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Purpose: Over the past 30 years, no consistent survival benefits have been recorded for

anticancer agents of advanced hepatocellular carcinoma (HCC), except for the multikinase

inhibitor sorafenib (Nexavar®), which clinically achieves only ~3 months overall survival

benefit. This modest benefit is attributed to limited aqueous solubility, slow dissolution rate

and, consequently, limited absorption from the gastrointestinal tract. Thus, novel formulation

modalities are in demand to improve the bioavailability of the drug to attack HCC in a more

efficient manner. In the current study, we aimed to design a novel sorafenib-loaded carbon

nanotubes (CNTs) formula that is able to improve the therapeutic efficacy of carried cargo

against HCC and subsequently investigate the antitumour activity of this formula.

Materials and methods: Sorafenib was loaded on functionalized CNTs through physical

adsorption, and an alginate-based method was subsequently applied to microcapsulate the

drug-loaded CNTs (CNTs-SFN). The therapeutic efficacy of the new formula was estimated

and compared to that of conventional sorafenib, both in vitro (against HepG2 cells) and in

vivo (in a DENA-induced HCC rat model).

Results: The in vitro MTT anti-proliferative assay revealed that the drug-loaded CNTs

formula was at least two-fold more cytotoxic towards HepG2 cells than was sorafenib itself.

Moreover, the in vivo animal experiments proved that our innovative formula was superior to

conventional sorafenib at all assessed end points. Circulating AFP-L3% was significantly

decreased in the CNTs-SFN-MCs-treated group (14.0%) in comparison to that of the DENA

(40.3%) and sorafenib (38.8%) groups. This superiority was further confirmed by Western

blot analysis and immunofluorescence assessment of some HCC-relevant biomarkers.

Conclusion: Our results firmly suggest the distinctive cancer-suppressive nature of CNTs-

SFN-MCs, both against HepG2 cells in vitro and in a DENA-induced HCC rat model in

vivo, with a preferential superiority over conventional sorafenib.
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Introduction
In modern societies, cancer is considered the deadliest killer among the top three

causes of death.1 According to the latest global estimates of the American Cancer

Society, the cancer burden increased in 2018 to 18.1 million new cases with 9.6

million annual cancer deaths.2 Worldwide, hepatocellular carcinoma (HCC) is the

most common primary liver cancer, representing the second and sixth causes of
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cancer-related mortalities in men and women,

respectively.3,4 Its incidence continues to increase rapidly

due to the widespread diverse risk factors.5 Statistical

estimates have revealed that the prognosis of HCC is

very poor, and approximately 75% of the affected patients

are diagnosed within advanced stages of the disease at

which point the complete surgical removal of the malig-

nant tissues becomes infeasible.6–8 Often, those patients

have a short overall survival rate, usually in the range of

3–8 months.9,10 Nevertheless, with only a three-month

gain in the overall survival rate compared to that of the

placebo, sorafenib (SFN), a vascular endothelial growth

factor and multi-kinase inhibitor, remains the only

approved drug for advanced HCC to prolong survival

and counteract disease progression.11–13 Despite these ben-

efits, several published data and clinical practices high-

lighted large inter-individual and even intra-individual

variabilities regarding the clinical benefit, limited bioavail-

ability (approximately 8.5%, after oral administration) and

toxicity of SFN.14–16 These variabilities were usually

attributed to the very poor aqueous solubility of SFN at

pH values varying from 1.2 to pH 7.4 that lead to a slow

dissolution rate in the gastrointestinal tract, which is sup-

posed to be the rate-limiting step for absorption.17–19 Thus,

novel formulation modalities are needed to enhance the

physiochemical properties and accordingly improve the

bioavailability of the drug to attack HCC in a more effi-

cient manner, resulting in a more satisfactory therapeutic

outcome.

Over the last several decades, the application of nanotech-

nology-guided platforms has made a major revolutionary

breakthrough in the field of oncology with the potential to

improve the pharmacokinetics of the sparingly soluble antic-

ancer agents, enhancing their solubility, site-specific delivery

and accumulation into tumours.20,21 Among the numerous

nanomaterials available as potential scaffolds or carriers for

the development of new generations of cancer therapeutics,

carbon nanotubes (CNTs) stand out with unusual features that

distinguish them from other possible carriers.22 CNTs, includ-

ing single- andmulti-walled CNTs, are rolled graphene cylind-

rical tubes composed of 100% carbon with very large aspect

ratios (length/width).23–25 With regard to their specific chemi-

cal nature, shape, ultra-small size, and targeting capabilities,

CNTs can act at biomolecular levels, providing site-specific

delivery, ability to load with different therapeutic agents, and

prolonged accumulation into targeted tumour tissues, mini-

mizing the prospective systemic toxicities.22,26–29 Despite

these advantages, pristine CNTs have a significant issue

regarding solubility that can restrict their use in pharmaceuti-

cal industries.30 Therefore, pristine CNTs require further che-

mical modifications to render them dispersible in aqueous

media and reactive towards other chemical moieties.31

Functionalization of the CNTs surface with hydrophilic poly-

mers, such as long poly(ethylene glycol) (PEG), is considered

one of the most successfully practised methods to overcome

the aforementioned obstacle.32

PEG is preferred as a promising candidate for the sur-

face decoration of CNTs because of its assured safety in

humans, good biocompatibility and aqueous solubility, as

well as the exceptional ability to attach a wide range of

biologically active agents.33 Additionally, PEGylated

CNTs have been proven to elongate the plasma circulation

time of the loaded cargo, which inturn reduces the dose

and frequency of administration. PEGylated CNTs are also

less susceptible to recognition by the reticuloendothelial

system and other defence players in the bloodstream, most

likely via imparting “stealth” properties.34 Many reports in

this regard have stated that surface modification of CNTs

with PEG groups improves the solubility of some insolu-

ble chemotherapeutic agents and enhances their cytotoxi-

city, bioavailability, and therapeutic efficacy.35–37

In light of this knowledge, the objective of the current

study was two-fold: first, to design and characterise, for

the first time, SFN-loaded functionalized CNTs that are

able to target the carried cargo to the tumour tissue;

second, to assess the in vitro anti-proliferative potential

of these innovative SFN-loaded CNTs against HepG2 cells

and to evaluate the in vivo antitumour activity of a micro-

capsulated formula on a rat model of HCC in comparison

to that of the conventional drug. Preferentially, an alginate-

based microcapsulation method was applied in our for-

mula to avoid drug leakage and to ensure a pH-dependent

drug release, delivering the carried cargo to the intestine

and colon in a predominant sustaining release profile.

The chemically induced rat model of HCC using

N-nitrosodiethylamine (DENA), an alkylating agent of a

family of carcinogenic N-nitroso compounds, has been

proven to be a feasible model for our objective. In general,

hepatic chemical carcinogenesis in experimental animals is

a multi-step process that is initiated with a carcinogen and

followed by regression, growth and clonal proliferation,

eventually leading to cancer formation.38 Administration

of DENA to animals has been shown to cause liver cancer

and also other organs carcinoma but in a lower incidence.

Initiation during or after DENA exposure is believed to be

due to its rapid metabolism into more reactive metabolites
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that interact with DNA forming diverse DNA adducts,

including O4-ethyldeoxythymidine adduct that when accu-

mulate in hepatocyte DNA can lead to mutations, initiating

tumour formation.39

Materials And Methods
Materials
Multi-walled CNTs (number of walls: 3–15, outer diameter:

30–50 nm, length: 10–30 μm, purity of ≥95%) were pur-

chased from Sisco Research Laboratories Pvt. Ltd., India.

SFN, DENA, polyethylene glycol 6000 g/mol (PEG-6000),

sodium alginate (NaA) and thionyl chloride (SOCl2) were

purchased from Sigma Chemical Co., St. Louis, USA. High-

quality water employed to prepare solutions was obtained by

using a Milli-Q Reagent Water System (Continental Water

Systems, El Paso, TX, USA). Alpha-fetoprotein (AFP), and

Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3)

rat specific ELISA kits were purchased from Elabscience

Biotechnology Co., Ltd, Wuhan, China. Protease and phos-

phatase inhibitors cocktail was purchased from Cell

Signaling Technology, Inc., MA, USA. Rabbit polyclonal

antibodies of golgi protein 73 (GP73), glypican-3 (GPC-3),

heat shock protein 70 (HSP70), and β-actin, as well as alka-
line phosphatase-conjugated goat anti-rabbit secondary anti-

body were purchased from Novus Bio-logicals, LLC,

Littleton, CO, USA. Rabbit polyclonal antibodies of connec-

tive tissue growth factor (CTGF), fibroblast growth factor-2

(FGF-2), hypoxia-inducible factor-1 alpha (HIF-1α) and

phosphorylated mammalian target of rapamycin (mTOR)

were kindly provided by Santa Cruz Biotechnology, Inc.,

Texas, USA. Goat anti-rabbit secondary antibody (Texas

Red, Alexa Fluor 488) and nuclear stain (40,6-diamidino-2-

phenylindole (DAPI)) were purchased from Abcam

(Cambridge, UK). Thiazolyl blue tetrazolium bromide

(MTT) assay chemicals were purchased from Bio Basic

Canada Inc., (Canada). All other chemicals, reagents, and

solvents were of analytical grade were obtained from stan-

dard suppliers, and were used without further purification.

Preparation Of The SFN-Loaded CNTs

(CNTs-SFN)
Purification Of The Pristine CNTs

Five grams of the as-received CNTs were purified by

refluxing at 80 °C in concentrated hydrochloric acid for

12 hr, followed by filtration with a Millipore membrane

(0.22 μm) and a careful rinse with ultrapure water till

neutralization of the filtrate.

Carboxylation Of CNTs Into CNTs-COOH

Four and half grams of the purified CNTs were refluxed in a

mixture of concentrated sulfuric and nitric acids (3:1, v/v) at

80 °C for 24 hr. The suspension was cooled and rinsed

several times with ultrapure water till the pH value reached

neutral. The obtained CNTs-COOH were separated from

the solution by filtration and dried under vacuum at 40 °C

for 24 hr.

Acylation Of CNTs-COOH Into CNTs-COCl

Four grams of CNTs-COOH was mixed in a round bottom

flask with 1000 mL SOCl2 and 30 mL DMF and refluxed

under nitrogen atmosphere at 75°C for 48 hr. The obtained

CNTs-COCl was washed with THF and dried under

vacuum at 60 °C for 24 hr.

PEGylation Of CNTs-COCl Into CNTs-PEG

Firstly, 45 g of PEG6000 were refluxed in the presence of 6 mL

TEA under nitrogen atmosphere at 50 °C for 24 hr. Secondly,

4.5 g of the CNTs-COCl was added to the above mixture and

refluxing was continued at 60 °C for 72 hr. Subsequently,

absolute methanol was used to remove any excess reagents

and the obtained CNTs-PEGwas dried under vacuum at 65 °C

for 24 hr.

Drug Loading On The PEGylated CNTs

Sorafenib loading on the functionalized CNTs was

achieved via physical adsorption. Briefly, different

amounts of SFN were loaded onto the carrier in different

ratios (1:2, 1:1, 2:1 and 3:1) in ethanol under ultrasonic

condition. After 2 hr of stirring at room temperature, the

product was collected by repeated centrifugation (at 9000

rpm for 5 min) until the supernatant became colorless.

Using a M350 UV-Visible double-beam spectrophotometer

(CamSpec, UK), the unbound SFN amounts were deter-

mined at 265 nm according to a calibration curve

instructed in the same conditions. The amounts of SFN

adsorbed by the functionalized CNTs (q) were calculated

employing the following equation:

q ¼ Ct�Coð ÞV
m

where, Co is the amount of SFN initially taken, Ct is the

amount of SFN at time t, V is the volume of sample taken,

and m is the mass of CNTs employed during the

protocol.40

Microcapsulation Of The Drug-Loaded CNTs-SFN

Three grams of CNTs-SFN were dispersed in 100 mL NaA

aqueous solution (2.5%) using a magnetic stirrer for
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10 mins. Using a 10 mL syringe, this drug alginate (1:2)

dispersion was transferred drop-wise to a 50 mL CaCl2
solution (0.4 M) with mild agitation within a period of

7 mins at ambient temperature. The mixture was then

stirred slowly for 6 mins to cure the formulated CNTs-

SFN-MCs which were subsequently dried under vacuum

at 65°C for 24 hr.

Characterisation Studies
FT-IR Spectroscopy

Flourier-transform infrared (FT-IR) analysis was carried

out using FT-IR-8400S, Shimadzu Fourier Transform

Infrared Spectrophotometer, Japan.

Scanning And Transmission Electron Microscopy

Imaging

Scanning electron microscopy (SEM) was used to investi-

gate the topographical features and fracture surface details

of the final and synthesis intermediate products. Visual

examination of samples was carried out on a JEOL JSM-

5400 LV scanning electron microscope (Oxford, USA).

Transmission electron microscopy (TEM) was used to

investigate the micro structural details of final and inter-

mediate products during the design of the SFN-loaded

CNTs. The samples were observed on a JEM-2010F trans-

mission electron microscope (JEOL Ltd., Japan).

Thermo-Gravimetric Analysis

Owing to the high thermal stability of the pristine CNTs,

the degree of its functionalization was monitored using

Thermo-gravimetric analysis (TGA) under nitrogen flow

at a heating rate of 10 °C/minute on a TA Q500 thermal

analyzer system (TA Instruments, New Castle, DE, USA).

Differential Scanning Calorimetry

Additionally, differential scanning calorimetry (DSC) was

carried out to estimate the heat capacity of the drug-

loaded formula using a DSC-50 differential scanning

calorimeter (Shimadzu Co., Japan). The samples were

heated at a temperature of (25–700) °C with a heating

rate of 10 °C/minute.

Zeta Potential Measurement

In order to detect the influence of various chemical mod-

ifications on the CNTs surface charge, zeta potential was

estimated using ZS 90 (Malvern Instruments Ltd.,

Worcestershire, UK) in a 0.05 mg/mL sample concentra-

tion suspended in PBS (pH 7.4).

Determination Of Drug Content In The

Microcapsulated Formula

The SFN content in the prepared CNTs-SFN-MCs was

determined according to literatures.41 Briefly, 100 mg of

CNTs-SFN-MCs was crushed carefully in a glass mortar

and transferred to a 100 mL volumetric flask containing

phosphate buffer pH 7.4. The volume was adjusted with

the same buffer and then the flask was agitated for 5 mins

every hour for 5 hrs. The drug concentration was deter-

mined in the filtrate spectrophotometrically at 265 nm

according to SFN standard calibration curve in phosphate

buffer pH 7.4 using a M350 UV-Visible double-beam

spectrophotometer (CamSpec, UK).

In Vitro Drug Release Study

In vitro release of SFN from the formulated microcap-

sules, equivalent to 200 mg SFN, was performed at 37 °

C according to a dissolution medium pH shift method with

a paddle type dissolution test apparatus, SR II, 6 flasks

(Hanson Research Co., USA) adjusted at 50 rpm as

described in literatures.42 In brief, 500 mL of simulated

gastric fluid (pH 1.2) was used as a release medium for

two hours, followed by the addition of 5 mL of 7 M

KH2PO4 containing 16.75% (w/v) NaOH in order to shift

the pH to 7.4 and the experiment was continued for

another six hours. The release study of SFN from the

PEGylated CNTs-SFN, equivalent to 200 mg SFN, was

performed using a similar protocol but only at pH 7.4.

Throughout the whole experimental time, a three mL

aliquot was aspirated and filtered every 30 mins interval

to measure the absorbance at the predetermined λmax of

each media against a corresponding blank.

Stability Study Of The Microcapsulated Formula

Evaluations of the stability of the prepared microcapsules

were carried out after storage at room temperature (25 °C),

30 °C, and 40 °C for three months in a relative humidity

(RH) of 75±5% using a thermostatically-controlled cabi-

net. The CNTs-SFN-MCs were tested for changes in the

morphological shape, the drug content, and the amount of

drug released within 6 hr in comparison to the correspond-

ing properties of a freshly prepared microcapsules.

In Vitro Cell Viability Assay Of The Drug-

Loaded CNTs
The MTT assay was used to assess the anti-proliferative

activity of the drug-loaded CNTs-SFN against HepG2 cells

(Vacsera, Egypt) in comparison to that of the conventional
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SFN and PEGylated CNTs as positive and negative con-

trols, respectively, according to a published protocol.43

In Vivo Animal Experiments
All animal experiments were carried out according to the

National Institutes of Health guide (NIH 1985) for the

Care and Use of Laboratory Animals after being approved

by the Ethical Committee of the Faculty of Pharmacy,

Minia University, Egypt (09/2017). All the in vivo experi-

mental works were achieved using healthy male Wistar

rats that were obtained from the National Research Center

(NRC), Dokki, Giza, Egypt.

In Vivo Pharmacokinetic Behavior Of The Drug-

Loaded CNTs

Evaluation of the pharmacokinetic behavior of the drug-

loaded CNTs was carried out using six healthy male Wistar

rats (weighing 150 ± 10 g). The animals were randomly

divided into two groups (3 rats each) and allowed to accli-

matize for one week under regular environmental condi-

tions (temperature, 22 ± 2 °C; humidity, 50 ± 5%; night/day

cycle, 12 hrs) with free access to an ordinary rodent diet and

tap water ad libitum.

Subsequent to a 12 hr fasting period, animals in the 1st

group were given SFN (60 mg/kg, per os), while animals

in the 2nd group were given CNTs-SFN-MCs (60 mg/kg

SFN-equivalent per os). Post oral administrations, blood

samples were collected from each animal via the retro-

orbital plexus at a predetermined time intervals. These

blood samples were centrifuged at 10,000 rpm for 5 mins

and plasma was isolated and kept frozen at −20°C until

analysis.

The plasma SFN concentration in each sample was quan-

tified using a YL9100 HPLC system (Republic of Korea)

consisting of a quaternary gradient pump, a UV detector, a

G137PA automatic degasser, a standard auto-sampler, a col-

umn oven, a chromatography workstation, and a Kromasil

C18 column (250 mm × 4.6 mm length × internal diameter,

5 μm particle size). The used mobile phase consisted of

potassium dihydrogen phosphate (20 mM) and acetonitrile

(35:65, v/v) (pH 6.3) with a flow rate of 1 mL/min.

According to these chromatographic conditions, SFN concen-

tration in the collected plasma samples was determined at 265

nm after sample handling according to a previously described

processing method.44 Briefly, 50 μL of each plasma sample

was added to 50 μL acetonitrile in an Eppendorf tube to

precipitate proteins. Subsequent to 1 min vortex, each tube

was centrifuged at 10,000 rpm for 10 mins and the obtained

supernatant was transferred into a glass tube containing 250

μL deionized purified water. Then, SFN was extracted by

adding 1 mL ethyl acetate. After mechanical shaking for

5 mins, each tube was centrifuged at 4000 rpm for 10 mins

and the obtained supernatant was transferred into 5 mL glass

tube to be evaporated until dryness in a 25°C water bath under

a nitrogen stream. The obtained residue was dissolved in 100

μL methanol, of which a 20 μL aliquot was injected into the

chromatographic system.

Animal Model Design

In the current study, 40 healthy male Wistar rats (weighing

150 ± 10 g) were housed (2 per cage) under regular environ-

mental conditions (temperature, 22 ± 2 °C; humidity, 50 ±

5%; night/day cycle, 12 hrs) with free access to an ordinary

rodent diet and tap water ad libitum. The animal’s weights

were regularly recorded two times per week. After a 2-week

acclimatization period, the rats were randomized into

2 groups of 10 and 30 rats, respectively. The animals in the

1st small group served as a negative control, while the

animals in the 2nd large group received DENA in their

drinking water (100 mg/L) for 8 consecutive weeks.10,45

Four weeks after the end of the DENA administration,

the 30 rats of the large group were further divided into 3

subgroups (10 rats each). The 1st subgroup (DENA group)

received no treatment. The 2nd subgroup was treated daily

with the conventional SFN at a dose of 60 mg/kg for one

month per os.10,46 The 3rd subgroup was treated daily with

CNTs-SFN-MCs at a dose of 60 mg/kg SFN-equivalent for

one month per os.

Two days after the last treatment, a blood sample was

collected from each animal via the retro-orbital plexus under

isoflurane anaesthesia, and the animals were then scarified by

cervical decapitation. Subsequent to autopsy, the livers were

excised, washed in ice-cold isotonic saline, inspected, photo-

graphed, and subdivided into two parts. One part was kept in a

10% neutral buffered formalin solution for histological exam-

inations. The other part was homogenized in ice-cold RIPA

lysis buffer containing a 1% protease and phosphatase inhibi-

tor cocktail using a Potter-Elvehjem rotor-stator homogenizer

fittedwith a Teflon pestle (Omni International, Kennesaw,GA,

USA). The samples were subsequently aliquoted, instantly

flash frozen in liquid nitrogen, and stored at –80 °C until use

in the Western blot assays.

Biochemical Assays

The circulating levels of albumin and total bilirubin, as

well as the serum activities of alanine aminotransferase
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(ALT), aspartate aminotransferase (AST), alkaline phos-

phatase (ALP), gamma-glutamyl transferase (GGT), and

alpha L-fucosidase (AFU), were estimated using commer-

cially available colorimetric and kinetic assay kits together

with the photometer 5010 V5+ (ROBERT RIELE GmbH

& Co KG - Berlin - Germany). The serum levels of AFP

and AFP-L3 were assayed using commercially available

rat-specific ELISA kits on a Stat Fax microplate ELISA

reader (FL, USA), and the results are expressed as the ratio

of AFP-L3 to total AFP (AFP-L3%).

Western Blot Assessments

The liver tissue protein levels of three HCC-relevant

tumour markers, GP73, GPC-3, and HSP70, were assessed

by Western blotting using the corresponding rabbit poly-

clonal antibodies according to a protocol prescribed in our

previously published work.10 Each experiment was

repeated three times to assure the reproducibility of

results. The quantification was performed using the

ImageJ software and expressed as the band density relative

to that of the β-actin.

Histopathology And Immunofluorescence

Examinations

The histopathological examination of the obtained liver

tissue sections was carried out using a standard haematox-

ylin and eosin (H&E) staining protocol.47 Some paraffin

sections on positive slides were picked for the immuno-

fluorescence lesion detection of four HCC-pertinent bio-

markers, CTGF, FGF-2, HIF-1α and mTOR, according to

a published protocol.48 The evaluation was performed by

Nikon fluorescence microscope (model: Nikon eclipse 90i

with a DS-U3 imaging system, Nikon Metrology, Inc.,

Brighton, Missouri, USA) under blue, green, and red

channels. Fluorometric analysis: fluorometric intensity of

at least nine microscopic fields was measured for each

tissue section using the ImageJ/NIH software (National

Institute of Mental Health, Bethesda, Maryland, USA).

Statistical Analysis
Statistical analysis of the results was performed using

GraphPad Prism software version 6.0 (GraphPad

Software, Inc., San Diego, USA). All values are expressed

as the mean±SEM, and the variables were compared using

one-way analysis of variance (ANOVA) followed by

Tukey’s t-test for multiple comparisons. Differences were

considered statistically significant at p<0.05.

Results And Discussion
Preparation Of The Drug-Loaded CNTs-

SFN Microcapsules
The synthesis of the SFN-loaded CNTs was adopted from

methods described in the literature,49 as illustrated in

Figure 1.

Microcapsulation of the drug-loaded CNTs-SFN was

achieved via an alginate-based method. This system was

ubiquitously described in the literature to exhibit many

therapeutic benefits via tailoring the release profile of the

bioactive species.50,51 In particular, the biocompatible and

biodegradable alginate microcapsules have been widely

and preferentially used as a drug carrier because of their

ease and mild encapsulation process. Minutely, the algi-

nate microcapsules are ionically cross-linked in the pre-

sence of multivalent cations, such as Ca2+, and therefore

exhibit the sensitivity of Ca2+/COO− linkage to pH as a

key of controlled release function. Post oral administra-

tion, the loaded cargo can be released within the swelling

and cracking of the microcapsules under the predeter-

mined pH while the swelling and cracking behavior can

also be used to regulate the period of drug release.52–54

Characterisation Of The Drug-Loaded

CNTs And Their Microcapsulation

Formula
SEM Analysis

To investigate the topographical features and fracture sur-

face details of the prepared CNTs-SFN, CNTs-SFN-MCs

and all reaction intermediates, SEM was used, and the

obtained images are presented in Figure 2. The purified

CNTs appeared quite clear without obvious amorphous

carbon (Figure 2A). The CNTs-COOH showed a smooth

surface with curled and entangled tubes (Figure 2B). The

surface of the CNTs-PEG appeared rough and exhibited

some attached clusters (Figure 2C), indicating that PEG

macromolecules were grafted onto the surface of CNTs by

the formation of ester linkages between the reactive hydro-

xyl groups of PEG and the acyl groups of CNTs-COCl.55

The images of CNTs-SFN show drug particles adsorbed on

the CNTs-PEG surface (Figure 2D). These SEM images

clearly show that the pristine CNTs were highly tangled

tubes with a diameter of 30–50 nm. In addition, sidewall

functionalization with carboxylic and PEG groups and

loading with SFN did not significantly alter the morpho-

logical structure of the CNT surfaces, as observed from

their corresponding SEM images. Moreover, the obtained
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Figure 1 Schematic illustration of the synthesis of CNTs-SFN-MCs.
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Figure 2 SEM images of pure CNTs (A), CNTs-COOH (B), CNTs-PEG (C), CNTs-SFN (D), CNTs-SFN-MCs (E and F), and plain CNTs-MCs (G and H) at different

magnification powers.
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SEM images show that the finally prepared CNTs-SFN-

MCs (Figure 2E and F) and their corresponding plain

formula (Figure 2G and H) were spherical in shape and

exhibited smooth surfaces with an obvious indication for

efficient drug loading in the case of the CNTs-SFN-MCs

formulation.

TEM Analysis

To investigate the microstructural details of the different

formulation reaction specimens, TEM was applied. The

obtained images, as shown in Figure 3, reveal a relatively

uniform size distribution of the outer diameter of the CNTs

ranging from 30–50 nm with a length of ~10–30 μm. The

dark and thicker area around the CNTs was intensified

with high-PEGylated CNTs, clearly indicating the

PEGylation process. As shown, the coating was not com-

pletely uniform throughout the entire length of the

nanotubes, while uniform thickness was achieved over

the tube after SFN loading (Figure 3A–D).

FT-IR Spectroscopy

The structure of the final product and synthesis intermedi-

ates were confirmed by FT-IR measurement as presented

in Figure 4. The FT-IR spectra of pristine CNTs

(Figure 4A) and purified CNTs (Figure 4B) are similar,

with a characteristic peak at 1635.88 cm−1, related to the

C=C bond of the unconjugated sp2 carbons of folded

graphenes. The stretching peaks of C-O and H-O bonds

were observed at 1113.29 cm−1 and 3440.0 cm−1, respec-

tively which are related to the low percentage of hydroxyl

groups on the nanotube surface. The pure PEG spectrum

(Figure 4C) shows two strong peaks `between

2694.33 cm−1 and 3420.39 cm−1 due to the C-H stretching

in the PEG chain. The OH stretching vibration is observed

Figure 3 TEM images of the pure CNTs (A), CNTs-COOH (B), CNTs-PEG (C), and CNTs-SFN (D).
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in the region of 3420.39 cm−1, exhibiting an intermolecu-

lar hydrogen bonding nature. The spectrum of SFN

(Figure 4D) shows two characteristic peaks at

3295.97 cm−1 and 3337.73 cm−1 due to the N-H stretching

of amide. The observed peaks at 3079.19 cm−1 and

2943.36 cm−1 are related to the C-H stretching band of

aromatic and aliphatic CH, respectively. The peak at

1689.52 cm−1 is characteristic of the amide C=O group.

The peaks in the CNTs-COOH spectra (Figure 4E) at

1635.22 cm−1, 1466.59 cm−1, and 1359.62 cm−1 are

related to the C-O, C=O and C=C bonds, respectively.

The wide peak in the region of 3429.56 cm−1 is assigned
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Figure 4 FT-IR spectra of pristine CNTs (A), purified CNTs (B), pure PEG (C), SFN (D), CNTs-COOH (E), CNTs-COCl (F), CNTs-PEG (G), and CNTs-SFN (H).
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to the -OH (carboxylic acid) group, and the two peaks at

2885.70 and 2900.0 cm−1 are the absorption peaks of C-H

bonds. Notably, new peaks coinciding with C=O and C-H

bonds were recorded after reaction with HNO3/H2SO4,

reflecting the successful oxidation of CNTs. The peaks in

the CNTs-COCl spectra (Figure 4F) at 1703.22 cm−1 are

related to the carbonyl stretch of the acyl chloride inter-

mediate (CNTs-COCl). The wide peak in the region of

3425.41 cm−1 assigned to the -OH group is due to the

incomplete conversion of carboxylic acid into acid chlor-

ide. Comparing the CNTs-COOH FT-IR spectra with the

CNTs-PEG spectrum in (Figure 4G) indicates a change in

the position of the peaks from 1635.22 to 1631.68 cm−1,

which is due to the formation of ester C=O bonds in

CNTs-PEG. The intensity of the C-H peak increased as a

result of the increase in the amount of alkyl (-CH2) group

in PEG. The figure clearly shows that introducing a PEG

group on the surface of the oxidized CNTs slightly chan-

ged their IR spectra. The FT-IR spectrum of CNTs-SFN

(Figure 4H) shows all characteristic peaks in all of the

individual compounds.

Zeta Potential Assessments

To detect the influence of various chemical modifications on

the CNTs surface charge, zeta potential, one of the bench-

marks of stability of the colloidal system, was determined

for all CNTs dispersions. The pristine, oxidized, acylated,

PEGylated and SFN-loaded CNTs were negatively charged

in the aqueous solution (see Figure 1S in the supplementary

data). The pristine CNTs showed a negative zeta potential

(−22.24 mV). The oxidized CNTs showed a negative zeta

potential (−37.60 mV), most likely due to the insufficient

ionization reaction of carboxylic acids in water. The acy-

lated CNTs showed a negative zeta potential (−11.48 mV),

which is higher than that of the oxidized CNTs. A possible

explanation for this phenomenon could be the negative

inductive effect of chlorine.56 Specifically, PEG functiona-

lization shifted the value of the zeta potential to negative

(−24.21 ± 0.31 mV). The negative zeta potential of

PEGylated CNTs has been postulated to be attributed, in

part, to the long hydrocarbon chain of PEG.56 The addi-

tional increase in the negative value of zeta potential in the

case of CNTs-SFN (−28.75 mV) could be due to the pre-

sence of the non-protonated amino group of the adsorbed

SFN tosylate. A diagrammatic illustration of all zeta poten-

tial values is presented in the supplementary data

(Figure 1S).

Thermo-Gravimetric Analysis (TGA)

Due to the high thermal stability of CNTs, TGA has

been widely used to quantify the their degree of

functionalization.49,57 As seen in Figure 5A, weight loss

was observed two times for the PEGylated CNTs; the 1st

was due to PEG degradation, and the 2nd was related to

the CNTs decomposition. A complete degradation of PEG

in the PEGylated CNTs occurred at 350 °C (Figure 5A).

Differential Scanning Calorimetry (DSC)

To precisely estimate a number of characteristic properties of

the formulation, reactions such as heat capacity, and to

observe fusion and crystallization events of the prepared

formulation and the intermediates, DSC spectroscopy was

applied. Calcium chloride showed two endothermic peaks in

the temperature range of 178.65 and 214.74 °C, while NaA
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Figure 5 TGA of the formulation reaction specimens (A); SFN adsorption into CNTs at different ratios (B).
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decomposed at approximately 265.23 °C, showing broad

exothermic peaks (Figure 2S of the supplementary data).

The DSC curve of SFN displays one large, sharp endother-

mic peak at approximately 212.91 °C, which corresponds to

the melting point of the tosylate salt form, and another small

endothermic peak at approximately 200.40 °C, which might

be relevant to the melting point of the SFN base form. The

DSC thermogram of the drug-loaded CNTs and their plain

form show only broad and small endothermic peaks at

123.36 °C and 115.23°C, respectively, most likely related

to dehydration of the microcapsules (Figure 2S of the supple

mentary data).

Assessment Of Drug Loading On CNTs-SFN

As described in Figure 5B, minimum variations were

observed in the SFN adsorption capacity of the functiona-

lized CNTs-PEG. Accordingly, an adsorption ratio of 1:2

(100 mg CNTs-PEG: 200 mg SFN) was adopted in all

upcoming experiments. On the one hand, the one-part

CNTs will minimize any side effects accompanied by its

use; on the other hand, the two-part SFN will increase the

drug loading to match the marketing dose (200 mg).

Assessment Of Drug Content And Release Profile

From The Drug-Loaded Microcapsules

To estimate the actual weight of SFN itself in the finally

formulated drug-loaded microcapsules, the drug content

was calculated by measuring the deviation from the theo-

retical weight. The SFN contents in the prepared CNTs-

SFN-MCs were found to be 191.2/200 g (95.6%).

The in vitro release profile of SFN from the CNTs-SFN-

MCs was assessed according to a dissolution medium pH

shift method. Under acidic conditions mimicking those in

the stomach (pH 1.2), only a small amount of the drug was

released during the first 2 hrs. This finding could correspond

to the drug molecules deposited on the surface of the micro-

capsules. Once these drug molecules were consumed, the

insoluble nature of the pH-dependent polymer, NaA, pre-

vented drug release from CNTs-SFN-MCs. In contrast, the

pH shift towards alkaline (pH 7.4), which resembles that of

the intestine, apparently enhanced the drug release to be

efficiently completed within 5 hrs (Figure 6A).

The in vitro release profile of SFN from the PEGylated

CNTs-SFN was assessed at pH 7.4, assuming that the drug-

loaded CNTs will be susceptible only this alkaline pH med-

ium after its liberation in the intestine subsequent to swelling

and cracking of the alginate microcapsules. Under these

alkaline conditions, simulating those in the intestine (pH

7.4), there was a relatively faster release of the loaded drug

from the PEGylated CNTs than that of the microcapsulated

formula, especially during the first 3 hrs to be efficiently

completed within 4 hrs (Figure 6B). This enhanced release

of SFN from the PEGylated CNTs-SFN is most likely due to

the absence of the insoluble NaA polymer, allowing for an

instant liberation of the adsorbed drug.

Assessment Of The Stability Of The Drug-Loaded

Microcapsules

After a three months storage period at 25°C, 30°C and 40°C

in a RH of 75±5%, no significant changes were observed in

the morphological shape of the CNTs-SFN-MCs as detected
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Figure 6 pH-dependent in vitro release profiles of SFN from the microcapsulated formula (A), and from the PEGylated CNTs-SFN (B). The violet background resembles pH

1.2 and the greenish background resembles pH 7.4.
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by SEM analysis (Figure 3S of the supplementary data). As

well, these storage conditions were unable to significantly

affected the drug content of the CNTs-SFN-MCs as illu-

strated in Table 1.

Regarding the drug release profile, the obtained results

indicated that storage of the CNTs-SFN-MCs for three

months at stress conditions induced a negligible decrease

in the rate of the drug release from the stored microencap-

sules as illustrated Table 1.

In Vitro Anti-Proliferative Activity Of The

SFN-Loaded CNTs
The cytotoxic activity of the developed CNTs-SFN against

HepG2 cells was assessed using the MTT assay and was

compared to that of the conventional SFN and PEGylated

CNTs, which served as the positive and negative controls,

respectively. As depicted in Figure 7, the obtained results

revealed that the viability of the HepG2 cells was significantly

reduced after 28 hrs of incubation with both the free drug and

CNTs-SFN, with corresponding IC50 values of 10.24 µmol/l

and 4.05 µmol/l, respectively. This apparent double increase in

the anti-proliferative activity of SFN towards HepG2 cells

after being loaded onto the functionalized CNTs indicates

enhanced bioavailability, which could be due to the feasible

delivery of the nanosized CNTs-SFN inside the cells with a

subsequent more efficient and faster intracellular release and

accumulation of SFN than that of the free drug. These results

are in agreement with previous studies that reported the

improved bioavailability of anticancer agents, other than

SFN, via their binding to CNTs.37,58–60 Additionally, our

results are consistent with other recent investigations that

reported increased cellular uptake and consequently enhanced

anticancer activity of SFN via its loading onto nanosystems

other than CNTs.61–63 Of note, the currently reported limited

anti-proliferative activity of CNTs-PEG towards HepG2 cells

(IC50 >9.5 mg/mL) proves to a large extent that the developed

cytotoxicity of the novel formula is attributed only to the

loaded SFN. These findings are in accordance with a recently

published work in which PEG-functionalized CNTs were

described to be non-cytotoxic.56 These data collectively

revealed that the PEGylated CNTs could be used as a drug

carrier and that the SFN-loaded formula could be a promising

potent system for in vivo HCC treatment.

Pharmacokinetics In Vivo
The applied HPLC method was validated with respect to

its specificity, linearity, precision, recovery, and sensitivity.

The blank plasma, SFN solution in blank plasma, and

plasma samples collected after the CNTs-SFN-MCs

administration were manipulated based on the above

described HPLC method and the obtained chromatograms

were recorded (Figure 8).

According to the obtained results, the used HPLC

method was found to be satisfactory regarding its sensi-

tivity and specificity with no interference with SFN deter-

mination from the endogenous substances in plasma

under the selected chromatographic conditions. As

described in Table 2 and Figure 9, the pharmacokinetic

parameters showed that the area under curve (AUC) of

SFN was seven-times higher in case of its administration

in the form of drug-loaded microcapsules compared to

that of the conventional SFN (680.60 μg.hr/mL versus

96.87 μg.hr/mL, respectively). Additionally, the half-life

(t1/2) of SFN was four-times prolonged after its adminis-

tration in this new formula in comparison to its conven-

tional form (18.43 hrs versus 4.54 hrs, respectively). This

could be an effect of the drug wrapping into the CNTs-

SFN-MCs that avoid the metabolic action of CYP

enzymes, allowing the drug to stay longer in the systemic

circulation.

In Vivo Antitumour Activity Of The SFN-

Loaded Microcapsules
Changes In The Animals’ Body Weights

Throughout the course of the experiment, the rats in the

control group remained healthy and alert and gained a

Table 1 Effects Of Storage Conditions On The Drug Content And Rate Of Drug Release From The Stored SFN-Loaded

Microcapsules

Fresh Microcapsules Stored Microcapsules

25 °C 30 °C 40 °C

Drug content (%) 95.60 ± 1.74 94.85 ± 2.93 94.15 ± 1.15 93.42 ± 2.03

SFN released within 6 hr (%) 98.41 ± 1.58 97.80 ± 2.04 96.19 ± 3.01 95.99 ± 3.11

Note: Data are presented as the mean ± SD (n = 3).

Abbreviation: SFN, Sorafenib.
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significant amount of body weight compared to the

DENA-drinking rats, which appeared lethargic with an

intangible body weight gain. As observed in Figure 10,

all DENA-drinking rats lost weight during the course of

the exposure before treatment, likely due to the primary

tumour burden or the metastatic spread of the tumour.

Comparable observations were previously reported using

the same animal model.10,64 Throughout the experimental

period, only one death was recorded in both the DENA

and SFN groups in the 4th week of DENA-exposure. After

starting the treatments, animals treated with the SFN-

loaded microcapsules started gradually to regain their

weight, vitality, and activity in comparison to the animals

in the untreated and SFN-treated groups (Figure 10). This

result represents a good indicator of the superiority of the

CNTs-SFN-MCs over the conventional SFN with respect

to systemic toxicity and tolerability.

Morphological Changes In The Liver Features

Naked-eye investigations of the excised livers in the DENA

group showed abnormal morphological features in the form

of faint, red, irregular rough surfaces incorporating numerous

HCC nodules. Some livers showed loose consistency, incor-

porating diffuse massive heterogeneous lesions (tumour

bulges) on the outer surfaces with numerous adjacent small

sized nodules of up to 5x5 mm (Figure 11B and Figure 4SB

of the supplementary data). Similar morphological changes

have also previously been observed in several DENA-

induced HCC rat models.10,65–67 To a relatively similar

extent, livers in the conventional SFN-treated group showed

altered morphological features with irregular, rough and pale

surfaces, incorporating some scattered micronodules of dif-

ferent sizes throughout the liver (Figure 11C and Figure 4SC

of the supplementary data). Conversely, the livers of rats

treated with the CNTs-SFN-MCs showed comparatively
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Figure 7 In vitro anti-proliferative activity of SFN (A), CNTs-SFN (B) and CNTs-PEG (C) against HepG2 cells. Cell viability was measured by MTT assay and IC50 values

were calculated by GraphPad Prism software version 6.0. Data are presented as the mean ± SD from three independent experiments.

Abbreviations: CNTs-PEG, PEGylated CNTs; SFN, sorafenib; CNTs-SFN, SFN-loaded CNTs.
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normal morphological aspects with a healthy reddish brown

colour, normal firm consistency, smooth surface, and borders

without any defined mass lesions (Figure 11D and

Figure 4SD of the supplementary data) that were similar to

those of rats in the healthy control group (Figure 11A and

Figure 4SA of the supplementary data), except for very few

small nodules in some cases.

Liver Function Tests

In comparison to those in the healthy control group, ani-

mals in the DENA and SFN groups showed signs of

impaired liver functions, including significant hypoalbu-

minemia (p<0.001 & p<0.001, respectively), in addition

to significant multi-fold increases in the serum activities of

ALT (p<0.001 & p<0.001, respectively), AST (p<0.001 &

p<0.001, respectively), GGT (p<0.001 & p<0.001,

respectively), and ALP (p<0.001 & p<0.01, respectively),

as well as the total serum bilirubin level (p<0.001 &

p<0.05, respectively), as illustrated in Table 3. This nota-

ble DENA-induced hepatic insufficiency could be due to

secondary events following lipid peroxidation of hepato-

cyte membranes with a consequent increase in the leakage

of the liver function indices from damaged liver tissues, as

has been previously reported in many models of DENA-

induced hepatic carcinogenesis.10,67–69 Remarkably, these

observed signs of impaired liver function were well toler-

ated in the CNTs-SFN-MCs-treated group to relatively

match the corresponding values in the healthy control

group, as illustrated in Table 3.

HCC-Related Tumour Markers

Additional proof supporting the tumour-repressing poten-

tial of the CNTs-SFN-MCs was found in the circulating

levels and lesional expression of a new generation of

HCC-relevant tumour markers, including AFP-L3%,

AFU, GPC-3, GP73, and HSP70. These markers have

been used in several investigations for monitoring treat-

ment response and recurrence and as surrogate markers

of clinicopathological variables of HCC.10,70–77 As

described in Figure 12A, circulating AFP-L3% was

Figure 8 HPLC chromatogram of (A) SFN, (B) SFN in blank plasma, (C) plasma

samples collected after the CNTs-SFN-MCs administration, and (D) the blank plasma.

Table 2 The Plasma Pharmacokinetic Parameters After Oral

Administration Of SFN And CNTs-SFN-MCs In Rats

Pharmacokinetic

Parameters

SNF CNTs-SFN-MCs

Cmax (μg/mL) 13.93 ± 1.98 24.00 ± 2.44

Tmax (hr) 4.00 ± 0.68 12.01 ± 1.38

t(1/2)el (hr) 4.54 ± 0.74 18.43 ± 2.49

K el (hr
−1) 0.15 ± 0.02 0.04 ± 0.00

AUC (μg.hr/mL) 96.87 ± 15.99 680.60 ± 69.61

Vd (Liter) 0.93 ± 0.17 0.18 ± 0.01

ClT (mL/min) 2.37 ± 0.40 0.12 ± 0.01

Note: Data are presented as the mean ± SD (n = 3).
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Figure 9 The mean concentration-time curve of SFN (µg/mL) in plasma after oral

administration of SFN and CNTs-SFN-MCs in rats. Data are presented as themean ± SD

(n = 3).
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apparently decreased in the CNTs-SFN-MCs-treated

group (14.0%) in comparison to that in the DENA

(40.3%) and SFN (38.8%) groups. Additionally, the

serum activity of AFU was significantly diminished in

the CNTs-SFN-MCs-treated group in comparison to that

in the DENA and SFN groups (p<0.001 & p<0.01,

respectively) – see Figure 12B.

Moreover, Western blot estimation of GPC-3, GP73,

and HSP70 as HCC-relevant molecular markers offered

additional evidence for the superiority of the CNTs-SFN-

MCs over the conventional SFN. As demonstrated in

Figure 12C–E and Figure 5S of the supplementary data,

exposure to DENA led to strong protein expression of the

hepatic tissue levels of GPC-3, GP73, and HSP70, demon-

strating the occurrence of premalignant liver changes in

this group. Exceptionally, for the CNTs-SFN-MCs-treated

group, the lesional expression pattern of these molecular

markers was markedly attenuated to relatively notable

levels. Treatment with the conventional SFN, on the

other hand, seemed to have no obvious impact in alleviat-

ing the redundant expression of these proteins, as depicted

in Figure 12 and Figure 5S of the supplementary data.

Immunofluorescence Staining

Additionally, immunofluorescence assessment provided

proof of the promising therapeutic efficacy of microcapsu-

lated SFN-loaded CNTs in withstanding DENA-induced

HCC. An obvious lesional over-expression in the levels of

four HCC-related biomarkers, CTGF, FGF-2, HIF-1α, and

mTOR, was observed in the DENA group, as detected by

immunofluorescence staining of the corresponding liver

tissue sections. Only treatment with CNTs-SFN-MCs, but

not with the conventional SFN, was able to decrease the

relative DENA-enforced lesional expression level of these

biomarkers, as shown in Figure 13 and Figures 6S & 7S of

the supplementary data. Over-expression of these biomar-

kers has been widely validated in several studies and was

proven to be associated with poor HCC prognosis, poor

differentiation, early recurrence, and poor clinical

outcomes.78–84 Several other in vivo studies confirmed a

dose-dependent inhibitory effect of SFN on the expression

pattern of some of these biomarkers, leading to decreased

tumour vascularization and growth.3,46,85,86 Therefore, the

estimation of protein expression pattern of these biomar-

kers can serve as a prognostic marker for HCC and a
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Figure 10 Illustration of the changes in the body weights of the animals in different groups during the experiment.

Elsayed et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:148460

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=223920.docx
https://www.dovepress.com/get_supplementary_file.php?f=223920.docx
https://www.dovepress.com/get_supplementary_file.php?f=223920.docx
https://www.dovepress.com/get_supplementary_file.php?f=223920.docx
https://www.dovepress.com/get_supplementary_file.php?f=223920.docx
http://www.dovepress.com
http://www.dovepress.com


potential tool for evaluating HCC therapeutic efficacy.

These results collectively indicate that treatment with

CNTs-SFN-MCs is relatively superior to treatment with

the conventional SFN in reducing the DENA-enforced

lesional over-expression of these biomarkers, as shown in

Figure 13 and Figures 6S & 7S of the supplementary data.

Histopathological Examinations

The hepatic tissue sections of healthy control rats revealed

a preserved hepatic lobular architecture, normal hepato-

cyte cording, maintained central veins and identifiable

portal tracts. Cytologically, the hepatocytes are polyhedral

and uniform in size and shape, and the nuclei are

Figure 11 Effect of the tested compounds on the morphological aspect of livers. Representative photographs of livers from the control (A1–5) group showed normal

morphological aspects. Liver from the DENA group (B1–5) showed faint red irregular rough surface and mostly loose consistency. Liver from the SFN-treated group (C1–5)

showed firm consistency with irregular rough surface incorporating some scattered micronodules (arrows) of different sizes throughout the liver. Livers in the CNTs-SFN-

MCs -treated group (D1–5) showed relatively normal morphological aspects.

Table 3 Circulating Levels Of Clinically Relevant Liver Function Indices And Tumour Markers In Different Groups

Control DENA SFN CNTs-SFN-MCs

ALT (U/L) 35.13 ± 3.27 193.80 ± 18.08*** 156.40 ± 8.83*** 72.10 ± 6.69$$$, †††

AST (U/L) 46.00 ± 4.18 224.50 ± 17.62*** 199.30 ± 17.07*** 95.41 ± 6.41$$$, †††

GGT (U/L) 26.25 ± 3.53 78.18 ± 3.26*** 65.68 ± 6.26*** 43.38 ± 6.10$$$,†

T. Bilirubin (mg/dL) 0.35 ± 0.06 1.29 ± 0.12*** 1.20 ± 0.14* 0.75 ± 0.06 ‡‡

ALP (U/L) 126.90 ± 12.47 343.80 ± 31.61*** 251.50 ± 19.72**$ 160.00 ± 12.91$$$,†

Albumin (g/dL) 3.92 ± 0.11 2.53 ± 0.16*** 2.69 ± 0.17*** 3.36 ± 0.21$$, †

AFU (nmol mL−1 h−1) 203.50 ± 25.68 652.10 ± 41.88*** 518.30 ± 42.44*** 336.30 ± 29.21$$$, ††

AFP (ng/mL) 3.91 ± 1.12 72.90 ± 5.99*** 58.70 ± 7.03*** 28.07 ± 5.18*$$$,††

AFP-L3 (ng/mL) 0.23 ± 0.05 29.38 ± 2.96*** 22.83 ± 1.76*** 3.94 ± 0.69$$$,†††

Note: Data are presented as the mean ± SEM (n = 10). *$, and † indicate significant changes from the control, DENA, and SFN respectively. *$, and † indicate significant

change at p<0.05; **$$, and †† indicate significant change at p<0.01; ***$$$, and ††† indicate significant change at p<0.001.
Abbreviations: AFP, alpha-fetoprotein; AFP-L3, Lens culinaris agglutinin-reactive fraction of AFP; AFU, alpha L-fucosidase; ALP, Alkaline phosphatase; ALT, Alanine

aminotransferase; AST, Aspartate aminotransferase; DENA, N-nitrosodiethylamine; GGT, Gamma-glutamyl transferase; SFN, Sorafenib; T. Bilirubin, Total Bilirubin.
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Figure 12 Serum AFP-L3% (A); AFU activity (B); representative Western blot analysis of GP73 (C), GPC-3 (D) and HSP70 (E) expression in liver tissues of different

groups. (A) Bar chart showing the ratio of AFP-L3 (red) to total AFP (green). In (B), the data are presented as the mean ± SEM (n = 10). *$ and † indicate significant changes

from the control, DENA, and SFN groups respectively. *$ and † indicate significant change at p<0.05; **$$ and †† indicate significant changes at p<0.01; ***$$$ and †††

indicate significant changes at p<0.001.

Abbreviations: AFP, alpha-fetoprotein; AFP-L3, Lens culinaris agglutinin-reactive fraction of AFP; AFU, alpha l-fucosidase; DENA, N-nitrosodiethylamine; SFN, sorafenib;

CNTs-SFN-MCs, sorafenib-loaded microcapsules; GP73, golgi protein 73; GPC-3, glypican-3; HSP70, heat shock protein.
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Figure 13 Representative immunofluorescence illustration of liver tissue sections stained for the detection of CTGF, FGF-2, HIF-1α, and mTOR as HCC-relevant

biomarkers in control (A), DENA (B), SFN (C), and CNTs-SFN-MCs (D) groups.
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monotonous with no recorded cytological or nuclear atypia

(Figure 14A and Figures 8SA & 9SA of the supplementary

data).

In contrast, the tissue sections of DENA treated rats

exhibited distorted lobulation, thick hepatic cording with

trabeculae and focal acini formation. The cells are pleo-

morphic with an increase in the nucleocytoplasmic ratio

and hyperchromatism (Figure 14B, and Figures 8SB and

9SB of the supplementary data). These features are in

parallel with numerous previously reported histological

findings in which DENA-exposure induced severe histo-

pathological alteration of hepatic tissue architecture.87,88

The histological findings reflect the neoplastic changes in

hepatocytes with unlimited and uncontrolled malignant

cell proliferation, which induced abnormal mitotic figures,

giant tumour cells and genetic alterations associated with

malignant changes.

The sections of hepatic tissue obtained from SFN-trea-

ted rats revealed residual nodules with low-grade HCC.

The hepatic cords are thick with focal formation of

trabeculae and focus necrosis. The hepatocytes are pleo-

morphic and have prominent nucleoli (Figure 14C and

Figures 8SC and 9SC of the supplementary data).

Visibly, these residual histopathological alterations reflect

the minor efficacy of free SFN in withstanding DENA-

enforced hepatic carcinogenesis.

In contrast to those from SFN-treated rats, the sec-

tions of liver tissue obtained from CNTs-SFN-MCs-trea-

ted rats showed a rather homogenous hepatic tissue

structure with no or rare nodule formation. The lobular

pattern of liver tissue could be identified (retained normal

architecture), and the hepatocytes tended to form two-

cell-thick cords separated by vascular sinusoids. Few

scattered cells with nucleomegaly were observed in a

few sections, but no obvious malignant nodules, tissue

necrosis or tissue haemorrhage could be recorded

(Figure 14D and Figures 8SD and 9SD of the supplemen

tary data). Preferentially, these results firmly suggest the

distinctive cancer-suppressive nature of CNTs-SFN-MCs

in DENA-induced HCC.

A B

C D

Figure 14 Sections of liver tissue obtained from untreated control (A), DENA (B), SFN (C), and CNTs-SFN-MCs-treated rats (D). The white arrows refer to normal

hepatic cords, and the black arrows refer to trabeculae formation. The magnification power is x400.
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Conclusion
In conclusion, our results have confirmed the distinctive

cancer-suppressive nature of the newly designed SFN-

loaded CNTs, both against HepG2 cells in vitro and in a

DENA-induced HCC rat model in vivo, with an eminent

superiority over the conventional SFN. These promising

results may shed new light on a novel therapeutic strategy

for patients with HCC. Moreover, in agreement with sev-

eral published reports,89–92 co-delivery of SFN, in its

newly designed formula, with another anti-cancer drug

could be our next step to further enhance their therapeutic

efficacy to efficiently fight HCC.
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