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Background: Many factors affect our learning and memory quality, but according to

different studies, having a positive or negative impact pertains to their characteristics like

intensity or the amount.

Purpose: The present study was conducted to investigate the effect of 24-hour REM-sleep

deprivation on continuous-high intensity forced exercise-induced memory impairment and its

effect on Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine kinase B (TrkB) levels in

the hippocampus and Prefrontal Cortex area (PFC).

Material and methods: Animals were conditioned to run on treadmills for 5 weeks then,

were deprived of sleep for 24 h using the modified multiple platforms. The effect of intensive

exercise and/or 24-h REM-SD was studied on behavioral performance using Morris Water

Maze protocol for 2 days, and BDNF/TrkB levels were assessed in hippocampus and PFC

after behavioral probe test using western blotting.

Results: After 5 weeks of intensive exercise and 24-h REM-SD, spatial memory impairment

and reduction of BDNF and TrkB levels were found in hippocampus and PFC. 24-h REM-

SD improved memory impairment and intensive exercise-induced downregulation of BDNF

and TrkB protein levels.

Conclusion: The results of the study suggested that sleep deprivation might act as a

compensatory factor to reduce memory impairment when the animal is under severe stressful

condition.

Keywords: intensive exercise, sleep deprivation, spatial memory, hippocampus, prefrontal

cortex, BDNF, TrkB

Introduction
Previous studies have confirmed the benefits of regular physical activity on mental

function over the whole life course.1 Still, these exercise-induced benefits are

dependent on various characteristics of physical exercise such as the differences

in type (aerobic vs resistance exercise),2 the rate of recurrence (sessions per week),3

quantity (intensity and volume),4 as well as animal’s health condition and the brain

region. These parameters change the intracellular signaling factors and expression

of different neurotransmitters mediating the effect of exercise on physical and

mental activity.5–8 Neurobiological experiments revealed an inverted U-shaped

relation between the exercise intensity and its physical and mental benefits.9,10
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Accordingly, emerging evidence has shown that mod-

erate forced or voluntary activity improved cognitive func-

tions, such as memory,11–13 executive function,14 mood in

depression disorder15,16 and increased plasticity even in

late life.17,18 However, in response to severe exercise,

disruption of hippocampal neurogenesis,19 mitochondrial

dysfunction in the brain,6 changes in intracellular mechan-

ism involved in neurotrophins expression20 were observed

as well as cognitive impairments.21–24 For instance, a high

index of oxidative stress in the brain caused by 10-day

intensive and exhaustive running program has been shown

to impair hippocampus-dependent memory.23

The areas of the brain that are most important in

learning are those involved in memory,and it is thought

to rely primarily on medial temporal lobe structures,

including the hippocampus with its widespread functional

connections to the cortex.25 The prefrontal–hippocampal

interactions are well known for incorporation of cognitive

and emotional information for supporting adaptive actions

like spatial information.26

Brain-derived neurotrophic factor (BDNF), the most

important neurotrophin in the central nervous system, and its

main receptor, TrkB,27,28 influenced by various factors affect-

ing the learning and memory29 such as physical exercise30–32

and sleep duration30–34 have considered widely in animal

studies to evaluate the effect of different factors on learning

and memory. The binding of BDNF to its receptor tyrosine

kinase, TrkB, results in the activation of cytoplasmic signaling

pathways including mitogen-activated protein kinase, phos-

pholipase C-ɣ, phosphatidylinositol-3 kinase (PI3-K) and Akt,

a serine-threonine protein kinase that demonstrated to phos-

phorylate the mammalian target of rapamycin (mTOR).28

Previous studies showed activation of PI3-K/Akt/mTOR sig-

naling and protein synthesis signaling pathway induced by

BDNF is important for BDNF-dependent long-term potentia-

tion,LTP, in the hippocampus and different types of learning

and memory like spatial memory.35,36

Studies suggested that, adequate sleep has a crucial effect

on different types of memory particularly hippocampus-

dependent.37 Experimental evidence revealed that, two main

parts of sleep including non-rapid eye movement and rapid

eyemovement (REM)modulated the consolidation of declara-

tive and non-declarative memories, respectively, in a different

way.35,38 In recent years, the effect of sleep deprivation (SD)

on cognitive capacity and performance has received a lot of

attention. Not having enough sleep influences negatively on

cognitive behaviors such as attention vigilance,39 non-declara-

tive and declarative memory,40–42 executive function,43

decision making44 and emotion perception.45 Although SD

may impair cognitive capability and can reduce the learning

and memory, recent experiments have shown conflicting

results. For instance, different types of SD, either total or

partial have a fast and transient antidepressant effect46 and

they were considered as a short-term treatment for stress-

induced depressive behavior.46–48

The current study was carried out to investigate the

effect of REM-SD on the memory impairment induced by

high-intensity exercise. In addition, to support the changes

of memory performance, the level of BDNF and its recep-

tor TrkB were evaluated in the hippocampus and prefron-

tal cortex.

Materials and methods
Animals
Thirty-two adult male Wistar rats (Pasteur Institute,

Tehran, Iran) were used in this study. The experimental

protocols and procedures in this study were approved by

the Research and Ethics Committee of Tehran University

of Medical Sciences, and conducted in accordance with

the NIH Guide for the Care and Use of Laboratory

Animals (1996 revision).The animals were housed in

groups of four in standard polypropylene cages. The

room temperature was kept at 22±1°C. The animals were

housed in a 12 hrs:12 hrs light-dark schedule (07:00–

19:00) and had free access to food and water. All experi-

mental procedures were performed between 9:00 AM and

14:00 PM.

Experimental procedure
This paradigm consists of 32 animals that distributed in 4

different groups. Animals randomly assigned to control

(cont., n=8), 4 weeks physical exercised (Ex, n=8), 24

hrs of REM-sleep deprivation (SD24, n=8) and the inter-

action of exercise and sleep deprivation (ExSd, n=8).

Animals in the control group were placed in the non-

running treadmill. After 24 hrs, exercised animals in the

ExSd group were gone under 24-hr REM-SD. Ex group

received 5 weeks treadmill with increasing intensity. The

spatial and then non-spatial behavioral tests were done for

control and Ex groups 24 hrs after the last exercise proce-

dure,but it was performed in REM-SD and ExSd groups

immediately after the REM-SD procedure. All rats were

used for behavioral evaluation and then were sacrificed for

brain tissue collecting.
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Exercise training protocol
Using a 4-lane animal treadmill (IITC Life Science Inc.,

USA), rats were handled and trained to familiarize with

running 3 days prior to start the exercise (speed: 5 m/min,

5 mins per run). The bars at the end of the treadmill were

delivered electrical shocks (1.0 mA) to the hind part of the

body when the animal stops running and forced them to

run forward during exercise time. After 2 rest days, the

procedure was performed, one session daily, 5 days a week

for 5 weeks. The main phase of treadmill training was

started at a speed of 18 m/min for 30 mins and no tilt for

the first week. The duration and treadmill’s tilt was

increased progressively, 10 mins and 5 degrees increased

in each week. The speed was maintained at 18 m/min for

all this period. Sedentary animals were placed on a sta-

tionary treadmill daily and were given electrical stimula-

tion in a way identical to that used for the exercise

group.49

Induction of REM-SD
REM-SD was induced by placing four to six rats in mod-

ified water-filled multiple platforms (125 cm×44 cm) that

consisted of 8 small circular platforms (6.5 cm, in dia-

meter) which submerged to about 1–2 cm above the water

surface. The platforms were located at a distance so rats

could move freely from one to another and balance on the

platforms. Due to natural REM’s muscle paralysis, the rats

would come into contact with the water and awaken. The

rats had free access to clean water and food pellet baskets

hanging from the aquarium cover. For the control group,

using larger platforms (14 cm in diameter) caused to fall-

ing sleep without falling down.49,50 The REM-SD period

lasted for 24 hrs.

Apparatus and behavioral procedure
To assess spatial learning and memory, all animals were

trained in the Morris water maze (MWM), a most widely

used task to assess spatial learning and memory in rodents.51

The apparatus consists of a circular, black-painted tank (pool),

150 cm in diameter and 60 cm deep, containing filled with

opaque water at around 30 cm. The sufficient stressful water

temperature was maintained at 20±2°C. Several distinctive,

distal visual cues were placed on the walls of pool’s laboratory

room and their position remained unchanged to aid animals to

identify their location in space. The tank was divided into four

equal quadrants with four starting locations called north (N),

east (E), south (S) and west (W) at equal distances on the rim.

A plexiglas escape circular platform (10 cm in diameter) was

submerged 1 cm beneath the surface of the water in the center

of the target quadrant (north-west quadrant). During the

experiments, the images of the swimming animal were cap-

tured by a camera placed above the center of the maze, which

was connected to a computer. A video tracking system (Etho-

Vision XT v 8.5; Noldus Information Technology, the

Netherlands) was used to measure the parameters such as the

time to find the hidden platform (escape latency), path length

to reach the hidden platform (traveled distance), the time spent

in quadrants and the velocity of each rat in the training

session.52

Eight trials in a single training session with four start-

ing points that positioned equally around the maze. Each

trial was started from one of the four starting points.

During 60 s of each free-swimming trial, the animal had

to find a hidden platform by using distal spatial clues. If

the animal stepped on the platform, he was allowed to stay

there for 20 s, if not, it was guided to the platform by the

experimenter and allowed to remain there for 20 s. The

gap time between trials was 20 s. In each trial, escape

latency (s) and traveled distance (cm) were measured to

assess the development of spatial memory, and then swim-

ming speed (cm/s) was used to evaluate motor function.

Probe trial as a retrieval test session was carried out 24 hrs

after the training. It applied in a 60 s free-swimming

period without a platform and traveled distance and the

total time spent in the main quadrant was recorded. On the

last day, following probe trial, for evaluating non-spatial

visibility test, the platform that covered with a piece of

aluminum foil was elevated above the water in the center

of the north-east quadrant. This procedure is believed to

provide information on the possible non-specific effects

involving motor, visual or motivational abilities unrelated

to learning and memory.52

Brain tissue collecting and Western

blotting
After probe and non-spatial behavioral test, animals were

sacrificed under CO2 asphyxiation. Rats were decapitated

and the brain was removed. Hippocampus and PFC were

dissected and frozen in liquid nitrogen immediately, and

stored at −80°C until needed for later analysis. We used

five brain samples for each group to perform Western

blotting test.

Protein concentration was measured by spectrophoto-

metry at 230 nm using Picodrop instrument (Picodrop,
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Hinxton, UK), and the results were acquired as microgram

per milliliter. Samples were loaded in SDS-8% polyacryla-

mide gel (PH=8.3) and electrophoresis was carried out at

120 V for 120 mins, then transferred to polyvinylidene

fluoride membrane (Chemicon Millipore Co., Temecula,

CA, USA). To block non-specific protein binding sites,

membranes were incubated in 5% skim milk (PH=8.6) for

90 mins. Then, blots were incubated overnight at 4°C with a

primary antibody (Abcam, 1:1000 diluted in skimmed

milk). On the next day, Tris-buffered saline and Tween 20

(TBST) were used to wash membranes three times and then

blots were incubated for 1 hr, with secondary antibody

(Horseradish peroxidase-linked goat anti-rabbit IgG,

Abcam, 1:5000). To detect bounds, blots were exposed by

enhanced chemiluminescence (ECL; Amersham, UK) and

then visualized by exposure to autoradiographic film for

adequate time.53

All the experimental procedure part is summarized as a

timetable in Figure 1.

Statistical analysis
SPSS (Version 23) was used for this study. For trial

sessions, repeated measures ANOVA was used for data

analysis. In this test Ex, SD24 and ExSd groups are

measured versus the control group. Data were obtained

in the probe session and non-spatial test analyzed by one-

way ANOVA. To comparison differences between

groups, post-hoc (Tukey) test was done. For analyzing

Western blotting data, Image J software was used to

densitometry of bonds. After that, data obtained with

Image J were subjected to one-way ANOVA analysis

using SPSS. Post-hoc (Tukey) test was used for within-

subject comparisons. In all comparisons, the p -values

0.05 and less were considered as statistically significant.

Data were analyzed by two people individually but

blinded for one of them. We did it to ensure the accuracy

of the analyzing.

Results
Behavioral experiment
Twenty-four-hour REM-SD made better high-intensity

exercise-induced spatial memory deficit.

For testing the effect of REM-SD on long-term memory

deficit induced by high-intensity exercise, we used a 2-day

MWM protocol, where all groups went through eight trials

in 1 day. Instantly after the last trial, the SD24 and ExSd24

rat groups were put down in the modified multiple platform

aquarium for 24 hrs. Immediately after that, probe test was

done for assessing the long-term memory. Figure 2(A–C)

shows that there was no significant difference in escape

latency [F(21, 196)=0.467, p=0.904], traveled distance

Figure 1 The schematic timeline for study design. Two groups of animals received 5 weeks of physical exercise with a gradual increase in intensity (5 weeks, 5 days in a

week); one of these groups (ExSd), 1 day after the last session of exercise received 24-hr REM-SD and other one went for MWM test. SD24 received 24-hr REM-SD after

trial day of MWM and then probe test was performed. Control animals received nothing but MWM test. All animals were sacrificed after the visual test and their brain was

collected for Western blotting test.

Abbreviations: SD, sleep deprivation; MWM, Morris water maze.

Mahboubi et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Nature and Science of Sleep 2019:11182

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


[F(21, 196)=0.314, p=0.993] and velocity [F(21, 196)

=0.769, p=0.692] between REM-SD, Ex and ExSd groups

compared with the control group in the learning stage. As is

shown in Figure 2D, one-way ANOVA shows a significant

difference between groups in the total time spent in the

main quadrant over the probe test [F(28, 3)=7.631,

P=0.0008]. Post-hoc Tukey analysis showed differences

for Ex (p<0.01), REM-SD (p<0.01) and ExSd (p<0.05) in

comparison with the control group. One-Way ANOVA

revealed there is no significant difference between groups

and control for non-spatial test (Figure 2E), [F(28,3)=2.932,

p=0.0508].

The effect of the combination of high-

intensity exercise and REM-SD on

hippocampal/prefrontal BDNF levels
Figure 3A–B shows that there is a significant difference

between groups versus control in BDNF levels in the

hippocampus [F(16, 3)=21.06, p<0.0001] and prefrontal

cortex [F(16, 3)=18.6, p<0.0001]. Post-hoc Tukey analysis

showed that there were significant differences in the level

of TrkB in the hippocampus between Ex and SD

(p<0.001), and ExSd (p<0.01) groups in the hippocampus

as compared with the control group. In addition, ExSd

group showed an enhancement in BDNF level in compar-

ison with the Ex (p<0.001) and the SD (p<0.01) groups in

the hippocampus. Figure 3B illustrates that BDNF level in

PFC is significantly lower in the Ex (p<0.01) and SD

(p<0.001) groups when compared with the control group;

however there is no significant difference between ExSd

and control group. Following the intervention of Ex and

SD, BDNF was upregulated when compared with the Ex

(p<0.001) and SD (p<0.0001) groups.

The effect of the combination of high-

intensity exercise and REM-SD on

hippocampal/prefrontal TrkB levels
Figure 3C–D shows that there is a significant difference

between groups versus control in TrkB levels in the hip-

pocampus [F(16, 3)=10.806, p<0.0001] and prefrontal cor-

tex [F(16, 3)=6.187, p=0.0023]. Post-hoc Tukey analysis

showed that there were significant differences in the level

of TrkB in the hippocampus between Ex and SD (p<0.001)

and ExSd (p<0.05) groups as compared with the control

group. In addition, ExSd group showed no significant

difference in TrkB level in comparison to the Ex and the

SD groups in the hippocampus. Figure 3D illustrates that

the level of TrkB in the PFC was significantly lower in the

Ex (p<0.01) and SD (p<0.05) groups when compared with

the control group; however, there is no significant differ-

ence between ExSd and control group. Following the

intervention of Ex and SD, TrkB was upregulated when

compared with the Ex (p<0.001) and SD (p<0.0001)

groups.

Figure 2 Effect of 24-hr REM-SD on memory impairment induced by intensive exercise. After 5 weeks of intensive exercise, ExSd group of animals received eight trials in a

day and immediately went under 24-hr REM-SD. (A) Escape latency, (B) traveled distance and (C) swimming speed across eight trials. Values are given as mean±SEM for each

experimental group. Probe test was done immediately after the 24-hr REM-SD. (D) Percentage of time spent in target quadrant. Data are shown as mean±SEM. *p˂ 0.05 and

**p˂0.01 different from the control group. #p˂ 0.05 different from the Exercised group. ^^^p˂ 0.001 different from the 24h REM-SD group. Each bar represents mean±SEM

per group. (E) Escape latency during non-spatial visible platform test. p>0.05 NS (not significant).

Abbreviations: Ex, Exercised group; SD24, 24-hr REM-sleep deprivation; ExSd, Exercised-Sleep deprivation group; REM-SD, REM Sleep Deprivation.
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Figure 3 Effect of 24-hr REM-SD on the level of BDNF in the Ex group in the (A) hippocampus and (B) prefrontal cortex. Values are expressed as the means±SEM (n=5 for

each group); effect of 24-hr REM-SD on the decreased level of TrkB in Ex group in (C) hippocampus and (D) prefrontal area in the rat. *P˂ 0.05, **P˂ 0.01 and ***P˂ 0.001

versus control, ^^p<0.01, ^^^P˂ 0.001 versus SD24 group and ###P˂ 0.001 versus Ex group.

Abbreviations: Ex, exercised group; SD24, 24-hr REM-sleep deprivation; ExSd, Exercised-Sleep deprivation group; BDNF, brain-derived neurotrophic factor; TrkB, Tyrosine

kinase B.
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Discussion
There is a complex relationship between the exercise and

its effect on the cognitive ability, depending on different

characteristics of exercise, such as the intensity, duration

and type of exercise. The exercise intensity may influence

brain oxygen utilization,54 the formation of mitochondrial

ROS,5,6 inducing antioxidant imbalance and disturbance of

the cellular signaling,55 spatial memory impairment, object

recognition disruption56–58 as well as reduction in arousal

level by intensive exercise and reaching to the optimal

level after medium intensity.59 Therefore, in relation to

the complexity of the exercise biology, inverted U-shaped

dose–response curves were defined, where low doses are

stimulatory and high doses are inhibitory.10 In our study,

the combined effect of SD and intense exercise on hippo-

campus-dependent learning and memory was investigated.

Results displayed that, a 5-week gradual high-intensity

training exercise may cause a decrease in the total time

in the target zone of MWM test with corresponding reduc-

tions in the expression of hippocampal and prefrontal

BDNF and TrkB level represented to reduce memory

performance. Physical fatigue and exhaustion,60 excessive

blood lactate,61 decreased glucose uptake,19,62,63 changes

in metabolism64 and oxidative stress,65,66 altered inflam-

matory cytokine expression67 and increased susceptibility

to infection68 might be the explanations regarding the

adverse effect of intensive exercise. However, the most

important issue in the cognitive impairments induced by

intense physical exercise might be exhaustion,69 increasing

free radical and ROS levels.66,70 Brain with high mito-

chondrial energy metabolism and poor antioxidant

defenses could be affected by oxidative damage induced

by high ROS levels71 which, in turn, results in a decrease

in the BDNF levels72 and an increase in the neuron

degeneration.73

Moreover, chronic and daily foot shock, not single

dose, as a stressful experience has been shown to nega-

tively influence the hippocampal neurogenesis. In our

study, changes in the BDNF and TrkB levels in the brain

were in agreement with the behavioral data. These mole-

cular reductions in the hippocampus and the PFC were

associated with impairment of spatial memory.74,75 In the

animal models of stress and depression, production of

ROS increased in the PFC and hippocampus.73,74 The

enhancement of the ROS level in the PFC might be one

of the critical factors in decreasing BDNF expression and

induction of depressive-like symptoms.76 Stress could also

alter the brains’ chemical components such as BDNF,

cAMP response element-binding protein , extracellular

signal-regulated kinases (ERK1/2) levels73,77–79 in the hip-

pocampus consequently promoting oxidative stress-

induced depression-like behaviors and causing memory

impairment in rats.80

The destructive effect of sleep deprivation on the cog-

nitive function is generally accepted.81–83 However, one of

the controversial findings in the recent studies is the dif-

ferent action of sleep deprivation on the cognitive capabil-

ity and expression of some neurochemicals in different

parts of the brain and then applying these benefits to

help cure some cognitive diseases like depression84–86

and mood disorders.87,88 In our study, disturbance of mem-

ory function after intensive exercise was ameliorated by

subsequent 24-hr REM-SD. In parallel, results also

revealed a rise in the levels of BDNF/TrkB within the

hippocampus and PFC.

SD for one night subtracted depressive symptoms in

40–60% of cases;89 furthermore, a higher decrease was

observed in depressive symptoms by a reduction in REM

sleep phase.90 However, previous researches showed dif-

ferent results regarding total sleep deprivation or REM-

SD on memory performance and hippocampal BDNF

level. For instance, 8 hrs of total sleep deprivation

showed no changes in BDNF level91 but short-term

REM-SD caused an increase in the BDNF level in the

ratsʼ hippocampus.47 However, Fujihara et al92 showed

1–2 hrs SD induced an increase in the BDNF level but 8

and 48 hrs of SD decreased BDNF level in the

hippocampus.93 Some studies showed that, extended

wakefulness might result in an increased level of BDNF

in the hippocampus.94

However, because of partial non-REM deprivation

based on our SD protocol,95 REM deprivation and then

an increase in wakefulness state, it is not clear which part

is mainly responsible for elevation of BDNF/TrkB expres-

sion. Furthermore, the proposed mechanisms related to SD

that might elevate the BDNF level in rats’ hippocampus

are: 1) sleep homeostatic and circadian mechanisms refer-

ring to the two process models of sleep regulation;96 2)

monoaminergic mechanisms referring to a significant role

of monoamines between SD and antidepressants;97 and 3)

glutamatergic mechanisms and synaptic plasticity referring

to a suggested role for the glutamate and its interplay with

monoamine neurotransmitters in the fast antidepressant

consequence of SD.98
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In this study, the memory performance and BDNF/

TrkB levels significantly increased in ExSd group com-

pared to Ex and 24h SD groups, yet their decrease was still

less than the control group. Said differently, REM-SD just

caused the BDNF expression notably better and not

restored it completely.
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