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Background: NLRP3 inflammasome can be activated by high glucose and links inflamma-

tion and metabolic disease. This study aimed to investigate the role of NLRP3 inflammasome

in hyperglycemia-induced endothelial inflammation and diabetic atherosclerosis.

Methods: NLRP3 levels in peripheral blood mononuclear cell (PBMC) and plasma IL-1β

level were measured in diabetes patients. The activation of NLPR3 was detected in diabetic

ApoE−/− mice and human umbilical vein endothelial cells (HUVECs).

Results: Compared with healthy controls, NLRP3 expression levels in PBMC and plasma

IL-1β level were significantly higher in diabetes patients but considerably decreased after

lifestyle interventions and medicine. Moreover, carotid atherosclerosis was significantly

related to plasma IL-1β level in diabetes patients. In diabetic atherosclerosis mouse model,

NLRP3 knockdown suppressed NLRP3 inflammasome activation, inhibited the expression of

adhesion molecules ICAM-1 and VCAM-1 in intima, reduced atherosclerosis and stabilized

atherosclerotic plaque. In vitro, the expression of NLRP3 inflammasome components and the

secretion of IL-1β were augmented by high glucose in HUVECs. Moreover, either high

glucose or IL-1β promoted the expression of adhesion molecules, which were suppressed by

NLRP3 knockdown or IL-1β receptor antagonist.

Conclusion: These findings provide novel insights into pathological mechanisms of diabetic

atherosclerosis and have potential therapeutic implications for cardiovascular complications

in diabetes.
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Introduction
The number of diabetic patients has dramatically increased, making diabetics one of

the major threats to public health. Cardiovascular complications associated with

pervasive and serious atherosclerosis are the most common cause of morbidity and

mortality in diabetic patients.1 Although the mechanisms that accelerate diabetic

atherosclerosis are still poorly understood, inflammatory response has been

involved in all phases of atherosclerosis.2

IL-1β is a major proinflammatory cytokine that induces the generation of other

inflammatory mediators, thus instigating a self-enlarging cytokine network.3

NLRP3 inflammasome is a platform for IL-1β production and links inflammation

and metabolic disease.4 NLRP3 inflammasome plays a central role in insulin

resistance and diabetes.5 Recent evidence has demonstrated that NLRP3 inflamma-

some participates in the initiation and progression of atherosclerosis.6,7 It is notable

that ROS mediates NLRP3 inflammasome activation and contributes to hemody-

namic-induced endothelial inflammation and atherosclerosis.8,9
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Increased oxidative stress has been detected in diabetic

model mice and diabetes patients. Hyperglycemia drives

ROS production by mitochondrial electron transport chain,

glucose autoxidation and NADPH oxidase.10 Moreover,

NLRP3 inflammasome could be activated by high glucose in

several types of cells.11–14 Therefore, we hypothesized that

NLRP3 inflammasome is involved in hyperglycemia-induced

atherosclerosis in diabetes condition. In this study, we per-

formed both in vitro and in vivo experiments to show that the

activation of NLRP3 inflammasome mediated high glucose-

induced endothelial inflammation and diabetic atherosclerosis.

Materials and methods
Subjects
Fifty-five newly-diagnosed type 2 diabetes mellitus

(T2DM) patients without any medication and 20 generally

healthy controls with similar age and gender distributions

were consecutively recruited. The study complied with the

Declaration of Helsinki and was approved by the Ethics

Committee of Second Affiliated Hospital of Medical

College, Xi’an Jiaotong University, and written informed

consent was obtained from all subjects. Definition of

T2DM was the following: fasting plasma glucose levels

were ≥7 mmol/L, HbA1c levels were ≥6.5%, plasma glu-

cose levels after 2 hrs were ≥11.1 mmol/L or a random

plasma glucose level was ≥11.1 mmol/L. Fifty-five T2DM

patients were arranged to receive lifestyle interventions

and medicine, and finally, 50 of them were analyzed

because 5 T2DM patients did not finish the whole proce-

dure. Exclusion criteria included advanced liver disease,

renal failure, cancer, valvular heart disease, severe heart

failure, stroke, atrial fibrillation, peripheral arterial disease

and other vascular diseases. Carotid atherosclerosis of 50

T2DM patients was evaluated by standard B-mode ultra-

sound examination with the use of a 13.0 MHz multi-

frequency linear array transducer and a high-resolution

ultrasound system (GE Vingmed Ultrasound AS, Horten,

Norway). Intima-media thickness (IMT) was calculated as

the mean maximal IMT of the six segments of the carotid

artery. Two independent operators performed the ultraso-

nography blindly.

Venous blood samples
Fasting venous blood samples of all subjects were col-

lected in the morning in EDTA vacutainer tubes. Fasting

venous blood samples of T2DM patients were collected

again when HbA1C decreased to below 6.5% after

lifestyle interventions and medicine. The plasma samples

were centrifuged at 3000 rpm for 20 mins at 4°C and then

kept frozen at −80°C until analysis.

Isolation of peripheral blood

mononuclear cell (PMBC)
PBMC was isolated by Ficoll standard density gradient

centrifugation. The upper layer containing PBMC was

harvested and washed with Hank’s balanced salt solution

and then with PBS.

Animal experiments
Animal experiment protocols were approved by

the Animal Use and Care Committee of Xi’an JiaoTong

University. The experimental procedures were carried out

in accordance with the Guide for the Care and Use of

Laboratory Animals of National Institutes of Health

revised in 2011. ApoE−/− mice were bred at the experi-

mental animal center with pathogen-free, temperature-con-

trolled facility at 25°C with a 12-hr light/12-hr dark cycle.

All mice were fed normal chow diet until 6 weeks of age

and then changed to western diet containing 21% fat and

0.15% cholesterol. Diabetes was induced in ApoE−/− mice

by two daily intraperitoneal injections of streptozotocin

(100 mg/kg/day; Sigma-Aldrich, St. Louis, MO, USA).15

Ten days postinjection, the survived animals with blood

glucose >11 mmol/L were defined as diabetes mellitus

model.16 Diabetic ApoE−/− mice were subsequently rando-

mized to 3 groups to be injected via the tail vein with

2.1×107 transduction units of NLRP3 shRNA lentivirus,

scrambled shRNA lentivirus (Santa Cruz Biotechnology)

or saline twice a week for 4 weeks. At 22 weeks, all mice

were sacrificed to collect a blood sample and the aorta

under general anesthesia with isoflurane.

Analysis of atherosclerotic lesions in

aortic root of mice
The aorta root was dissected, embedded and cut into sec-

tions at 6 μm. The first section was harvested when the

three aortic valve cusps became visible in the lumen of the

aorta, and every seventh section was harvested on one

slide (10 sections per slide). Lipids were detected using

oil-red O staining as previously described.17 Section

images were analyzed by an Olympus BX51 imaging

system (Olympus, Tokyo, Japan) and quantified with

Image-Pro Plus 6.0 software. The atherosclerotic plaque

was expressed as a percentage of the total area of the aorta.
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The protocol of plaque collagen staining was performed as

described previously.18 Atherosclerotic plaque collagen

was stained by Sirius red and the sections were analyzed

by microscopy.

Cell culture
Primary human umbilical vein endothelial cells

(HUVECs) were isolated as described.19 The experiment

was approved by the Ethics Committee of Second

Affiliated Hospital of Medical College, Xi’an Jiaotong

University. HUVECs were cultured in M199 medium

(Gibco, Invitrogen) supplemented with 15% fetal bovine

serum (Gibco, Invitrogen), 3 ng/mL endothelial cells

growth factor (Sigma) and 100 U/mL penicillin-strepto-

mycin at 37°C. HUVECs were treated with IL-1β (Sino

Biological Inc., North Wales, PA, USA) at 5–20 ng/mL

with or without IL-1β receptor antagonist Anakinra

(Kineret, Amgen, USA) at 5 μg/mL for 12–48 hrs. Cell

viability was assessed by trypan blue exclusion. HUVECs

at approximately 50–70% confluence were transfected

with NLRP3 shRNA, scrambled shRNA or copGFP con-

trol lentiviral particles (Santa Cruz Biotechnology) in 5

μg/mL polybrene/complete medium for 12 hrs.

Real-time PCR
Intimal RNA was isolated from the aorta as reported

previously.20 TRIzol reagent (Invitrogen) was used to

extract total RNA from intima and HUVECs. First-strand

cDNA was synthesized from total RNA (2 mg) using

RevertAidTM First Strand cDNA Synthesis Kit

(Fermentas). qRT-PCR was performed to detect mRNA

levels of NLRP3, Caspase-1, ASC, IL-1β, ICAM-1 and

VCAM-1 using SYBR Premix Ex TaqTM (Takara). The

primer sequences are shown in Table 1.

Western blot analysis
Total proteins were extracted, and equal amounts of pro-

tein lysate extracts were separated by 10% SDS-polya-

crylamide gels and transferred to polyvinylidene

difluoride membranes. Nonspecific binding was blocked

with 5% skim milk for 2 hrs at room temperature.

Membranes were incubated overnight at 4°C with pri-

mary antibodies for NLRP3 (Cell Signaling Technology),

Caspase-1 (Cell Signaling Technology), ASC, ICAM-1

and VCAM-1 (Santa Cruz Biotechnology), washed and

then incubated for 2 hrs at room temperature with horse-

radish peroxide-conjugated anti-rabbit or anti-mouse sec-

ondary antibodies (Santa Cruz Biotechnology). Blots

were visualized with enhanced chemiluminescent sub-

strate (Pierce Biotechnology). Relative quantities of pro-

teins were determined with a densitometer.

Enzyme-linked immunosorbent assay
IL-1β in cell culture supernatant and the plasma of the mice

and the subjects were assayed with ELISA kit (Tera Bio,

Guangzhou, China) following the manufacturer’s protocols.

Statistical analysis
Data were collected and analyzed with SPSS 13.0 (SPSS

Inc., Chicago, IL, USA). Quantitative variables were

expressed as mean ± standard deviation. Categorical vari-

ables were expressed as frequency and percentage.

Kolmogorov–Smirnov test was used to assess normal dis-

tribution of quantitative variables. The Student t-test or

ANOVA was used to analyze the differences among

groups. Two-tailed P<0.05 was considered significant.

Results
Characteristics of the subjects
The demographic and clinical characteristics of the sub-

jects are shown in Table 2. Body mass index and fasting

blood sugar in patients with T2DM were higher than those

in generally healthy controls, but were notably decreased

after lifestyle interventions and medicine.

Activated NLRP3 inflammasome and

elevated plasma IL-1β were related to

atherosclerosis in diabetic patients
Compared with healthy controls, NLRP3 protein level

(Figure 1A) and NLRP3 mRNA level (Figure 1B) in

PBMC and plasma IL-1β level (Figure 1C) were signifi-

cantly higher in DM patients at admission, but they

decreased after lifestyle interventions and medicine.

Moreover, when T2DM patients were divided into 3 sub-

groups according to tertiles of plasma IL-1β level, IMT

increased significantly with the increase in plasma IL-1β
level (Tertile 1, 0.88±0.04 mm; Tertile 2, 1.59±0.12 mm;

and Tertile 3, 2.03±0.18 mm, P<0.01, Figure 1D).

NLRP3 knockdown reduced diabetic

atherosclerosis and stabilized the

atherosclerotic plaque
As shown in Figure 2A and C, aortic root atherosclerotic

plaque area percentage was significantly increased in
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diabetic ApoE−/− mice compared to ApoE−/− mice (43.46

±4.25% vs 22.34±2.24%; P<0.01), but NLRP3 knock-

down notably reduced atherosclerotic plaque of diabetic

ApoE−/− mice (25.36±2.43%; P<0.01). Moreover, NLRP3

knockdown drastically increased plaque collagen content

percentage (ApoE−/− mice, 15.45±4.5%; diabetic ApoE−/−

mice 17.72±3.5%; diabetic ApoE−/− mice with scrambled

shRNA, 16.58±3.5%; diabetic ApoE−/− mice with NLRP3

shRNA, 27.61±4.4%; P<0.01) (Figure 2B and D). These

results indicated that atherosclerotic lesions were acceler-

ated in diabetic ApoE−/− mice but NLRP3 knockdown

alleviated atherosclerotic lesions and stabilized the

plaques.

NLRP3 knockdown suppressed NLRP3

inflammasome and improved endothelial

inflammation in diabetic ApoE−/− mice
The expression levels of NLRP3 inflammasome compo-

nents NLRP3, Caspase-1 and ASC, and adhesion mole-

cules including ICAM-1 and VCAM-1 in the endothelium

of diabetic ApoE−/− mice were significantly higher than

Table 1 Primers used in this study

Gene Sequence

NLRP3 (Homo sapiens) Forward TGCCGGGGCCTCTTTTCAGT

Reverse CCACAGCGCCCCAACCACAA

NLRP3 (Mus musculus) Forward TGTGAGAAGCAGGTTCTACTCT

Reverse GACTGTTGAGGTCCACACTCT

Caspase-1 (Homo sapiens) Forward CTTCCTTTCCAGCTCCTCAGGCA

Reverse CGTGTGCGGCTTGACTTGTCC

Caspase-1 (Mus musculus) Forward AGGCATGCCGTGGAGAGAAACAA

Reverse AGCCCCTGACAGGATGTCTCCA

ASC (Homo sapiens) Forward CAGCCAAGCCAGGCCTGCACTTTAT

Reverse GCAGGTCCAGTTCCAGGCTGGT

ASC (Mus musculus) Forward AGACATGGGCTTACAGGA

Reverse CTCCCTCATCTTGTCTTGG

IL-1β (Homo sapiens) Forward AGGCACAAGGCACAACAGGCTG

Reverse GTCCTGGAAGGAGCACTTCATCTGT

IL-1β (Mus musculus) Forward ATGAGAGCATCCAGCTTCAA

Reverse TGAAGGAAAAGAAGGTGCTC

ICAM-1 (Homo sapiens) Forward GTGTCCTGTATGGCCCCCGACT

Reverse ACCTTGCGGGTGACCTCCCC

ICAM-1 (Mus musculus) Forward GCTACCATCACCGTGTATTCG

Reverse TAGCCAGCACCGTGAATGTG

VCAM-1 (Homo sapiens) Forward TGTCAATGTTGCCCCCAGAGATACA

Reverse GGCTGTAGCTCCCCGTTAGGGA

VCAM-1 (Mus musculus) Forward AGTTGGGGATTCGGTTGTTCT

Reverse CCCCTCATTCCTTACCACCC

β-actin (Homo sapiens) Forward CATGTACGTTGCTATCCAGGC

Reverse CTCCTTAATGTCACGCACGAT

GAPDH (Mus musculus) Forward AGGCCGGTGCTGAGTATGTC

Reverse TGCCTGCTTCACCACCTTCT
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those in ApoE−/− mice, but NLRP3 knockdown suppressed

their expression and improved endothelial inflammation in

diabetic ApoE−/− mice (Figure 3A and C). NLRP3 knock-

down significantly decreased serum IL-1β level of diabetic

ApoE−/− mice (ApoE−/− mice 126.64±10.75 pg/mL; dia-

betic ApoE−/− mice 184.39±29.58 pg/mL; NLRP3 shRNA

diabetic ApoE−/− mice 129.76±9.97 pg/mL; scrambled

shRNA diabetic ApoE−/− mice 178.83±30.43 pg/mL;

P<0.01) (Figure 3B).

High glucose activated NLRP3

inflammasome in HUVECs
D-glucose increased mRNA and protein levels of NLRP3

inflammasome components NLRP3, Caspase-1 and ASC

Figure 1 Comparison of NLRP3 expression and plasma IL-1β level in healthy controls and diabetic patients. PBMCs were isolated, and NLRP3 protein level (A) and mRNA

level (B) were determined by Western blotting and real-time PCR. Plasma IL-1β was assayed with ELISA (C). Carotid atherosclerosis of diabetic patients was evaluated by

standard B-mode ultrasound (D). Data represent mean ± SD. *P<0.05, **P<0.01 vs controls and treatment or vs tertile 1.

Table 2 The baseline characteristics of the subjects

Variables Control (20) T2 DM (50) Treatment P-value

Male, n (%) 12 (60.0) 28 (56.0) 28 (56.0) 0.570

Age (years) 54.3±10.6 56.5±12.5 57.6±12.7 0.256

BMI (kg/m2) 23.5±2.1 25.4±3.3 23.7±3.0 <0.01

SBP (mmHg) 122.53±15.32 120.68±15.44 121.24±14.25 0.347

DBP (mmHg) 65.87±9.37 67.15±11.76 66.21±10.37 0.254

TC (mmol/L) 3.78±0.12 4.25±0.85 3.88±0.34 0.065

LDL-C (mmol/L) 2.68±1. 28 2.89±0.87 2.77±0.98 0.184

HDL-C (mmol/L) 0.90±0.19 0.89±0.19 0.92±0.18 0.786

TG (mmol/L) 1.58±0.66 2.15±0.88 1.77±0.73 0.289

FBS (mmol/L) 5.01±0.55 7.61±1.21 6.18±0.85 <0.01

Abbreviations: T2DM, type 2 diabetes mellitus; BMI, body mass index; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein

cholesterol; TG, triglycerides; FBS, fasting blood sugar.
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in HUVECs in a dose- and time-dependent manner

(Figure 4A and B). D-glucose also increased IL-1β levels

in supernatants of HUVECs in a time- and dose-depen-

dent manner (Figure 4C and D).

NLRP3 knockdown decreased the

secretion of IL-1β in HUVECs
HUVECs were transfected with NLRP3 shRNA, scrambled

shRNA or copGFP control lentiviral particles, only NLRP3

shRNA lentiviral particles significantly inhibited NLRP3

mRNA and protein expression (Figure 5A). Notably, IL-1β
secretion decreased significantly in HUVECs treated with

NLRP3 shRNA lentiviral particles (Figure 5B).

IL-1β upregulated the expression of

adhesion molecules in HUVECs
To elucidate the role of IL-1β in endothelial inflammation,

we treated HUVECs with IL-1β and found that mRNA and

protein levels of ICAM-1 and VCAM-1 were markedly

enhanced by IL-1βin a dose- and time-dependent manner

(Figure 6A and B).

NLRP3 knockdown or IL-1β receptor

antagonist suppressed adhesion molecules

expression enhanced by high glucose in

HUVECs
Compared to normal glucose group, the expression of adhe-

sion molecules ICAM-1 and VCAM-1 was considerably

promoted by high glucose (Figure 7A and B). However,

NLRP3 knockdown or anakinra, IL-1β receptor antagonist,

significantly decreased the expression of ICAM-1 and

VCAM-1 induced by high glucose (Figure 7A and B).

Discussion
Diabetes is a main risk factor for the initiation and progres-

sion of atherosclerosis.21 Interestingly, recent studies have

Figure 2 NLRP3 knockdown reduced diabetic atherosclerosis and stabilized the atherosclerotic plaque. (A and C) Quantitative analysis of aortic root atherosclerosis lesion in

ApoE−/− mice, diabetic ApoE−/− mice and diabetic ApoE−/− mice treated with NLRP3 shRNA or vehicle. Red Oil O staining, original magnification: 100×, bar: 200 μm. (B and D)

Quantitative analysis of collagen content of plaques in ApoE−/− mice, diabetic ApoE−/− mice and diabetic ApoE−/− mice treated with NLRP3 shRNA or vehicle. Sirius Red staining,

original magnification: 140×, bar: 200 μm. Data are mean ± SD. *P<0.05 vs ApoE−/− mice, diabetic ApoE−/− mice and diabetic ApoE−/− mice treated with vehicle.
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suggested that the activation of NLRP3 inflammasome is

implicated in metabolic diseases such as atherosclerosis and

diabetes.22–24 Therefore, the present study aimed to explore

the role of NLRP3 inflammasome in diabetic atherosclerosis.

We found that NLRP3 inflammasome activation was aug-

mented in diabetic patients and diabetic ApoE−/− mice, and

NLRP3 knockdown alleviated endothelial inflammation,

reduced atherosclerotic lesion burden and increased plaque

collagen content in a mouse model of diabetic atherosclero-

sis. Moreover, high glucose induced the activation of NLRP3

inflammasome and the upregulation of adhesionmolecules in

HUVECs, while NLRP3 knockdown or IL-1β receptor

antagonist suppressed adhesion molecular expression

induced by high glucose in HUVECs. These findings provide

novel insights into the pathological mechanisms that directly

link NLRP3 inflammasome to diabetic atherosclerosis.

IL-1β is proposed as the index of NLRP3 inflamma-

some activation. IL-1β is an important proinflammatory

cytokine and plays an important role in atherosclerosis.6

As expected, we found that carotid atherosclerosis was

significantly related to plasma IL-1β level in diabetic

patients. Lee et al reported that compared with healthy

subjects, the monocytes exhibited high expression of

inflammasome components and high serum levels of

IL-1β in newly identified untreated type 2 diabetic

patients.25 Consistent with the finding, we found that the

NLRP3 inflammasome activation was elevated in PBMC

from newly diagnosed untreated diabetic patients than

from generally healthy subjects. After lifestyle interven-

tions and medicine, HbA1c decreased to less than 6.5% in

diabetic patients and NLRP3 inflammasome activation was

significantly attenuated. Similarly, it was reported that

NLRP3 inflammasome activation was augmented in adi-

pose tissue from an obese mouse model and alleviated

after calorie restriction.26 Furthermore, we found that the

expression of NLRP3 inflammasome components NLRP3,

Caspase-1 and ASC in the intima and plasma IL-1β level

were higher in diabetic ApoE−/− mice than in ApoE−/−

model mice. The main difference between diabetic

ApoE−/− mice and ApoE−/− mice is hyperglycemia.

Figure 3 NLRP3 knockdown suppressed NLRP3 inflammasome and improved endothelial inflammation in diabetic ApoE−/− mice. Intima was separated from media and

adventitia of thoracic aorta of the mice. Protein and mRNA expression of NLRP3 components NLRP3, Caspase-1 and ASC (A), and adhesion molecules ICAM-1 and

VCAM-1 (C) were assessed by Western blotting and real-time PCR. Plasma IL-1β was assayed with ELISA (B). Data are mean ± SD (n=5). *P<0.05, **P<0.01 vs ApoE−/− mice

and diabetic ApoE−/− mice treated with NLRP3 shRNA.
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Figure 4 High glucose activated NLRP3 inflammasome in HUVECs. HUVECs were incubated for 7 days with 5.6–35.5 mM glucose, or 5.6 mM glucose with 24.4 mMmannitol (A and

C). HUVECs were incubated for 1–7 days with 35.5 mM glucose, 5.6 mM glucose or 5.6 mM glucose with 24.4 mMmannitol (B and D). The mRNA and protein expressions of NLRP3

inflammasome components NLRP3, Caspase-1 and ASC (A andB) were determined by real-time PCR andWestern blotting. IL-1β in supernatants was assayed with ELISA (C andD).

Data are mean ± SD (n=5). *P<0.05, **P<0.01 vs controls (5.6 mM glucose or 5.6 mM glucose with 24.4 mM mannitol for 7 days).
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Figure 5 NLRP3 knockdown inhibited the secretion of IL-1β in HUVECs. HUVECs exposed to 35.5 mM glucose at approximately 50–70% confluence were infected with

NLRP3 shRNA, scrambled shRNA or copGFP control lentiviral particles for 12 hrs. The mRNA and protein levels of NLRP3 were determined by real-time PCR and

Western blotting 24 hrs later (A). IL-1β in supernatants was assayed with ELISA (B). Data are mean ± SD (n=5). *P<0.05, **P<0.01 vs scrambled shRNA or copGFP control.

Figure 6 IL-1β promoted adhesion molecules expression in HUVECs. HUVECs were treated with IL-1β at 5 ng/mL to 20 ng/mL for 48 hrs (A). HUVECs were treated with

IL-1β at 20 ng/mL for 12–48 hrs (B). Protein and mRNA expressions of ICAM-1 and VCAM-1 were assessed by Western blotting and real-time PCR. Data are mean ± SD

(n=5). *P<0.05, **P<0.01 vs control.
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Indeed, previous studies demonstrated that high glucose

could activate NLRP3 inflammasome.11–14 Using

HUVECs as in vitro cell model, we found that the expres-

sion of NLRP3 inflammasome components and IL-1β

secretion were augmented by high glucose in a dose- and

time-dependent manner.

It is well known that adhesion molecules facilitate

monocyte-endothelial cell interaction and play a key

role in atherosclerosis.27–29 In the present study, the

expression levels of adhesion molecules in the intima

from diabetic ApoE−/− mice were higher than those from

ApoE−/− mice. In vitro, high glucose could promote

adhesion molecules expression in HUVECs. Previous

studies showed that adhesion molecules expression

could be enhanced by IL-1β.30,31 In this study, IL-1β

receptor antagonist or NLRP3 knockdown could signifi-

cantly suppress adhesion molecules expression enhanced

by high glucose in HUVECs. More importantly, NLRP3

knockdown alleviated the intima inflammation in dia-

betic ApoE−/− mice. Taken together, these results sug-

gest that hyperglycemia causes intima inflammation via

the activation of NLRP3 inflammasome and the produc-

tion of IL-1β. Our finding was partly consistent with a

recent study reporting that anagliptin ameliorated high

glucose-induced endothelial dysfunction via the suppres-

sion of NLRP3 inflammasome activation mediated by

SIRT1.32

In conclusion, the present study demonstrated that

hyperglycemia-induced NLRP3 inflammasome activation

mediated diabetic atherosclerosis by causing endothelial

cell inflammation. These findings provide novel insights

into pathological mechanisms of diabetic atherosclerosis

and have potential therapeutic implications for cardiovas-

cular complications in diabetes.

Figure 7 NLRP3 knockdown or IL-1β receptor antagonist suppressed adhesion molecules expression induced by high glucose in HUVECs. HUVECs were infected with

NLRP3 shRNA, scrambled shRNA or copGFP control lentiviral particles, and incubated for 7 days with 35.5 mM glucose or 35.5 mM glucose with 5 μg/mL anakinra.

HUVECs incubated for 7 days with 5.6 mM glucose served as control. The mRNA and protein expressions of ICAM-1 (A) and VCAM-1 (B) were determined by real-time

PCR and Western blotting. Data are mean ± SD (n=5). **P<0.01 vs scrambled shRNA or copGFP control.
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