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Purpose: To explore the value of the pre-treatment MRI radiomic features in individualized

prediction of the therapeutic response of carbon ion radiotherapy (CIRT) for prostate cancer

patients.

Patients and methods: Twenty-three patients with localized prostate cancer treated by

CIRT were enrolled for analysis. Prostate tumors were manually delineated on T2-weighted

(T2w) images and apparent diffusion coefficient (ADC) maps acquired before CIRT.

Abundant radiomic features were extracted from the delineations, which were randomly

deformed to account for delineation uncertainty. The robust features were selected and then

compared between patient groups of different CIRT responses. Support vector machine

(SVM) was subsequently applied to demonstrate the role of the radiomic features to predict

individualized CIRT response in the way of artificial intelligence.

Results: Radiomic features from ADC had significantly higher intra-correlation coefficient

(ICC) (0.71±0.28) than T2w features (0.60±0.31) (p<0.01), indicating higher robustness of

ADC features against delineation uncertainty. More features were excellently robust in ADC

(58.2% of all the radiomic feature candidates, compared to 41.3% in T2w). By combining the

excellently robust radiomic features of T2w and ADC, SVM achieved high performance to

predict individualized therapeutic response of CIRT, ie, area-under-curve (AUC) = 0.88.

Conclusion: Radiomic features extracted from T2w and ADC images displayed great

robustness to quantify the tumor characteristics of prostate cancer and high accuracy to

predict the individualized therapeutic response of CIRT. After further validation, the selected

radiomic features may become potential imaging biomarkers in the management of prostate

cancer through CIRT.
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Introduction
Prostate cancer is a common malignancy of males. More than 164,690 new prostate

cancer cases and 29,430 deaths were estimated to occur in 2018 in western males.1

In China, the incidence rate of prostate cancer ranks sixth among all the male

malignancies, and the mortality rate is still increasing.2 With respect to the manage-

ment of prostate cancer, radiotherapy plays an important role. The outcomes of

radical radiotherapy for localized prostate cancer are suggested to be equal to or

even better than prostatectomy.3–5

In recent years, carbon ion radiotherapy (CIRT), an emerging and promising

radiotherapy technique, has drawn considerable attention. CIRT offers biological
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and physical advantages over conventional photon radio-

therapy, hence it allows for improving tumor control while

sparing adjacent normal tissues.6,7 The first clinical trial of

CIRT for prostate cancer started at the National Institute of

Radiological Sciences (NIRS) of Japan in 1995.8 A multi-

institution study which analyzed the data of CIRT for

prostate cancer patients from Japan suggested favorable

outcomes.9 However, the high cost of CIRT still remains a

burden to many patients. To this end, the low-cost biomar-

kers to effectively identify prostate cancer patients who

may potentially benefit from CIRT are extremely helpful to

make clinical decisions before treatments start.

“Radiomics” is an advanced and high-throughput tech-

nology in reading medical images. It hypothesizes that a

wealth of information can be quantitatively captured from

medical images, and molecular characteristics of the tumors

can be decoded by the visual features.10 Researchers have

revealed the potentials of radiomic features to substantially

facilitate the management of multiple cancers including

lung cancer,11–13 colorectal cancer,14,15 breast cancer,16

glioblastoma,17–19 etc. However, the value of these potential

imaging biomarkers remains largely unknown in predicting

the treatment response of CIRT for patients with clinically

localized prostate cancer.

Since CIRT started service at the Shanghai Proton and

Heavy Ion Center (SPHIC) in 2014, prostate cancer has been

a major target of CIRT. In this study, we aimed to build a

model such that the treatment response for each individual

prostate cancer patient could be predicted from his imaging

data prior to CIRT. Specifically, we acquired pre-treatment

T2-weighted (T2w) images and apparent diffusion coeffi-

cient (ADC) maps of the prostate cancer patients, who were

subsequently treated by CIRT. Then, we extracted radiomic

features from the pre-treatment images and conducted fea-

ture selection accordingly. In the final, we built a machine

learning model and successfully demonstrated the robustness

and feasibility of the radiomic features in predicting the

individualized therapeutic response of CIRT.

Materials And Methods
Patient Cohort
This study was conducted in accordance with the

Declaration of Helsinki and approved by the institutional

review board (IRB) of SPHIC. Between May 2015 and

September 2017, 60 localized prostate cancer patients

were treated by CIRT at our center. Patients met the follow-

ing criteria were enrolled in this study: i) biopsy-proven

localized prostate cancer; ii) taken magnetic resonance

Imaging (MRI) examinations within 1 month before CIRT

at our center; iii) completed CIRT at our center. The exclu-

sion criteria were that there were visually observable ima-

ging artifacts and there was no visible tumor on MRI data to

radiologists. Finally, 23 patients were qualified for the sub-

sequent analyses in this work. The demographic informa-

tion of the patient cohort is displayed in Table 1. All the

patients have given written informed consent for CIRT as

well as for analyses of the anonymous clinical data.

Patient Treatment
According to the National Comprehensive Cancer Network

(NCCN) guideline, tumor T stage, initial PSA level, and

Gleason score (GS) were used to determine the risk groups

of the patients. The patients with intermediate-risk prostate

cancer were treated with CIRT and androgen deprivation

therapy (ADT) for 4–6 months. While the patients with

high-risk prostate cancer received CIRT and ADT for 2–3

years. Among all patients, nine patients were irradiated with

Table 1 The Demographic Information Of The Patient Cohort

In This Study

Characteristic N (%)

Patients 23 (100%)

Age (years)

Median 69

Range 50–82

T stage

T1-T2a 2 (8.9%)

T2b-T2c 17 (73.9%)

T3a-T4 4 (17.4%)

Gleason score

6 7 (30.4%)

7 7 (30.4%)

≥8 9 (39.1%)

Pre-treatment PSA (ng/mL)

PSA≤10 7 (30.4%)

10<PSA≤20 10 (43.5%)

PSA>20 6 (26.1%)

Patient risk group

Intermediate-risk 10 (43.5%)

High-risk 13 (56.5%)

Dose (carbon ion)

66GyE/24Fx 9 (39.1%)

59.2GyE/16Fx 14 (60.7%)

Abbreviations: GyE, Gray Equivalent; Fx, fractions.
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a total dose of 66 GyE (Gray Equivalent) delivered in 24

fractions. The other 14 patients received a total dose of 59.2/

60.8 GyE in 16 fractions. We closely follow-up the patients

after completion of carbon ion radiotherapy. The regular

follow-up examinations consisted of physical examinations,

serum PSA testing, and an MRI with contrast enhancement.

The PSA testing was performed every month in the first 3

months and every 2 months thereafter. The remaining exam-

inations were followed every 3 months for 2 to 3 years, every

6 months for 3 to 5 years, and once a year for the following

years. If a tumor recurrence or metastasis was suspected, a

SPET/CT or a PET-CT scan was required.

MRI Acquisition
We acquiredMRI scans for all the patients through a 3TMRI

system equipped with a phased-array coil (Magnetom Skyra

Simens). The scan was conducted before CIRT started. We

particularly collected T1-weighted (T1w), T2w, and dynamic

contrast-enhanced (DCE) images, as well as ADCmaps. The

detailed imaging parameters of T2w and ADC acquisitions,

which are analyzed through radiomics subsequently, are dis-

played in Supplementary Table 1.

Region-Of-Interest (ROI) Delineation
Tumor and prostate were manually delineated slice by

slice on T2w and ADC images by an experienced oncol-

ogist (Rater 1, Figure 1A). The rater referred to all the

available MRI data (T1w, T2w, DCE, and ADC) and

radiologic reports, as well as other accessible imaging

data, including PET-CT, 99mTc-PSMA (technetium-99m-

labelled small molecule against prostate-specific mem-

brane antigen), SPECT/CT, and pathology reports, to

ensure accurate ROI delineation to the maximum.

In order to estimate the intra-rater and inter-rater var-

iation in delineating ROIs, 5 patients were randomly

selected from the cohort. Rater 1 was asked to delineate

the ROIs again 1 month after the first-round labelling.

Moreover, a second rater (Rater 2) conducted the delinea-

tion process independently upon the 5 selected patients,

following the same above protocol with Rater 1.

We adopted the DICE ratio to evaluate the variation of

different delineations toward the same target anatomy (eg,

tumor), following

DICE ¼ 2 � V1\V2j j
V1j j þ V2j j ;

where V1j j = volume of ROI 1 (eg, delineated by Rater 1).

V2j j = volume of ROI 2 (eg, by Rater 2), and V1\V2j j =

overlapping volume between the two ROIs. DICE (ranging

from 0 to 1) is a commonly used indicator in medical image

analysis to denote the spatial coherence of the two ROIs – a

value of 0 refers to no overlap and extremely high variation,

while 1 indicates identical ROI delineations.

Perturbation Of ROI Delineation
Although more ROIs can be manually generated, it is too

time-consuming to recruit more raters for tedious delinea-

tion. To investigate the robustness of the radiomic features

against the uncertainty of ROI delineation, deformation

field was randomly generated and applied to the originally

delineated ROI (eg, from Rater 1). In this way, we could

simulate the situation that an image was delineated by

multiple raters for multiple times, as a new ROI could be

perturbated from its original form by using the randomly

generated deformation field (Figure 1A).

Each deformation field was generated as the deforma-

tion magnitudes in the field were normally distributed.

Specially, we placed B-Spline control points regularly in

the image space. Then, for each B-Spline control point,

B-Spline coefficients were generated by drawing from a

zero-mean normal distribution. By setting the standard

deviation of the normal distribution, we could control the

magnitudes of the B-Spline coefficients as well as the free-

form deformation field, which was interpolated from all

B-Spline control points and their coefficients.20

DICE ratio was also calculated between the original

ROI and the new ROI perturbated by deformation. As the

deformation magnitudes become larger, DICE declines,

which suggests higher variation between the ROIs.

Therefore, we controlled the B-Spline coefficient magni-

tudes and kept the DICE ratio comparable with the case

when different raters were asked to delineate the same

patients (“inter-rater”). In this way, we could extract radio-

mic features from the ROIs before and after perturbations,

and explore the robustness of individual features against

the uncertainty in ROI delineation.

Radiomic Feature Extraction And

Robustness Analysis
Four groups of radiomic features were automatically

extracted using Pyradiomics (1.3.0)21 (Figure 1B). Briefly,

the intensities in the ROI of prostate of each T2w/ADC

image were normalized and rescaled to 0–255. Next, several

filters including exponential, logarithm, square, square root,

wavelet, and Laplacian of Gaussian (LoG) kernels were
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applied to augment the T2w/ADC images. Both the augmen-

ted images and the original images were used to calculate

radiomic features. Finally, the shape features, first-order fea-

tures, texture features, and filter-based features were

extracted. Texture features were derived from the Gray

Level Co-occurrence Matrix (GLCM), Gray Level Run

Length Matrix (GLRLM), Gray Level Size Zone Matrix

(GLSZM), Neighbouring Gray Tone Difference Matrix

(NGTDM), and Gray Level Dependence Matrix (GLDM),

respectively. We used as many parameters as possible (eg,

binwidth, distance) to extract abundant radiomic features.

After the radiomic features were extracted from the ori-

ginal ROIs and the deformation-perturbated ROIs, we com-

puted the intra-correlation coefficient (ICC) for the same

feature across all the patients by using the R package

IRR.22 ICC, ranging from 0 to 1, is a widely used indicator

in evaluating intra-rater and inter-rater reproducibility,

with values closer to 1 to indicate stronger correlation.23

Figure 1 The workflow of this study. (A) MRI data were scanned before CIRT, and tumor was manually delineated slice by slice on the T2w and ADC images. Deformation

fields of different magnitudes were applied to perturbate the tumor ROIs. (B) MRI intensities of the prostate region on the T2w and ADC images were normalized and

rescaled to 0–255, respectively. Then, four groups of radiomic features were extracted. (C) The machine learning process was conducted through the nested leave-one-out

cross-validation, consisting of the inner loop and the outer loop.
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The two-way random effects, absolute-agreement, single

rater model was chosen to calculate ICC and defined as

follows:24

MSR �MSE
MSR þ k� 1ð ÞMSE þ k

n MSC �MSEð Þ
where MSR = inter-subject mean square; MSC = inter-rater

mean square; MSE = mean square for errors; k = number

of raters; n = number of subjects.

We further applied cutoffs to the calculated ICCs, such

that only the features with ICCs higher than the cutoffs were

perceived to be robust.23,25 The difference of ICC values

between MRI modalities was investigated using the

Wilcoxon test. In this way, we analyzed the robustness of

the features against the uncertainly in delineating the ROI.

The robust features were considered for subsequent machine

learning.

Feature Selection, Classification, And

Performance Evaluation
With the robust features identified by ICCs, we adopted

supervised machine learning, ie, support vector machine

(SVM), for feature selection and classification (Figure 1C).

SVM is a famous method that can deal with a large number

of features and a small number of training examples.26 In this

way, the model was derived to complete individualized treat-

ment response prediction of CIRT. Given certain training

patients, we used L2-penalized logistic regression to identify

the weights of individual features toward the treatment

response. The features with high weights were selected, and

then input to SVM for classification. Concerning the risk of

over-fitting, we adopted a linear kernel to train the SVM.

In order to evaluate the model performance fairly, the

machine learning process was conducted through nested

leave-one-out cross-validation (Figure 1C), consisting of

the outer and inner loops. In each iteration of the outer

loop, one patient was chosen for test in turn, while the

other patients were left for training. In each iteration of the

nested inner loop, a certain patient from the training sub-

jects was isolated to determine the optimal parameters for

the model that was derived from the rest training subjects.

All the parameters were then automatically determined,

and the optimal machine learning model could be estab-

lished without human bias in the final.

Accuracy, sensitivity, specificity, and area-under-curve

(AUC) were calculated to evaluate the model performance.

Radiomic feature values between different response groups

were also compared using the Wilcoxon test. A two-sided

p≤0.05 was considered as statistically significant. All the

statistical analyses were performed using the Scipy (0.6.0)

package27 or R (version 3.3.1).

Results
Patient Data
The demographic information of the patients is listed in

Table 1. The median age for all patients was 69 years old

(range: 50–82 years). Two patients were diagnosed with stage

T1-T2a prostate cancer, 17 patients with stage T2b-T2c, while

the left 4 patients with stage T3a-T4. Gleason score was 6 in 7

patients, 7 in 7 patients, and 8–9 in 9 patients. Before treat-

ment, 7 patients had a PSA level ≤10 ng/mL, 10 patients had a

PSA level ranging from 10 ng/mL to 20 ng/mL, while 6

patients had a PSA level >20 ng/mL. According to the

NCCN guideline, 10 patients belonged to the intermediate-

risk group, while 13 patients were in the high-risk group.

All the patients safely completed CIRT at our center.

Based on the PSA level detected after the completion of

CIRT, the patients were divided into two groups: good

response (PSA ≤ 0.5 ng/mL, n = 7) and poor response

group (PSA > 0.5 ng/mL, n = 16).28 MRI data acquired

before CIRT were collected for analyses, while the

detailed parameters of T2w and ADC images are displayed

in Supplementary Table 1. The target of the model we

established in this work was to predict the group to

which each individual patient would belong, when only

the MRI data of the patient were available.

Feature Robustness
Rater 1 and Rater 2 manually delineated tumors slice by

slice on T2w and ADC images for 5 randomly selected

patients. DICE ratios were computed to evaluate the intra-/

inter-rater variation in delineation. The mean intra-rater

and inter-rater DICE ratios of tumors on T2w were 0.857

and 0.749, respectively. The corresponding ratios of

tumors on ADC were 0.845 and 0.765, respectively. It

indicated that the inter-rater delineation variation was lar-

ger than the intra-rater variation, while the accuracies to

delineate tumors on T2w and ADC were largely the same.

We then applied deformation fields to perturbate the

original tumor ROIs for all patients, based on the delinea-

tions contributed by Rater 1 (Figure 1A). By adjusting the

magnitudes of the deformations, we generated different

ROIs from the same original ROI. The DICE ratios

between the perturbated ROIs and the original ROIs are

shown in Figure 2A, which confirms that DICE ratios
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decline when the deformations become large. Concerning

that the inter-rater delineation variation was greater, we

chose the parameter for controlling the deformation mag-

nitude as 1.5 for the ADC case, and 3.5 for the T2w case.

In this way, the average DICE ratios for the perturbated

ROIs were 0.783 for ADC and 0.743 for T2w, which were

comparable with the mean inter-rater DICE ratios of ADC

and T2w. Examples of the original ROIs delineated by the

two raters and the new ROIs perturbated by deformation

are displayed in Figure 2B–G.

A total of 26,601 carefully designed features were auto-

matically extracted (Figure 1B). ICC, determined between

the original delineations and the deformed ROIs, was cal-

culated for each feature to rank feature robustness. Note that

a higher ICC corresponds to a stronger robustness.23 We

observed that ADC radiomic features had significantly

higher ICC on average (0.71±0.28) than T2w radiomic

features (0.60±0.31) (p<0.0001, Figure 3A). The cutoffs of

robustness rating were defined as poor for ICC values less

than 0.40, fair for ICC values between 0.40 and 0.59, good

for ICC values between 0.60 and 0.74, and excellent for

ICC values between 0.75 and 1.0.25 In this way, more

radiomic features extracted from ADC images (58.2%,

Figure 3B) were rated as excellently robust as compared

to the features extracted from T2w images (41.3%,

Figure 3B). Only the excellently robust radiomic features

(ICC ≥0.75) were considered for subsequent classification.

Prediction Of Treatment Response
The supervised machine learning method, SVM, was applied

for individualized treatment response prediction (Figure 1C).

SVM based on the excellently robust radiomic features (ie,

ICC ≥0.75) showed higher predictive performance than that

based on all radiomic features without ICC threshold

(Figure 4). Particularly, SVM built on a combination of the

excellently robust T2w and ADC features achieved an AUC

of 0.88 and an accuracy of 0.74; while simply combining all

T2w and ADC features together, SVM had an AUC of 0.52

only (Figure 4A). Similarly, using the excellently robust

ADC features (0.79 vs. 0.71, Figure 4B) or T2w features

(0.67 vs. 0.49, Figure 4C), SVM displayed higher predictive

performance.

Feature selection plays an important role in predicting

treatment response of CIRT accurately, as the original

imaging data may carry confusing information and thus

be redundant. By applying cutoffs to ICCs, we signifi-

cantly reduced the number of useful radiomic features.

Specifically, the original feature number was 26,601,

while only 15,476 (58.2%) and 10,992 (41.3%) features

were excellently robust for ADC and T2w, respectively.

To further verify the effectiveness of the selecting

robust features through ICC, we randomly drew the same

numbers of features from T2w or ADC, in accordance to

numbers of the excellently robust features, respectively.

The randomly drawn features were then used to train SVM

again. All the SVMs based on a combination of randomly

selected ADC and T2w features (AUC: 0.50 vs 0.88,

Figure 4A), randomly selected ADC features (AUC: 0.63

vs 0.79, Figure 4B), or randomly selected T2w features

(AUC: 0.47 vs 0.67, Figure 4C) had significantly lower

predictive performance than the corresponding excellently

robust features based SVM. The results confirmed the

Figure 2 ROI delineating variation and deformation perturbation. (A) DICE ratios were calculated between the original ROI and the new ROI perturbated by deformation.

Sigma: the parameter that controls the spread of the deformation magnitudes. (B–D) T2w ROIs delineated by Rater 1, Rater 2, and perturbated by deformation (Sigma=3.5),

respectively. (E–G) ADC ROIs delineated by Rater 1, Rater 2, and perturbated by deformation (Sigma=1.5), respectively.
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necessity to identify and apply the robust features only to

predict the treatment response of CIRT.

When all the excellently robust T2w and ADC features

were further processed through feature selection by L2-

penalized logistic regression, which was just before SVM,

9 T2w and 21 ADC features were frequently selected in the

nested cross-validation. Among them, 9 features were pre-

sented in Figure 5. All the 9 features were significantly

different between the good and poor response groups

(p≤0.05). Figure 5A, 5C, 5E, 5F, and 5H displayed the

radiomic features that were significantly higher in the

good response group than in the poor response group.

Figure 5B, 5D, 5G, and 5I showed the features with sig-

nificantly lower values in the good response group as com-

pared to the poor response group. The left 21 features were

shown in Supplementary Figure 1.

Discussion
Charged particle therapy is an emerging and promising tech-

nique in radiotherapy.29 The outcomes of CIRT for patients

with prostate cancer are suggested to be favorable.9

However, the powerful markers that can be used to distin-

guish patient responses to CIRT are lacking. In the current

study, we automatically extracted abundant radiomic features

from the pre-treatment MRI scans (T2w images and ADC

maps), systematically analyzed the feature robustness, and

subsequently applied machine learning to explore the value

of radiomic features in predicting therapeutic response of

CIRT for patients with clinically localized prostate cancer.

To the best of our knowledge, this is the first study to predict

the therapeutic response of CIRT for prostate cancer patients

by using the radiomics technique.

In the era of precision medicine, the development of

advanced “omics” technologies offers amazing possibili-

ties to identify biomarkers which can be used to divide the

cancer patients into groups of different treatment responses

specifically. Nowadays, these high-throughput “omics”

technologies mainly consider genomics, proteomics, meta-

bolomics, and transcriptomics performed following inva-

sive biopsies or surgical resections with complicated

procedures. Whereas the intra-tumor heterogeneity, which

is highly associated with prognosis and treatment response

assessment for cancer patients, is difficult to evaluate

comprehensively, eg, through limited samples of tumor

tissues from biopsies or surgical resections.29–31 The quan-

titative radiomic features, however, can be extracted from

Figure 3 Robustness of the features extracted from ADC and T2w images. (A) Radiomic features extracted from ADC maps had significantly higher ICC values on average

than those from T2w images (****p≤0.0001). (B) Robustness ranking of the extracted radiomic features. The cutoffs for stability rating were defined as poor for ICC values

less than 0.40, fair for ICC values between 0.40 and 0.59, good for ICC values between 0.60 and 0.74, and excellent for ICC values between 0.75 and 1.0.
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the low-cost non-invasive medical images, and can pro-

vide unique perspective to characterize the entire tumor

and to quantify its heterogeneity.30

The value of the radiomic features in predicting treat-

ment efficacy has been investigated in several cancers.31–35

For rectal cancer, several studies have used advanced radio-

mic analysis of medical images to accurately predict treat-

ment response after neoadjuvant chemo-radiation

therapy.15,36,37 Nie et al extracted radiomic features from

MRI images of 48 rectal cancer patients and achieved an

AUC of 0.84 by artificial neural network for predicting

pathologic complete response after preoperative chemo-

radiation therapy.15 In the case of lung cancer, the outcomes

after radiotherapy have also been successfully predicted

through the radiomic analyses.38–42 Huynh et al extracted

radiomic features from the pre-treatment CT images of 113

lung cancer patients who were treated by Stereotactic Body

Radiation Therapy (SBRT). Their results demonstrate that

radiomic features can be prognostic for SBRT outcomes.41

Regarding prostate cancer, Crevoisier et al reported

that the Haralick textural features extracted from the

T2w images appeared to be correlated with biochemical

recurrence (BCR) following conventional radiotherapy.35

Shiradkar et al also extracted radiomic features from the

pre-treatment biparametric MRI (T2w images and ADC

maps) of prostate cancer patients and explored their value

in predicting BCR. They concluded that the radiomic

features can be predictive of BCR after therapy.43

However, the role of radiomic features in assessing

therapeutic response of CIRT in patients with localized

prostate cancer has not been examined yet. Through com-

prehensive analyses, our present study demonstrated that

SVM based on a combination of excellently robust T2w

and ADC radiomics features achieved an AUC of 0.88 for

predicting individualized therapeutic response of CIRT.

Meanwhile, several radiomic features have also been

shown to be significantly different between the good and

poor response groups. These preliminary results suggest

the great potential of the radiomic features in predicting

therapeutic response of CIRT for prostate cancer patients.

In order to confirm the contribution of the robust features

to precisely predict treatment response, we also applied (1)

all radiomic features and (2) randomly selected features (of

the same numbers with the excellently robust features) to

train the machine learning models, respectively. In the above

two cases under comparison, SVM displayed significantly

lower predictive performance, which implied the importance

to identify the robust features first and then to establish

clinical decisions for CIRT through radiomics and machine

learning. Furthermore, we also observed that the radiomic

features from ADC maps showed higher robustness in

Figure 4 ROC curves showing the predictive performance of the radiomic features

and SVM in predicting individualized treatment response for prostate cancer patients

treated by CIRT. Red: ROC curve of the excellently robust features. Yellow: ROC curve

of all features. Blue + shadow: ROC curve of the selected features which were of the

same numbers with the excellently robust features and randomly drawn from all

features 50 times to train the SVM. (A) ROC curves derived from SVM trained using

a combination of ADC and T2w features. (B) ROC curves derived from SVM built on

ADC features. (C) ROC curves derived from SVM based on T2w features.
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overall, while the SVM based on the robust ADC features

performed more accurately than the model based on robust

T2w features (AUC: 0.79 vs. 0.67). It suggests that the

feature robustness has a positive impact on the predictive

performance of the classification model, as more robust

features may lead to higher predictive performance.

As feature robustness depends on accurate and robust

tumor delineation, manual delineation variation can be one

of the main challenges in radiomic analysis. Pavic et al

investigated the impact of inter-rater delineation variation

on the robustness of radiomic features in three different

types of tumors. They found that the feature robustness

Figure 5 Typical radiomic features selected by machine learning automatically. Radiomic feature values were compared between good and poor response group using the Wilcoxon

test. *p ≤ 0.05, **p ≤ 0.01. bin, alpha, maxd, and wN were parameters set for feature extraction. (A) Wavelet-LHL-firstorder-Maximum-ADC. (B) LoG-sigma-2.5-glszm-

SmallAreaEmphasis-bin-4-ADC. (C) Exponential-gldm-DependenceVariance-bin-8-alpha-0-ADC. (D) Wavelet-LHH-gldm-DependenceNonUniformityNormalized-bin-4-alpha-4-

ADC. (E) Wavelet-LHL-glcm-Correlation-bin-32-maxd-3-wN-euclidean-T2w. (F) Wavelet-LHL-glcm-Correlation-bin-32-maxd-2-wN-euclidean-T2w. (G) Wavelet-LHL-glcm-

InverseVariance-bin-32-maxd-4-wN-euclidean-T2w. (H) Wavelet-LHL-glcm-Correlation-bin-32-maxd-4-wN-euclidean-T2w. (I) Wavelet-LHL-glcm-InverseVariance-bin-32-maxd-3-

wN-euclidean-T2w.

Abbreviations: bin, BinWidth; alpha, alpha of GLDM; maxd, Maxdistances; wN, weightingNorm.
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was highly associated with the DICE ratios and depended

on the tumor site – the radiomic features from ROIs with

lower delineation variation usually displayed higher

robustness.44 In our study, we observed that the inter-

rater DICE ratios were slightly higher for ADC than

T2w (0.765 vs 0.749). The lower inter-rater delineation

variation may partially contribute to the higher feature

robustness and predictive performance in ADC features.

There are some limitations in our study. First, as CIRT

has only been used to treat patients at SPHIC in very

recent years, the sample size of the present study is rela-

tively small. A larger sample size is warranted to verify the

results. Second, we could not evaluate the predictive value

of pre-treatment MRI radiomic features in the long-term

clinical outcomes, such as biochemical recurrence-free

survival (bRFS), distant metastasis-free survival, or overall

survival (OS) rates, due to the relatively short follow-ups

after CIRT. Nevertheless, the promising results for short-

term response indicated the potential of the radiomic fea-

tures in predicting long-term outcomes. Third, we cannot

compare the robustness of features from MRI images

acquired with different magnetic strengths due to the sin-

gle institutional study. Although a study of MRI images of

rectal cancer found the absence of significant difference

for features between imagers with different magnetic

strengths,37 more studies are needed to verify this result

in MRI images of prostate cancer.

In summary, this preliminary study suggests that the

radiomic features extracted from T2w and ADC images

show great robustness and accurate classification perfor-

mance (with SVM) for early CIRT response assessment in

patients with clinically localized prostate cancer. Although

promising, these results require further validation on an

independent and larger data set. After validation, these

radiomic features may become potential imaging biomar-

kers in the management of patients with prostate cancer

who were treated by CIRT.
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