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Purpose: To assess the performance of combining computed tomography (CT) texture

analysis with machine learning for discriminating different histopathological grades of

pancreatic ductal adenocarcinoma (PDAC).

Methods: From July 2012 to August 2017, this retrospective study comprised 56 patients

with confirmed histopathological PDAC (32 men, 24 women, mean age 64.04±7.82 years)

who had undergone preoperative contrast-enhanced CT imaging within 1 month before

surgery. Two radiologists blinded to the histopathological outcome independently segmented

lesions for quantitative texture analysis. Histogram features, co-occurrence, and run-length

texture were calculated. A support-vector machine was constructed to predict the pathologi-

cal grade of PDAC based on preoperative texture features.

Results: Pathological analysis confirmed 37 low-grade PDAC (five well-differentiated/grade

I and 32 moderately differentiated/grade II) and 19 high-grade PDAC (19 poorly differen-

tiated/grade III) tumors. There were no significant differences in clinical or biological

characteristics between patients with high-grade and low-grade tumors (P>0.05). There

were significant differences between low-grade PDAC and high-grade PDAC on nine

histogram features, seven run-length features, and two co-occurrence features. Cluster

shade was the most important predictor (sensitivity 0.315). Using these texture features,

the support-vector machine achieved 86% accuracy, 78% sensitivity, 95% and specificity.

Conclusion: Machine learning–based CT texture analysis accurately predicted histopatho-

logical differentiation grade of PDAC based on preoperative texture features, leading to

maximization patient survival and achievement of personalized precision treatment.

Keywords: computed tomography, texture analysis, machine learning, pancreatic ductal

adenocarcinoma, histopathological grade

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year

survival rate of around 5%–7%.1,2 Despite advances in therapy, the 5-year survival

rate of PDAC has not improved significantly. Given the poor prognosis of PDAC,

further risk stratification is needed, which will help in developing more efficient

treatment strategies.3 Histopathological subtype is considered a crucial factor in

PDAC prognosis. Poor differentiation is an independent prognostic factor that

affects overall survival.4 Poorly differentiated PDAC has higher aggression and

shorter survival than well-differentiated PDAC.5,6 For short life–expectancy
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patients, the risks associated with surgical resection far

outweigh the benefits, and may lead to a deterioration in

quality of life.7,8 Nurmi et al found for poorly differen-

tiated pancreatic cancer, neoadjuvant therapy could offer

longer survival than upfront surgery.8 However, histo-

pathological grade is usually determined after surgery

and often unknown before treatment. To maximize patient

survival and achieve personalized precision treatment, a

noninvasive technique to differentiate histopathological

subtypes of PDAC before treatment is urgently needed.

Contrast-enhanced computed tomography (CT) is the

primary means of evaluating pancreatic diseases, due to its

high temporal and spatial resolution.9,10 Although several

studies have examined CT characteristics to predict the

histopathological grade of cancer, accurate prediction of

the histological grade of PDAC by CT examination alone

is still limited. Choi et al showed that computerized texture

analysis was useful for predicting the histopathological

grade of pancreatic neuroendocrine tumors.11 Wang et al

found that the histopathological differentiation grade of

pancreatic tumors was negatively correlated with CT-

enhancement degree at group level (rs=−0.784), but they

could not predict the histopathological differentiation

grade of pancreatic cancer at the individual level.12

Texture analysis is a mathematical method to quantify

gray-level patterns and voxel interrelationships within a

region of interest (ROI). It provides a means to measure

intraregional heterogeneity, and may detect tissue changes

imperceptible to the human eye, such as subtle differences

in textural information.13 Texture analysis has the potential

to provide more information about lesion characteristics,14

and is emerging as a potentially effective tool in

accurately assessing histopathological grades of cancer.15,16

Furthermore, CT-based texture analysis combined with

machine learning is a promising method in tumor grading

and classification. Bektas et al found machine learning-

based CT texture analysis was a promising method

for prediction of Fuhrman nuclear grade in clear-cell

Figure 1 Flowchart of study patients and exclusion criteria.

Abbreviations: PDAC, pancreatic ductal adenocarcinoma; CT, computed tomography.
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renal-cell carcinomas.17 To the best of our knowledge, there

has been no study to use CT texture analysis combined with

machine learning to predict the histopathological grade of

PDAC. The purpose of our study was to evaluate the

performance of machine learning–based quantitative CT

texture analysis for preoperatively predicting histopatholo-

gical differentiation grades of PDAC.

Methods
In accordance with the Declaration of Helsinki, this study

was approved by the Institutional Review Board for Health

Sciences Research at the Affiliated Hospital of Nanjing

University of Chinese Medicine. Informed consent was

waived, due to the retrospective nature of this study, but

all data were kept confidential.

Patients
We retrospectively examined 132 patients with PDAC

from our picture-archiving and communication system

(Milwaukee, WI, USA) between July 2012 and August

2017. Inclusion criteria were patients who had received

preoperative contrast-enhanced CT examinations, includ-

ing unenhanced, arterial, and portal phases, and who had

pathologically confirmed PDAC. Exclusion criteria were

lack of contrast-enhanced CT examination, including

unenhanced, arterial, and portal phases (n=7, interval

between preoperative CT scan and surgery >1 month

(n=9), patients with incomplete histopathological evalua-

tion and clinical data (n=21), patients with lesions <0.5 cm

(n=2), patients with limited examinations due to poor

image quality or technical issues (n=13), pathological

diagnosis based on biopsy (n=15), and neoadjuvant

Figure 2 Analysis flowchart.

Abbreviations: PDAC, pancreatic ductal adenocarcinoma; CT, computed tomography; ROI, region of interest; SVM, support-vector machine.
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chemotherapy or radiation therapy before CT examination

(n=9). As a result, a total of 56 patients comprised our

study population (32 men, 24 women, mean age 64.04

±7.82 years). Pathological grades of all patients were

classified according to Adsay et al:18 five cases of

well-differentiated/grade I tumors, 32 of moderately

differentiated/grade II tumors, and 19 of poorly differen-

tiated/grade III tumors. For classification purposes, differ-

entiated/grade I and moderately differentiated/grade II

cases were grouped and classified as low-grade PDAC

(n=37), whereas the poorly differentiated/grade III cases

were classified as high-grade PDAC (n=19; Figure 1).

CT Examination
All patients underwent contrast-enhanced CT examina-

tions using a Brilliance 64 (Phillips Healthcare, Best,

Netherlands) or Lightspeed VCT (GE Healthcare,

Milwaukee, USA). For contrast-enhanced images, 100

mL nonionic contrast material (Ultravist 370; Bayer

Schering Pharma, Germany) were injected with 50 mL

saline chaser at a rate of 3 mL/s using a pump injector.

Scanning parameters were detector configuration

16×0.75mm, pitch 0.9, tube voltage 120 kV, tube current

214–356 mAs, gantry-rotation time, 0.28–0.5 seconds,

section thickness 2–6 mm, and reconstruction interval

2 mm. Texture analysis provides many variables, and pre-

vious studies have shown significant results in texture

analysis primarily at the portal phase, so we selected

portal-phase acquisitions for ROI delineation in the fol-

lowing analysis.7,17 CT scans of the portal phase were

performed at 60 seconds postinjection.

Texture Analysis
Lesion segmentation was performed by two independent

radiologists (WQ and ND, 3 and 12 years of experience

in abdominal imaging, respectively) using 3D Slicer soft-

ware. They were blinded to clinical, laboratory, and his-

topathological outcomes, but knew that the patients had

PDAC. On portal-phase CT images, the axial-image view

was selected and an ROI drawn slice by slice around the

tumor outline on every slice with a visible tumor to cover

the whole tumor. A threshold procedure that included

only pixels with attenuation values between −20 HU

and 150 HU was used to make sure that only the tumor

portion was included, and any air, adipose tissue, or

dense calcification within the lesion was excluded for

further analysis.19 Interobserver agreement indicating the

Table 1 Clinical And Biological Characteristics And CT Findings

Of Low- And High-Grade PDAC Patients

Pathological Classification P-value

Low-Grade

(n=37)

High-Grade

(n=19)

Sex 0.264

Male 19 (51.4) 13 (68.4)

Female 18 (48.6) 6 (31.6)

Age, years 63.35±6.87 65.37±9.48 0.366

Localization of

tumor

0.751

Head 28 (75.7) 13 (68.4)

Body/tail 9 (24.3) 6 (31.6)

Jaundice 0.256

Yes 19 (51.4) 6 (31.6)

No 18 (48.6) 13 (68.4)

Pain 0.241

Yes 23 (62.2) 15 (78.9)

No 14 (37.8) 4 (21.1)

Cholecystitis 0.732

Yes 9 (24.3) 3 (15.8)

No 28 (75.7) 16 (84.2)

CT findings

Duct dilatation 0.772

Yes 14 (37.8) 6 (31.6)

No 23 (62.2) 13 (68.4)

Margin 1

Well-circumscribed 1 (2.7) 1 (5.3)

lll-defined 36 (97.3) 18 (94.7)

Cystic

degeneration

0.401

Yes 13 (35.1) 9 (47.4)

No 24 (64.9) 10 (52.6)

Calcification 1

Yes 1 (2.7) 1 (5.3)

No 36 (97.3) 18 (94.7)

Pancreatic duct

dilatation

0.195

Yes 30 (81.1) 12 (63.2)

No 7 (18.9) 7 (36.8)

Pancreatic atrophy 0.364

Yes 13 (35.1) 4 (21.1)

No 24 (64.9) 15 (78.9)

Lymphatic

metastasis

0.772

Yes 13 (35.1) 8 (42.1)

(Continued)
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reliability of segmentation was assessed by the Dice

coefficient. A coefficient ≤0.4 indicated poor agreement,

0.4–≤0.6 moderate agreement; 0.6–≤0.8 substantial agree-

ment, and >0.8 indicated almost-perfect agreement. To

minimize scanner variabilities on texture analysis, gray-

level normalization was done with MRIcron version 4.0

by rescaling the histogram data. CT-image attenuation

values were normalized to fit within a µ-gray-level

mean of ±3σ.17,20

After a lesion had been segmented, texture features were

calculated, including histogram, co-occurrence,21 and run

length.22 Histogram features included mean, SD, skewness,

kurtosis, and percentiles (fifth, tenth, 25th, 50th, 75th, 90th,

95th). Run-length features included short-run emphasis,

long-run emphasis, gray-level nonuniformity, run-length

nonuniformity, low gray-level run emphasis, high gray-level

run emphasis, short-run low gray–level emphasis, short-run

high gray–level emphasis, long-run low gray–level emphasis,

and long-run high gray–level emphasis. Co-occurrence fea-

tures included energy, entropy, correlation, inverse difference

moment, inertia, cluster shade, cluster prominence, and

Haralick correlation.

Statistical Analysis
Continuous variables are reported as means ± SD. For

quantitative variables, independent-sample t-tests were

used to detect group differences. For categorical variables,

χ2 tests were used to detect group differences. P<0.05 was

considered statistically significant. Logistic regression was

used for multivariate analysis. Variables with statistical

Table 1 (Continued).

Pathological Classification P-value

Low-Grade

(n=37)

High-Grade

(n=19)

No 24 (64.9) 11 (57.9)

Vascular invasion 0.256

Yes 18 (48.6) 13 (68.4)

No 19 (51.4) 6 (31.6)

Note: Except where indicated, data are numbers of patients, with percentages in

parentheses.

Figure 3 (A) Axial portal-phase contrast-enhanced CTof low-grade PDAC in a 63-year-old woman. Red arrows indicate the tumor. (B) Tumor segmentation. One observer

segmented tumor in red and the other observer segmented tumor in green. The lime region indicates the overlapping region of two lesion masks. Segmentation indicated by

the dashed red line. (C) Image reconstructed by AW VolumeShare 5. (D) H&E-stained specimen (200×) demonstrated disordered, well-differentiated duct-like structure,

tumor cells were cubic and columnar with small nucleoli and uncommon nuclear division.
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significance in univariate analysis were entered into a

stepwise logistic regression analysis.

Machine Learning
Machine learning was used to generate a score to predict

histopathological grade. The input to the machine-learning

algorithm was texture features. For predictive-model con-

struction, we built a support-vector machine. Tenfold cross-

validation was used to evaluate prediction performance. In

K-fold cross-validation, the original data set was splitter intoK

subsamples. K1 subsamples were for model training and the

remaining cases for testing.Model parameters were fine-tuned

based on internal cross-validation. Parameter tuning was com-

pleted inside cross-validation, and test cases were never obser-

vable for training. Prediction performance was measured by

accuracy, sensitivity, and specificity. Variable importance was

evaluated based on sensitivity analysis.23 The relative impor-

tance of a predictor is the sensitive response of a predictor

divided by the sum of all sensitivity responses. Predictors can

be ranked based on relative importance. The flowchart of

analysis steps is summarized in Figure 2.

Results
Clinical And Biological Characteristics Of

Low- And High-Grade PDAC Patients
There were no significant differences between low- and high-

grade PDAC patients regarding age, sex, localization of

tumor, or degree of jaundice, pain, or cholecystitis and

most CT findings (P>0.05, Table 1). This implied that low-

and high-grade PDAC patients could not be differentiated

simply by preoperative clinical and biological characteristics

or general CT findings.

Lesion Segmentation
The mean Dice coefficient between the two lesion masks

was 0.67 (0.48–0.88). This indicated substantial agree-

ment. Examples of lesion segmentation by two radiologists

are shown in Figure 3, A and B and Figure 4, A and B.

Figure 4 (A) Axial portal-phase contrast-enhanced CT image of high-grade PDAC in a 60-year-old man. Red arrows indicate the tumor. (B) Tumor segmentation. One

observer segmented tumor in red and the other observer segmented tumor in green. The lime region indicates the overlapping region of two lesion masks. Segmentation

shown by dashed red line. (C) Image reconstructed by AW VolumeShare 5. (D) HE-stained specimen (200×) demonstrated poor gland formation, tumor-cells nuclei were

obviously pleomorphic with large nucleoli and common nuclear division.
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Reconstructed images are shown in Figures 3C and 4C.

Volumes drawn by the 3D Slicer were consistent with

pathological measurements of the postoperative resection.

Pathological analysis results are shown in Figures 3D and

4D. These results demonstrated that lesion segmentation

was reliable.

Texture Features Of PDAC
Among all texture features, eighteen showed significant

differences between low- and high-grade PDAC (P<0.05,

Table 2): mean (Figure 5A), skewness (Figure 5B), fifth

percentile (Figure 5C), tenth percentile (Figure 5D),

25th percentile (Figure 5E), 50th percentile (Figure 5F),

75th percentile (Figure 5G), 90th percentile (Figure 5H),

95th percentile (Figure 5I), gray-level nonuniformity

(Figure 6A), run-length nonuniformity (Figure 6B), low

gray–level run emphasis (Figure 6C), high gray–level run

emphasis (Figure 6D), short-run low gray–level emphasis

(Figure 6E), short-run high gray–level emphasis

(Figure 6F), long-run high gray–level emphasis

(Figure 6G), cluster shade (Figure 7A), and Haralick cor-

relation (Figure 7B).

Table 2 Histogram Features, Run Length, And Co-Occurrence Features To Distinguish Low- And High-Grade PDAC

Texture Feature Pathological Classification P-value

Low-Grade (n=37) High-Grade (n=19)

Histogram

Mean*** 74.59±12.95 59.28±14.04 <0.001

SD (Hounsfield units) 16.64±3.94 16.65±3.80 0.989

Skewness*** −0.29±0.33 0.14±0.29 <0.001

Kurtosis 3.35±0.53 3.10±0.73 0.161

5th percentile (Hounsfield units)** 45.60±14.59 32.90±16.06 0.004

10th percentile (Hounsfield units)** 52.60±14.28 38.16 ±16.17 0.001

25th percentile (Hounsfield units)*** 64.12±13.64 47.68±15.48 <0.001

50th percentile (Hounsfield units)*** 75.62±13.83 58.58±14.58 <0.001

75th percentile (Hounsfield units)*** 85.95±13.37 70.42±13.70 <0.001

90th percentile (Hounsfield units)*** 94.86±12.97 81.16±13.14 <0.001

95th percentile (Hounsfield units)** 100.06±12.85 87.43±13.27 0.001

Run length

Short-run emphasis 0.90±0.26 0.90±0.03 0.757

Long-run emphasis 7.73±1.85 7.86±2.13 0.807

Gray-level nonuniformity** 451.87±298.41 1,029.41±1,091.19 0.004

Run-length nonuniformity** 1,417.21± 1,079.38 3,220.58± 3,578.81 0.006

Low gray-level run emphasis*** 0.02±0.01 0.03±0.01 <0.001

High gray-level run emphasis*** 53.19±7.61 45.25±7.38 <0.001

Short-run low gray-level emphasis** 0.02±0.01 0.02±0.01 0.001

Short -un high gray-level emphasis*** 47.89±6.74 40.68±6.03 <0.001

Long-run low gray-level emphasis** 0.16±0.04 0.19±0.05 0.006

Long-run high gray-level emphasis 415.46±124.58 356.96±133.13 0.110

Co-occurrence

Energy 0.19±0.06 0.18±0.05 0.678

Entropy 2.99± 0.48 2.99± 0.43 0.968

Correlation 0.66±0.26 0.61±0.23 0.497

Inverse difference moment 0.73±0.06 0.74±0.04 0.904

Inertia 0.77±0.48 0.70±0.17 0.535

Cluster shade*** −0.43±0.62 0.55±1.02 <0.001

Cluster prominence 10.52±13.86 10.26±11.96 0.944

Haralick correlation* 1,393.73±488.55 1,109.30±336.16 0.027

Notes: *P<0.05; **P<0.01; ***P<0.001.
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Logistic Regression Analysis
For multivariate analysis, we constructed a logistic regression

model to distinguish low- and high-grade PDAC. The logistic

regression model included predictors with P<0.05 on univari-

ate analysis. We constructed four models and calculated

pseudo-R2 to evaluate predictive power. Model A consisted

of histogram features, model B consisted of run-length fea-

tures, model C had co-occurrence features, and model D had

histogram, run-length, and co-occurrence features. Pseudo-R2

was 0.43, 0.23, 0.32, and 0.54 for models A, B, C, and D,

respectively. This result indicated histogram, run length, and

co-occurrence features, and provided complementary infor-

mation in assessing pathological grades of PDAC.

Score To Predict Histopathological Grade
We developed a score to predict preoperatively histopatholo-

gical grade (low/high-grade PDAC) using the support-vector

machine. We constructed four models: all texture features,

histogram features, run-length features, and co-occurrence

features. With all texture features, our model accurately

predicted low-grade/high-grade PDAC with accuracy 86%,

sensitivity 78%, and specificity 95% (Table 3). For feature

importance, we ranked predictors based on their relative

importance in sensitivity analysis. The variable of importance

is presented in Figure 8. Cluster shade was the most important

predictor (sensitivity 0.315).

Discussion And Conclusion
In this study, we developed a machine learning–based

classification model based on logistic regression analysis

to predict postoperative low- and high-grade PDAC based

on preoperative texture features. The logistic regression

model included predictors with P<0.05 in univariate ana-

lyses of histogram, run length, and co-occurrence fea-

tures, and 86% of the PDAC patients were correctly

classified in terms of histopathological grade. The results

showed that CT texture analysis with machine learning

may contribute to preoperative risk stratification and

maximize patient survival of PDAC patients with short

life expectancy.

Figure 5 Box-and-whisker plots show the differences of nine histogram features between low-grade PDAC and high-grade PDAC. (A) Mean; (B) skewness; (C) fifth

percentile; (D) tenth percentile; (E) 25th percentile; (F) 50th percentile; (G) 75th percentile; (H) 90th percentile; (I) 95th percentile.

Notes: Center line represents median. Lower and upper limits represent 25th and 75th percentiles, respectively. Observed values outside whiskers shown as dots.
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The assessment of histopathological differentiation

grades of PDAC solely using visual features of CT scans

is not easy, due to substantial overlap of imaging features

among them. Frozen sections at the time of pancreatectomy

are commonly used for selection of patients for extensive

surgery. However, intraoperative frozen sections of every

patient with a diagnosis of pathological grade would pro-

long surgical time and is costly.24

Figure 6 Box-and-whisker plots show the differences of seven run length features between low-grade PDAC and high-grade PDAC. (A) Gray-level nonuniformity; (B) run-
length nonuniformity; (C) low gray-level run emphasis; (D) high gray-level run emphasis; (E) short-run low gray-level emphasis; (F) short-run high gray-level emphasis, (G)

Long-run low gray-level emphasis.

Notes: Center line represents median. Lower and upper limits represent 25th and 75th percentiles, respectively. Observed values outside whiskers shown as dots.

Figure 7 Box-and-whisker plots show differences in two co-occurrence features between low-grade PDAC and high-grade PDAC. (A) Cluster shade; (B) Haralick

correlation..

Notes: Center line represents median. Lower and upper limits represent 25th and 75th percentiles, respectively. Observed value outside the whiskers are shown as dot.
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Texture analysis examines the spatial distribution of

voxel gray levels, thus offering an opportunity to over-

come the limitations of visual image interpretation.25,26

Studies have shown that CT-based texture analysis can

identify the heterogeneous distribution of tumor cells.

Lower tumor heterogeneity is likely associated with

lower histological grade.27,28 Over the past 10 years,

some scientists have explored the value of CT-based tex-

ture analysis in tumor detection and classification.29,30 Bae

et al showed that quantitative features extracted from dual-

energy CT images help predict pathological aggression in

lung adenocarcinoma.31 Zhang et al showed quantitative

CT texture analysis was a feasible tool for differentiating

low-grade from high-grade urothelial carcinoma.13

However, as far as we know, only one previous study

has evaluated the potential value of CT texture analysis for

predicting pathology of pancreatic adenocarcinoma.7 They

reached the conclusion only that poorly differentiated his-

tology was associated with low central attenuation value,

but did not achieve accurate histopathological grading of

PDAC by texture analysis. Our research is quite different

from that in many methods. In addition to their histogram

texture features, we included the run length and co-occur-

rence texture in the analysis. We focused on differences in

texture parameters among patients with different histo-

pathological grades, rather than disease-free survival. We

measured whole-tumor volume, rather than largest dia-

meter of the tumor slice. Furthermore, the machine learn-

ing was used to build a discriminatory model. Machine

learning can generate a score to predict the histopatholo-

gical grade of cancer based on imaging-derived features.

As a comparison, statistical analysis methods usually pro-

vide inference at the group level instead of the individual

subject level. Increased sophistication of machine-learning

algorithms allows generation of scores in an automated,

unbiased manner.32 Despite these differences, both studies

support a similar conclusion that CT texture analysis is a

promising and noninvasive method for predicting the

prognosis of pancreatic cancer.

We acknowledge several limitations of our study. First,

it was retrospective and may implicitly have had selection

bias. Nonetheless, most research about texture analysis

and machine learning is retrospective in nature.33

Second, due to our strict inclusion criteria, the number of

enrolled patients was relatively small. This may have led

to overfitting. We performed cross-validation to obtain

reliable estimates of prediction performance.34 In future,

we will validate the developed model in a prospective

multicenter study with a large sample. Third, the technical

parameters of the CT examinations were not uniform

across all patients. This may have increased variability in

lesion attenuation, resulting in bias in estimation of texture

features. All images in our research underwent a normal-

ization procedure to minimize scanner variabilities.35

Finally, we selected portal-phase acquisitions for ROI

delineation. Before CT imaging, we did not know that

the patients had PDAC. In order to collect comprehensive

information on liver, gallbladder, pancreas, spleen, and

other tissue, we performed contrast-enhanced CT examina-

tions, including unenhanced, arterial, and portal phases,

but without dividing the pancreatic parenchymal phase.

However, previous studies have shown significant results

in texture analysis primarily at the portal phase, and in our

group of patients pancreatic tumors and surrounding nor-

mal tissue were significantly contrasted during the portal

phase. As such, the choice of the portal phase can also be

applied to the clinic. In future, we will choose the pan-

creatic parenchymal phase for further verification.

In conclusion, our study indicates that machine learn-

ing–based CT texture analysis has the potential to predict

preoperatively histopathological subtypes of PDAC with

high accuracy. Although this study appears promising,

Table 3 SVM Models To Predict Postoperative Grade Of PDAC

Accuracy (%) Sensitivity (%) Specificity (%)

Model A 80 53 95

Model B 75 43 92

Model C 69 10 100

Model D 86 78 95

Notes: Model A — histogram features as predictors— model B; run-length features

as predictors; model C— co-occurrence features as predictors; model D— histogram

features, run-length features, and co-occurrence features as predictors.

Figure 8 Ranking of features to predict low/high-grade PDAC according to impor-

tance in sensitivity analysis.
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large and multicenter validated prospective studies are

needed before this model can be used in clinical practice.

With further improvement and standardization of this tech-

nology, it may serve as a noninvasive, preoperative, pre-

cise, simple assessment tool to assist clinicians in

evaluating prognosis for individual patients with PDAC

and thus achieving better clinical outcomes.
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