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Abstract: Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain

presents a major unmet clinical need. While an intact central nervous system is required for

conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the

peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuro-

pathic pain. The genesis and propagation of action potentials is dependent on voltage-gated

sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers

changes in their distribution, expression and/or biophysical properties, leading to aberrant

excitability. Most existing treatment for pain relief acts through non-selective, state-depen-

dent sodium channel blockage and have narrow therapeutic windows. Natural toxins and

developing subtype-specific and molecular-specific sodium channel blockers show promise

for treatment of neuropathic pain with minimal side effects. New approaches to analgesia

include combination therapy and gene therapy. Here, we review how individual sodium

channel subtypes contribute to pain, and the attempts made to develop more effective

analgesics for the treatment of chronic pain.

Keywords: nociceptors, TTX, neuropathic, electrogenesis, CNS, PNS

Introduction
With a global incidence of 20–25%, chronic pain is a significant health problem that

significantly reduces the quality of life and presents a high economic burden.1,2

While both peripheral nervous system (PNS) and central nervous system (CNS)

processes underlie the pain experience, PNS changes are necessary and sufficient to

initiate and maintain CNS changes in chronic pain states.3,4 This gives reason to

focus on controlling pathophysiological changes in the PNS, which is more acces-

sible, and likely to have greater therapeutic impact than targeting the CNS.

Chronic pain that is neuropathic in origin is an important and unmet clinical

problem.5 Existing treatments for neuropathic pain deliver inadequate pain relief

and/or intolerable side effects necessitating the development of more effective

therapeutics.6 Neuropathic pain (a result of somatosensory disease or damage) is

distinguished from chronic nociceptive pain (a result of tissue disease or damage in

which the nociceptive system is intact) in its underlying mechanisms and the

requirement for distinct therapeutics.7 Nociceptor hyperexcitability induced by

peripheral nerve injury is an established peripheral mechanism of neuropathic

pain.8 Neuropathic pain has diverse etiologies, but hyperexcitability can explain

positive clinical symptoms common to many neuropathic pain syndromes such as

spontaneous ongoing pain (not stimuli-induced) and evoked pain/hypersensitivity
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(stimuli-induced), itself comprising allodynia (increased

response to otherwise non-noxious stimuli) and hyperalge-

sia (increased perception of noxious stimuli).8

Voltage gated sodium channels (VGSCs) underlie the

transduction and propagation of nociceptive signals and

VGSC subtypes are selectively expressed in dorsal root

ganglia (DRG) neurons.9

The expression and properties of VGSCs are dramati-

cally altered by nerve injury, implying that the modulation

of sodium currents critically contributes to the pathophy-

siological hyperexcitability that is associated with neuro-

pathic pain states. Nav1.3, Nav1.7, Nav1.8, Nav1.9 are of

particular interest due to their preferential distribution in

nociceptors. Their importance in pain signaling is demon-

strated by animal models of pain and human pain

disorders.9 It is desirable but challenging to develop sub-

type- specific VGSC blockers which can minimize side

effects outside the pain axis.

A brief overview of the pain axis
Pain is the unpleasant sensory and emotional experience

associated with actual or potential tissue damage.10 The

perception of pain begins with signal transduction in noci-

ceptors, which are either slow conducting myelinated C

fibers or thinly myelinated Ad fibers. Most nociceptive

afferents form glutamatergic synapses onto spinal second-

order neurons in the superficial laminae (I and II) in the

dorsal horn where integration and processing of sensory

inputs occurs. The net output is then carried by several

pathways to distinct higher-order brain centers to signal

the presence, location and intensity of noxious stimuli.11,12

An overview of VGSCs
VGSCs are hetero-multimeric, typically consisting of an

-subunit associated with one or more -subunits.13 Nine mam-

malian genes (SCN1A-SCN5A and SCN8A- SCN11A)

encode nine -subunits NaV1.1-NaV1.9 (henceforth referred

as channels). These have distinct electrophysiological prop-

erties and characteristic patterns of tissue distribution.9

Conserved transmembrane segments of the -subunit are orga-

nized into four homologous domains (I-IV), each with six

transmembrane -helices (S1-S6). The -subunit makes up the

voltage sensor and channel pore which includes the selectiv-

ity filter.14 Most known pharmacological binding sites are

located within the-subunit.15 Smaller associated beta subu-

nits (30-40kDa) are encoded by the gene SCN1B- SCN4B

and multifunctional. For example, they modulate channel

gating properties, facilitate channel stabilization within

the plasma membrane and are involved in channel

localisation.16,17

VGSCs may be distinguished by their primary struc-

ture and kinetic properties.18

VGSCs transit between distinct conformational states

in response to changes in membrane potential: resting

(closed), activated (open), inactivated (closed), and rep-

riming (a period of recovery from inactivation in which

the channel cannot open in response to a depolarization).

The inactivated state itself may exist as fast-inactivated

(within milliseconds) and slow-inactivated (seconds).19

Pharmacologically, VGSCs may be classified by their

sensitivity to the neurotoxin tetrodotoxin (TTX) (Table 1).

TTX binds in the channel pore where a single residue

determines susceptibility to blockade.9 A serine (Nav1.8,

Nav1.9) or cysteine (Nav1.5) confers resistance to M TTX

concentrations, while the presence of aromatic residues

(like tyrosine in Nav1.7) engages TTX in a cation- inter-

action that increases the affinity of TTX-channel interac-

tion and confers sensitivity to nM TTX concentrations.14

Dorsal root ganglia (DRG) neurons express more VGSC

subtypes (up to five) than any other neuronal cell type.20

VGSCs are synthesized in the DRG cell body and accumu-

late at targets including nodes of Ranvier and peripheral

terminals via axoplasmic transport mechanisms.21,22 This

trafficking is dynamically regulated to ensure the correct

complement of VGSCs arrive to confer an appropriate level

of excitability.23

While Nav1.1 and Nav1.6 expression is common to CNS

and PNS neurons, Nav1.3, Nav1.7, Nav1.8, Nav1.9 are spe-

cific to peripheral neurons.20 Nav1.7, Nav1.8 and Nav1.9 are

expressed in sensory and myenteric neurons, and Nav1.7 is

additionally expressed in sympathetic neurons.14

Immunocytochemical techniques reveal that smaller DRG

neurons (likely nociceptors) express both TTX-S and TTX-

R channels.24,25 The selective expression of Nav1.7, Nav1.8

Table 1 The pharmacological classification of VGSCs according

to TTX sensitivity

Fast-inactivating “TTX-

resistant” (TTX-R)

Slow-inactivating “TTX-

sensitive” (TTX-s)

Nav1.5 Nav1.1

Nav1.8 Nav1.2

Nav1.9 Nav1.3

Nav1.4

Nav1.6

Nav1.7
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and Nav1.9 in functionally identified nociceptors suggests

they have evolved a specialized role in pain processing.26–28

Electrogenesis in nociceptors:
normal and pathological
It is useful to first consider the processes required for

normal nociception. Different modalities of noxious sti-

muli activate specific thermal-, mechanical- or chemical-

sensitive transducer proteins and are converted into a

membrane depolarization known as a generator potential.

A generator potential exceeding a threshold is amplified by

VGSCs to initiate an action potential that is propagated.1

The termination of nociceptors in free nerve endings sug-

gests that sensory transduction is an intrinsic property of

the afferent terminal.1

Acute nociceptive pain is a physiological response to

external noxious stimuli) that can facilitate survival by

warning of impending tissue damage.20 However, pain

that is prolonged, magnified or spontaneous is pathologi-

cal. Hypersensitivity at the site of inflammation is largely a

result of sensitization (reduced threshold and increased

excitability) of the peripheral terminals of nociceptors

mediated by pro-inflammatory mediators.29 Pain may per-

sist depending on the duration and strength of the immune

response.

Ectopic activity underlies
neuropathic pain
The most common complaint of chronic neuropathic pain

patients is spontaneous, ongoing pain, caused by the emer-

gence of sustained discharge at ectopic sites (pacemaker

activity). Except for direct CNS injury, pacemaker activity

predominantly originates in the PNS, and initiates and

maintains “central sensitization”. This is not simply a

reduction in threshold but can change the sensory modality

of afferents from touch to pain.30,31 Peripheral analgesics

aim to prevent ectopic discharges from gaining access to

the CNS, which can eliminate both ongoing pain and

allodynia.32

Studies show that in DRG neurons, subthreshold mem-

brane potential oscillations are necessary to trigger ectopic

repetitive firing. An oscillation sinusoid that crosses

threshold evokes the first spike, and depolarizing after-

potentials (DAPs) maintain an impulse train.33 It has

been showed that the rapid rate of depolarization in the

oscillation sinusoid can overcome membrane accommoda-

tion to enable spiking.34 The contribution of a few extra

millivolts of depolarization is comparatively less important

since slow ramp depolarization typical of physiological

stimuli did not evoke spikes due to pronounced membrane

accommodation. Chronic nerve injury increases the pro-

portion of DRG neurons with subthreshold oscillations and

consequently the intensity of ectopic spike discharge.35

Partial Na+ substitution, or bath application of lidocaine

or TTX, eliminated oscillations and the associated ectopic

discharge while preserving axonal spike propagation.35

This suggests a Na+ conductance sensitive to TTX con-

tributes to oscillations and underlies the molecular patho-

genesis of chronic nerve injury.36

Matzner (1992) showed that the threshold for repetitive

discharge is distinct to that for evoking a single spike, the

former being significantly more sensitive to changes in

VGSC density.37 A simulation of increased Na+ conduc-

tance predicts a modest reduction in single- spike thresh-

old, facilitating repetitive spiking. The gap between the

two thresholds constitutes a “therapeutic window” within

which ectopic firing can be suppressed without blocking

normal sensory signaling.38 This is exploited by “mem-

brane- stabilizing” drugs that block VGSCs: systemic

administration of lidocaine selectively silences ectopia in

injured DRG nerves and neuromas without blocking affer-

ent nerve conduction.39

Current evidence suggest that membrane remodeling

triggered by nerve injury underlies ectopic activity.

Remodeling involves changes in the distribution, expres-

sion, and/or biophysical properties of ion channels that

alters neuronal excitability. Pathological accumulation of

various VGSC subtypes occurs in neuroma endings and

patches of demyelination for several reasons.39–41 Altered

trafficking disrupts fast axonal transport leading to the

local accumulation of channel-loaded transport vesicles;

or demyelination that removes myelin-mediated suppres-

sion of channel insertion; or axotomy which removes

normal downstream targets of distribution all promote

redistribution into remaining competent membrane,

including sites upstream to injury.23,41 Thus, both permis-

sive and promotional factors generate ectopic pacemaker

sites.

Peripheral nerve injury also alters membrane excitability

by triggering dysregulated transcription of VGSC genes to

produce an abnormal repertoire of VGSCs.42 This is not

simply a recapitulation of developmentally expressed

VGSC subtypes, since a different set of VGSCs is upregu-

lated post-injury.43 In rat DRG neurons, axotomy upregulates
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previously undetected Nav1.3 channels and downregulates

abundant Nav1.8 and Nav1.9 channels.44–46

This partly due to interrupted access to peripheral

sources of neurotrophic factors47 For example, nerve

growth factor (NGF) delivery to axotomised DRG neurons

upregulates TTX-R currents.45 Therefore, post-injury

remodeling of membrane electrical properties in response

to neurotrophic factors may be mechanism for aberrant

excitability, leading to chronic pain.

Electrophysiological properties of
individual VGSCs (Table 2)
Nav1.7 produces a fast -activating and -inactivating,

slowly-repriming TTX-S current.49 Nav1.7 displays slow

onset of inactivation, a property that permits it to remain

available for activation and produce a ramp current in

response to small slow depolarizations.50 Thus Nav1.7

acts as a “threshold channel” important in early phases

of electrogenesis: it amplifies generator potentials to bring

the neuron to the more depolarized firing threshold of

Nav1.8.20 It thereby sets the gain in nociceptors where it

is co-expressed with Nav1.8.51,52

Nav1.8 produces a slow-inactivating TTX-R current

characterized by significantly depolarized activation and

inactivation and rapid recovery from fast inactivation.53–55

This enables Nav1.8 to contribute most of the inward

current in the action potential upstroke.56 Han et al 2015

demonstrated that human Nav1.8 displays slower inactiva-

tion and larger persistent and ramp currents compared to

rat Nav1.8, paralleled by longer-lasting action potentials

and increased firing frequency.57 Thus Nav1.8 channels

play a major role in regulating the firing properties of

DRG neurons. It is important to take in consideration the

distinct properties of human and rat Nav1.8 channels when

extrapolating from rodent pain studies to humans and

testing novel blockers for pain treatment.57

Nav1.9 mediates a TTX-R current that is challenging

to study due to current instability and poor expression in

heterologous systems.58,59 Nav1.9 characteristically acti-

vates at hyperpolarized potentials and displays an extre-

mely slow inactivation. The significant overlap of

activation and inactivation produces large “window cur-

rents” (a wide range of voltages in which a channel may

open) around the resting membrane potential (RMP),

which are predicted to increase depolarization of the

RMP and so can boost weak stimuli.44 The more hyperpo-

larized activation voltage shown to be around −80 mV in

human DRG neurons, indicates that Nav1.9 can be acti-

vated by small sub-threshold depolarizations to generate

persistent sodium currents.60,61 Knockout studies confirm

that Nav1.9 produces the persistent TTX-R current: TTX-

R was eliminated in DRG neurons of Nav1.9-knockout

mice but restored by expression of recombinant Nav1.9

channels in these neurons.62 The extremely slow kinetics

of Nav1.9 suggest that it minimally contributes to the

action potential upstroke. Instead, current evidence sup-

ports its role as a threshold channel, through contributing a

Na+ conductance that regulates the RMP and prolongs the

Table 2 properties of VGSCs and their role in generating action potentials (AP)

Channel subtype Unique biophysical

characteristics

Role in action potential generation

Nav1.3 Rapid repriming.

Large ramp current.

Persistent current.

Ectopic firing when mis-expressed in injury

Nav1.7 Slow repriming.

Slow onset of inactivation leading

to large ramp current.

Ramp current amplifies small depolarizing inputs.

Nav1.8 Rapid repriming.

Very depolarized activation and

inactivation.

Major contributor to action potential upstroke. Supports repetitive firing in

response to depolarizing input.

Nav.1.9 Hyperpolarised activation.

Slow activation kinetics.

Ultra-slow inactivation.

Broad overlap between activation

and fast inactivation.

Amplifies and prolongs small depolarizations close to RMP. May be involved in

setting RMP. May maintain activation of Nav1.8.

Ma et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Journal of Pain Research 2019:122712

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


depolarizing response to subthreshold stimuli, lowering

the threshold for single action potentials and supporting

repetitive firing.63 Computer simulations show that Nav1.9

conductance depolarizes the cell resting potential even at

channel densities as low as 20% of the density estimated to

be present in DRG neurons, supporting this conclusion.64

Contribution of individual VGSCs to
pain
Nav1.3
Nav1.3 expression in rat embryonic neural tissues is lost

within a few days after birth.43 Initial interest in Nav1.3

was due to strong evidence for its re- expression in pri-

mary-, secondary-, and third-order neurons following per-

ipheral nerve and after chronic constriction injury (CCI) of

the sciatic nerve in adult rats, while other channel subtypes

are downregulated.44,60,64,65 Nav1.3 upregulation is paral-

leled by the emergence of a rapidly-repriming TTX-S

current.36 Re-expression and the property of fast recovery

from inactivation suggests the role of Nav1.3 in sustaining

higher-than-normal frequency firing in chronic pain

conditions.48 This is compatible with the observation of

Nav1.3 accumulation within the transected axon tips of

both rat and painful human neuromas, as well as the

reversal of neuropathic pain behavior by intrathecal

administration of oligonucleotides (ODN) against Nav1.3

mRNA.44,64,66,67

However, the specificity of antisense studies is not

absolute and using different ODNs failed to replicate the

finding.68 Moreover, global or DRG-specific knock- out of

Nav1.3 with no genetic compensation, does not impair

pain behavior after nerve injury.69 The increase in Na+

currents contributed by upregulated Nav1.3 appears to be

insignificant, and injury-induced hyperexcitability is likely

to be mediated by other VGSC subtypes.20 It appears that

Nav1.3 is neither necessary nor sufficient to drive neuro-

pathic pain, ruling it out as an effective analgesic target

and ATP.79,80

Nav1.7
Animal studies of inflammatory pain indicate a role for

Nav1.7 in acquired channelopathies. Peripheral tissue

inflammation significantly increases TTX-S current den-

sity in DRG neurons, paralleled by increased Nav1.7 tran-

script and protein levels. The increase in Nav1.7 is more

robust than that of Nav1.3, the other TTX-S channel

upregulated under these conditions.81 NGF, an important

inflammatory can also increase Nav1.7 expression.82,83

These findings suggest that upregulation of Nav1.7 leading

to neuronal hyperexcitability is important in inflammatory

pain signaling.52

This is supported by both knock-down (KD) and

knock-out (KO) mice studies. Global Nav1.7 deletion is

neonatal lethal. Conditional Nav1.7 KO in Nav1.8-positive

nociceptors leads to loss of acute and inflammatory pain,

and selective Nav1.7 KD attenuated inflammatory

hyperalgesia.70,71 Nav1.7 KO in nociceptors preserved

neuropathic pain behavior of mice, yet a class of benzaze-

pinone Nav1.7 blockers reversed tactile allodynia in a rat

model of neuropathic pain.71,84 Perhaps a contribution of

Nav1.7 to neuropathic pain lies in a very limited popula-

tion of Nav1.8-negative DRG neurons.48

SCN9A located in chromosome (2q31-32) encodes

Nav1.7. Genetic studies that directly link SCN9A muta-

tions to three inherited human pain syndromes strongly

implicates Nav1.7 in pain-signaling.85 Dominantly-inher-

ited gain-of-function Nav1.7 mutations lead to severe pain

in inherited erythromelalgia (IEM), characterized by recur-

rent episodes of bilateral burning pain, erythema and mild

swelling in the extremities triggered by mild warmth or

physical exertion; and in paroxysmal extreme pain disor-

der (PEPD), a visceral pain condition characterized by

paroxysms of rectal, ocular or mandibular burning pain

that may be induced by bowel movement or probing of

perianal areas.86–89 Pain in these syndromes is either

evoked by mild stimuli or spontaneous, closely resembling

neuropathic pain symptoms. In contrast, recessive loss-of-

function mutations lead to truncated non-functional

Nav1.7 channels and congenital insensitivity to pain

(CIP), where patients are otherwise normal apart from

the severe loss of pain perception and anosmia.52,90,91

This provides genetic validation for Nav1.7 to be a pro-

mising analgesic target with minimal side effects.

Ten Nav1.7 missense mutations have been identified in

early- and delayed-onset IEM, and eight mutations in

PEPD.86 Biophysical characterization of these mutations

reveals that IEM mutations in Nav1.7 affect channel

regions involved in activation, while PEPD mutations

affect regions regulating fast-inactivation.13 Documented

IEM mutations in Nav1.7 all significantly hyperpolarize

activation voltage-dependency; some slow deactivation

(transition from an open to closed state) and increase the

ramp response to small slow depolarizations.20 In contrast,

PEPD mutations do not affect activation but depolarize

fast inactivation voltage-dependency and may make
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inactivation incomplete resulting in a persistent current.20

Therefore, although the mechanisms for increased Na+

current through mutant Nav1.7 channels differ, lowered

activation in IEM and impaired inactivation in PEPD

both drive DRG neuron hyperexcitability, consistent with

warm-evoked pain in IEM and normal bowel movement

evoked pain in PEPD patients. This provides an under-

standing how Nav1.7 contributes to pain pathophysiology

at a molecular level.

Whole cell current-clamp studies confirmed that IEM

Nav1.7 mutations lead to neuronal hyperexcitability. Wild-

type or mutant Nav1.7 (L858H, F1449A, A863P) were

transfected into DRG neurons and the effects of mutations

on firing properties were investigated.92–94 As predicted,

IEM mutants lower the threshold for single action poten-

tials and increase firing frequency in response to supra-

threshold stimuli. The PEPD mutant (M1627K) increases

DRG firing frequency.19 Therefore, hyperexcitbailty of

nociceptive DRG neurons induced by mutant Nav1.7

channels can explain pain associated with IEM and PEPD.

Interestingly, the Nav1.7 mutant (L858H) produces

functionally opposing phenotypes of hyperexcitability in

DRG and hypo-excitability in sympathetic (superior cervi-

cal ganglion, SCG) neurons. This may be explained by the

selective presence of Nav1.8 in sensory but not sympathetic

neurons. Introduction of Nav1.8 into SCG rescues SCG

firing properties.92 Sympathetic neuron hypoexcitability

can explain attenuated cutaneous vasoconstriction and

skin flushing observed in IEM and PEPD patients, although

it is unclear why there is no global sympathetic dysfunction.

While highlighting the role of Nav1.8 in supporting neuron

hyperexcitbailty (further discussed in 6.3.1), this example

illustrates that VGSCs do not act in isolation to alter neu-

ronal excitability. The impact of an ion channel mutation on

neuronal excitability is not necessarily predictable solely

based on changes in the mutated channel; likewise, the

predicted effects of drugs targeting a particular VGSC

may not translate to functional effects. The ensemble of

ion channels present in the cell must be considered.

IEM is generally refractory to pharmacotherapy.

VGSC blockers like lidocaine or mexiletine are largely

ineffective, a case of early onset IEM (N395K) suggest-

ing this results from reduced drug affinity of the mutant

channel.52,86,95 By contrast, PEPD symptoms are well

controlled by the anti-convulsant VGSC blocker carba-

mazepine, a use-dependent inhibitor that preferentially

binds and stabilizes the inactivated state.19 Hence coun-

teracting impaired inactivation of PEPD mutants can

account for drug efficacy. Carbamazepine is not expected

to be effective for IEM patients since most IEM muta-

tions do not alter channel inactivation. These findings

demonstrate how drug efficacy depends on the effect of

the underlying genetic mutations on channel function.

Nav1.8
A role for Nav1.8 in initiating and maintaining inflamma-

tory pain is well documented in animal studies.96 Nav1.8-

null mice have impaired NGF- and carrageenan- induced

thermal hyperalgesia.77,97 Visceral inflammatory pain

responses were impaired after capsaicin, a model in

which hyperalgesia and pain are maintained by ongoing

activity due to sensitization on initial application, consis-

tent with Nav1.8 expression in all DRG neurons innervat-

ing the colon.98,99 This supports the essential role of

Nav1.8 in mediating spontaneous activity in sensitized

nociceptors.78 The role for Nav1.8 in inflammatory pain

is further supported by the upregulation of Nav1.8 in DRG

neurons in rats after direct treatment with inflammatory

mediators.81,100–102 Nav1.8 anti-sense treatment demon-

strated Nav1.8 TTX-R channels to be involved in afferent

nerve sensitization after chemical irritation of the rat blad-

der, suggesting them to represent a new target to treat

visceral inflammatory pain.76

The role of Nav1.8 in neuropathic pain is less under-

stood. Normal neuropathic pain behavior is observed in

Nav1.8 KO mice as well as in double Nav1.7/Nav1.8

KO.71,97 This argues that Nav1.8 does not contribute to

neuropathic pain. Nav1.8 knock-down by antisense ODN

or siRNA attenuated mechanical allodynia and hyperalge-

sia in animal models of chronic pain, implicating a func-

tional role for Nav1.8 at least in the expression of

experimental neuropathic pain.72,74 However, this was

not immediately obvious since peripheral nerve injury

downregulated Nav1.8 mRNA, protein and associated

TTX-R currents in injured axons.46,60 Later, functional

Nav1.8 channels were observed to be redistributed in

uninjured afferents, possibly in response to inflammatory

cytokines like NGF produced during Wallerian

degeneration.75,103 Therefore, an injury-induced redistribu-

tion of Nav1.8 to uninjured axons leading to hyperexcit-

ability provides a plausible explanation for how Nav1.8

contributes neuropathic pain in animal models. Blocking

Nav1.8 pharmacologically or the processes underlying

redistribution may selectively eliminate neuropathic pain

behavior.75
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In chronic neuropathic pain patients, pre-synthesized

channel proteins translocate and accumulate in sites prox-

imal to injury and in neuromas after an initial reduction in

Nav1.8 expression, leading to ectopic firing and persistent

hypersensitivity.66,104,105 This supports Nav1.8 as a useful

target to treat chronic local hypersensitivity

More convincing data comes from gain-of-function

mutations in SCN10A encoding Nav1.8, identified in

human patients with painful neuropathies.106–108 Current

clamp showed that mutations (L554P, A1304T), others

reduce current threshold and increase firing frequency in

response to supra-threshold stimuli depolarize resting

potential (A1304) or induce spontaneous firing of small

DRG neurons including nociceptors (L554P). The first

three changes would lower threshold, or increase the inten-

sity of evoked pain, while the latter change would con-

tribute to spontaneous pain. Subtle changes in channel

biophysics caused by Nav1.8 mutations markedly alter

neuronal excitability, highlighting the importance of even

small changes in human Nav1.8 channel properties for

pain signaling.106

Nav1.9
Animal studies support a role for Nav1.9 in inflammatory

pain. Nav1.9-null mice have greatly impaired or absent

inflammatory hyperalgesia in response to inflammatory

mediators.79,80,109 Second messengers like prostaglandin

E2 acting through a G protein-coupled pathway, increases

Nav1.9 current density in DRG neurons in vitro; whilst

treatment with IL-1 increases persistent TTX-R that is

associated with Nav1.9 in a p38 mitogen-activated protein

kinase (MAPK)-dependent manner.102,110 These findings

support the notion that various inflammatory mediators

potentiate Nav1.9 currents to maintain inflammation-

induced hyperalgesia. Thus Nav1.9 is an attractive target

to develop analgesics for inflammatory disorders.

The correlation of Nav1.9 activity with neuropathic

pain is uncertain in animal models. Nav1.9 expression is

downregulated in injured neurons without a significant

change in neighboring uninjured neurons.36,45,111

Antisense ODN-mediated Nav1.9 KD did not ameliorate

neuropathic pain.73 Nav1.9 KO mice show impaired

somatic inflammatory pain behavior, but unaltered neuro-

pathic pain.79,80 However, orofacial neuropathic pain

(characteristic of trigeminal neuralgia) produced by con-

striction of the infraorbital nerve in mice is dependent on

Nav1.9.112 Moreover, Nav1.9 levels increase in large-dia-

meter neurons of diabetic rats but are unaltered in small

DRG neurons suggesting a contribution of Nav1.9 to dia-

betic neuropathy pain.113 Thus current evidence indicates a

role for Nav1.9 in inflammatory, diabetic neuropathy and

orofacial neuropathic pain.

Seven different mutations in SCN11A encoding Nav1.9

channels identified in peripheral neuropathy patients con-

firm Nav1.9 involvement in neuropathic pain. For example,

the missense mutations (I381 and L1158P) reduce current

threshold and increase firing frequency in response to

supra-threshold stimuli, leading to hyperexcitability.114

Implications for therapeutic
approaches for neuropathic pain
Small molecule pharmacotherapy
Currently, most VGSC blockers clinically used to alleviate

pain are non-selective as they bind to highly conserved

residues in the pore domain. Blockade is often state-

dependent. The local anesthetic lidocaine more readily

accesses channels in the open state and exhibits highest

affinity for fast-inactivated state.115 These underlie its use-

dependence (blockage increases with firing frequency),

thereby limiting hyperexcitability. Systemic lidocaine is

shown to be effective in a variety of neuropathic pain

states, providing long-term relief with minimal side effects

if infusion is limited to five mg/kg/hour.116 Topical lido-

caine (5%) is effective for post-herpetic neuralgia (PHN)

in which pain is triggered at a specific dermatome.117

Other clinically effective agents include anticonvulsants

carbamazepine and lamotrigine for human immunodefi-

ciency virus-associated neuropathic pain, the anti-dys-

rhythmic mexelentine and tricyclic antidepressants (also

block neuronal VGSCs).118–121 Despite their uses, the

lack of selectivity of current analgesics to VGSC subtypes

lead to narrow therapeutic windows and limited efficacy.

It is desirable for drugs to selectively block ectopic

hyperexcitability while preserving physiological nerve

conduction. Lacosamide is an effective anticonvulsant

that is also a promising analgesic. It effectively reduces

pain-associated behavior with minimal adverse effects in

animal models of neuropathic pain, and is successful as

monotherapy for diabetic neuropathic pain.122–124 It acts in

a novel mechanism by selectively enhancing slow

inactivation.125 Whole-cell patch-clamp electrophysiology

showed that at a holding potential of −80 mV, Lacosamide

at clinically relevant concentrations (10–70 M) effectively

reduces Nav1.7 and Nav1.8 currents and to a lesser extent

Nav1.3.95 It only enhances the voltage-dependence of

Dovepress Ma et al

Journal of Pain Research 2019:12 submit your manuscript | www.dovepress.com

DovePress
2715

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


steady state inactivation, contrasting with carbamazepine

and lidocaine that enhance steady- state fast-inactivation.

Moreover, Lacosamide demonstrated a greater ability to

selectively block inactivated rather than resting VGSCs.

This suggests a greater ability to inhibit chronically depo-

larized neurons while sparing those with normal RMP,

which predicts a better safety profile.95

Molecularly-selective blockers
One strategy of improving selectivity is engineering agents

that bind poorly conserved regions outside the pore. The

term “molecularly-selective” implies inhibition is indepen-

dent of channel state.126 PF-05089771 (Pfizer) is an aryl

sulfonamide compound with 1000-fold selectivity for

Nav1.7 over Nav1.5 and Nav1.8, stabilizing Nav1.7 in a

non- conductive state.127 It is currently in Phase II trials

(NCT02215252) to treat diabetic peripheral neuropathy

pain. Current data shows that sulfonamides present a prin-

cipal class used to develop Nav1.7 inhibitors.126

Nav1.8-specific blockers
A-803467 is a potent and highly selective Nav1.8 blocker,

exhibiting up to 1000-fold greater potency for Nav1.8

blockage than other VGSC subtypes; blockage is voltage-

dependent without significant frequency-dependence.128 A-

803467 effectively suppressed spontaneous and electrically

evoked firing in rat DRG neurons, and dose- dependently

reduced nociception in experimental pain model. A-803467

was found to be most effective in reducing pain in models of

neuropathic and inflammatory pain. It is interesting that the

analgesic profile of A-8034687 is consistent with the pat-

tern of anti- nociceptive effects of antisense OGN treat-

ment. The fact that analgesic effects are not equivalent

across all pain models suggests that Nav1.8 channels may

differentially mediate certain forms of nociceptive proces-

sing, or that other VGSC subtypes contribute to nociception

in specific pain states. Furthermore, A-803467 via spinal or

systemic administration can attenuate both spontaneous and

mechanically evoked firing of wide dynamic range neurons

in the dorsal horn of nerve-injured rats.129 Although for-

mulation of A-803467 suitable for human use is challenging

due to poor bioavailability, its identification proves that

subtype-specific VGSC blockers can be synthesized.

Toxins
Natural neurotoxins are highly potent, non-selective

VGSCs blockers with therapeutic potential. TTX shows

little selectivity for TTX-S channels in the nM range but

have up to

100-fold reduced affinity to cardiac Nav1.5 channels.58

Despite lack of selectivity, a phase III trial although under-

powered, indicates that subcutaneous TTX (TEC-006)

may provide clinically meaningful analgesia for persistent

refractory cancer pain.130 Although selectivity and sys-

temic toxicity of toxins constrains clinical use, they are

promising scaffolds for more specific inhibitors.

Peptide -conotoxins of marine cone snails, GIIIA and

GIIB, block the rat skeletal muscle Nav1.4 by binding

neurotoxin site 1.131 It is desirable to develop - conotoxin

derivatives targeting neuronal VGSC subtypes. MrVIB is a

synthetic -conotoxin showing significant analgesic activity

in animal models of pain due to a 10-fold higher affinity

for Nav1.8 than other VGSC subtypes.132 MrVIB there-

fore provides a basis for development of Nav1.8-selective

blockers that will have greater therapeutic index than non-

selective blockers like lidocaine.

Peptide tarantula toxins bind and impede the move-

ment of VGSC voltage sensors, thereby reducing the

peak of Na+ conductance.133 Some are subtype-selective.

ProTx-II shows up to 50-fold greater selectivity for

Nav1.7 than Nav1.5 channels, whilst Huwentoxin-I and

-IV have virtually no effects on muscle VGSCs but

potently inhibit neuronal TTX-S channels particularly

Nav1.7.133–136 Developing analgesics using large peptide

toxins is advantageous since their interaction with multiple

residues increases subtype-specificity. Moreover, their

charge prevents them from crossing the blood-brain barrier

(BBB), limiting effects to the periphery. However, peptide

toxins typically have poor bioavailability on oral adminis-

tration limiting their clinical utility.12

Combination therapy
The link of Nav1.7 to human pain disorders has energized

a focus on Nav1.7 as a logical analgesic target that in

theory, should have minimal side effects. Potent specific

antagonists have been tested in humans but with limited

success in replicating a CIP phenotype.137 Surprisingly, an

increased selectivity of inhibitors for Nav1.7 is associated

with reduced analgesic potency. An explanation is pro-

vided by opioid-mediated analgesia that seems to account

for most of the CIP phenotype. The major role of opioids

is supported by analgesia in Nav1.7-null mutant mice and

humans shown to be reversible by naloxone (opioid

antagonist). Loss of Nav1.7 expression is linked to upre-

gulation of Penk (precursor of met-enkephalin). High
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levels (0.5 M) of TTX can produce complete Nav1.7 block

in wild type DRG neurons that also leads to opioid upre-

gulation; but TTX at five times the IC50 for Nav1.7 could

prevent enhanced encephalin expression. This suggests

that recapitulation of the CIP phenotype requires a 100%

Nav1.7 block, an unrealistic pharmacological goal.138

Thus, combining specific Nav1.7 antagonist with opioid

or enkephalinase blocker should provide an alternative

strategy to produce analgesia.

Gene therapy
Gene therapy enabling cell-type specific inhibition of neu-

ronal excitability is a potential strategy, but technical pro-

blems present a major challenge. Control of gene

expression through a drug-dependent regulation system

maintains appropriate levels of gene products within the

therapeutic window. Examples are adeno-associated virus

(AAV)-mediated gene delivery, but irreversible gene silen-

cing and the lack of neuron-specificity are potential pro-

blems;the Tet-on system is limited by an immune response

to components of the viral delivery system.137,139

Conclusion
Peripheral nerve block has been long used to treat pain

conditions through inhibition of VGSCs. Animal and

human studies have validated Nav1.7, Nav1.8 and

Nav1.9 as attractive targets for pain therapeutics. These

three VGSC subtypes play central roles in rendering noci-

ceptors hyperexcitable, a fundamental mechanism leading

to neuropathic pain. Despite a detailed characterisation of

the underlying mechanisms leading to hyperexcitability,

development of effective therapeutics has not progressed

remarkably compared to other areas of medicine.

Knowledge of the diverse mechanisms underlying differ-

ent types of pain is still limited. A significant challenge are

the many factors complicating data interpretation. In ani-

mal studies, differences in animal species and sex, and

inter-strain genetic differences between rats and mice in

which most KD and KO studies are performed respec-

tively may explain conflicting findings; multiple splice

isoforms of VGSC subtypes may have differential contri-

butions to hyperexcitability; the off-targets effects of anti-

sense treatment may account for mismatches between KO

and KD studies. The fact that none of the channels func-

tion in isolation adds further complexity.140

VGSC blockers that target aberrant activity in nocicep-

tors and are weakly brain penetrant have distinct advan-

tages over currently available broad-spectrum blockers in

treating pain, such as circumvention of CNS side effects

like ataxia and sedation. One example is cyclopentane

dicarboxamide (CDA54) exhibiting 33-fold lower brain

than plasma concentrations and effectively reduced neuro-

pathic pain in two different animal nerve injury models.109

CDA54 further demonstrates that blocking peripheral

VGSCs is sufficient for analgesic efficacy. Despite the

great advances in whole genome sequencing, genetic

manipulation in mice is invaluable in providing mechan-

istic insight that enable drug design.137 Nav1.7 is currently

the most promising target for alleviating chronic pain.

Combination therapy has been shown to be effective in

animal models but requires confirmation in humans. Given

that effective pain management is a majorly unmet clinical

need, the pursuit for better pain therapeutics is hugely

rewarding.
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