipocytes by EA,

and such an effect could be reversed by 4-PBA pre-incuba-

tion. Moreover, more TG content was detected in EA-trea-

ted group, which indicates that EA promoted lipid

accumulation in adipocytes. Collectively, these findings

demonstrated that EA exposure activated ER stress, thereby

upregulating the expression of lipogenic gene and contribut-

ing to lipid accumulation.

Conclusion
In summary, our results demonstrate the potential

mechanism of impaired INS signaling and disorder of

lipogenesis induced by iTFAs, which may be due to ER

stress activation in WAT. With respect to public health,

our data contribute valuable evidence for the importance

of healthy food choices and limited intake of iTFAs. In

addition, these findings suggested that WAT could be

regarded as a key target organ for inhibiting ER stress

to alleviate INS resistance and dyslipidemia and provide

a new approach to prevent and treat glycolipid metabo-

lism disorders–related chronic diseases such as T2MD

and CVDs.
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