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Abstract: Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia. Oxidative 

damage within the mitochondria seems to have a key role in the disease phenotype. Therefore, 

FRDA treatment options have been mostly directed at antioxidant protection against mitochon-

drial damage. Available evidence seems to suggest that patients with FRDA should be treated 

with idebenone, because it is well tolerated and may reduce cardiac hypertrophy and, at higher 

doses, also improve neurological function, but large controlled clinical trials are still needed. 

Alternatively, gene-based strategies for the treatment of FRDA may involve the development of 

small-molecules increasing frataxin gene transcription. Animal and human studies are strongly 

needed to assess whether any of the potential new treatment strategies, such as iron-chelating 

therapies or treatment with erythropoietin or histone deacetylase inhibitors and other gene-based 

strategies, may translate into an effective therapy for this devastating disorder. In this review, 

we try to provide an answer to some questions related to current and emerging treatment options 

in the management of FRDA.
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Introduction
Friedreich ataxia (FRDA, OMIM #229300) is the most common autosomal reces-

sive ataxia among Caucasian population, and it is caused by mutations in the FXN 

gene (OMIM *606829), mainly an expanded GAA triplet repeat in the intron 1.1 Age 

at onset is typically 5–25 years. Sensory neurons in the dorsal root ganglia are lost 

initially, with secondary degeneration of the spinocerebellar tract, pyramidal tract, 

and dorsal columns.2 FRDA is, therefore, characterized by progressive gait and limb 

ataxia,  dysarthria, loss of vibration and proprioceptive sense, areflexia, abnormal eye 

movements, and pyramidal signs. Involvement of the auditory sensory neurons and 

pathways may also be found, as in optic atrophy.3 Ataxia of mixed cerebellar and 

sensory type is the cardinal symptom. The first symptom is usually gait instability, 

though scoliosis may already be present when neurologic symptoms appear, and, in 

rare cases, hypertrophic cardiomyopathy is diagnosed before the onset of ataxia.

In patients with FRDA, voxel-based morphometry showed a symmetrical volume 

loss in dorsal medulla, infero-medial portions of the cerebellar hemispheres, the ros-

tral vermis, and in the dentate region.4 No volume loss in cerebral hemispheres was 

observed. The atrophy of the cerebellum and medulla correlated with the severity of 

the clinical deficit and disease duration.4 Moreover, some magnetic resonance imaging-

based studies found cerebral white matter atrophy or dysfunction.5,6
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A possible manifestation of this disease is hypertrophic 

cardiomyopathy, described in up to two-third of patients with 

FRDA.7 Ventricular arrhythmias can also occur. Later in the 

course of the disease, the hypertrophied heart can develop 

systolic dysfunction and heart failure and arrhythmias are 

possible causes of death in these patients.8 Diabetes, scoliosis, 

and pes cavus are other possible manifestations of FRDA. 

Clinical course is variable, but on average 10–15 years after 

onset, patients lose the ability to walk, stand, and sit without 

support.3 Age at diagnosis, which may incorporate other 

genetic and environmental factors, may be more important 

than GAA length in predicting cardiomyopathy, scoliosis, 

and disease progression.9

In FRDA the genetic abnormality results in the defi-

ciency of frataxin, a protein targeted to the mitochondrion.10 

In about 98% of patients, the disease is caused by a triplet 

GAA expansion within the first intron of the frataxin gene on 

chromosome 9q13, which impedes transcription of the gene 

and limits protein production.1,11 The repeat expansions can 

range from 70 to 90 repeats (normal less than 40) to over 

1,000, with inverse correlation of age at onset, severity of the 

disease, and associated systemic symptoms.2 Heterozygous 

carriers are clinically healthy. FRDA is the most common 

disease-causing triplet-repeat expansion identified so far, 

about 1 in 100 Europeans being a carrier. No other disease 

has been recognized to date to be caused by an expansion of 

GAA triplets.3 Some patients are compound heterozygotes 

with the GAA expansion in one allele and one of a variety 

of point mutations in the other allele.2 The FRDA-associated 

expansion shows instability when transmitted from parent 

to child. Expansions and contractions can both be observed 

and are equally likely after maternal transmission, whereas 

contractions are most common after paternal transmission.3 

In this regard, FRDA resembles the other diseases associated 

with very large expansions in noncoding regions, including 

fragile X syndrome and myotonic dystrophy, and differs from 

the diseases that are caused by CAG repeats in coding regions, 

such as dominant ataxias and Huntington disease, in which 

size increases typically occur after paternal transmission.3

FRDA pathogenetic theories  
and their relevance for  
therapeutic approaches
Although the exact physiological function of frataxin is not 

known, its involvement in iron–sulfur cluster biogenesis has 

been suggested.12 Frataxin iron-binding capacity is quite 

robust. Even when 5 of the most conserved residues from the 

putative iron-binding region are altered, at least 2 iron atoms 

per monomer can be bound.13 Current evidence suggests 

that loss of frataxin impairs mitochondrial iron handling14 

and respiratory chain function and contributes to increased 

oxidative stress and cellular damage.2

In a conditional knockout mouse model where frataxin was 

removed from the heart, transferrin receptor-1 was upregulated, 

resulting in increased iron uptake from  transferrin.15 There is 

also marked downregulation of ferritin that is required for 

iron storage and decreased expression of the iron exporter, 

ferroportin 1, leading to decreased cellular iron efflux. The 

increased mitochondrial iron uptake is facilitated by upregu-

lation of the mitochondrial iron transporter,  mitoferrin 2.15 

This stimulation of iron uptake probably attempts to rescue 

the deficit in mitochondrial iron metabolism that is due to 

downregulation of mitochondrial iron utilization (heme and 

iron–sulfur cluster synthesis and iron storage in mitochondrial 

ferritin). Therefore, increased mitochondrial iron uptake 

coupled with decreased utilization and release leads to mito-

chondrial iron-loading.16

Abnormalities of the neuronal cytoskeleton due to  oxidative 

stress and increased protein glutathionylation have been also 

suggested to have a potential role in FRDA.17 Oxidative damage 

within the mitochondria seems to have a key role in the disease 

phenotype.18 A combined deficiency of a Krebs-cycle enzyme, 

aconitase, and 3 mitochondrial  respiratory-chain complexes 

was reported in endomyocardial biopsy samples from patients 

with this disorder.19 All 4 enzymes share iron – sulfur cluster-

containing proteins that are damaged by iron overload through 

generation of  oxygen free radicals.19 Using phosphorus 

magnetic resonance spectroscopy, Lodi et al20  demonstrated 

a maximum rate of muscle mitochondrial adenosine triphos-

phate (ATP) production below the normal range in all the 

12 studied FRDA patients and a strong negative correlation 

between mitochondrial ATP production and the number of 

GAA repeats in the smaller allele, suggesting that FRDA 

is a nuclear-encoded mitochondrial disorder.20 Moreover, 

Giacchetti et al21 reported an influence of the mitochondrial 

DNA polymorphisms on the FRDA phenotype. These authors 

studied 99 patients with FRDA and 48 control individuals, 

all from southern Italy. They found that patients belonging to 

the haplogroup U class had a delay of 5 years in the disease 

onset and a lower rate of  cardiomyopathy.21 Mitochondrial 

DNA polymerase (POLG) CAG repeat instability has been 

also proposed as a predisposing factor that, in combination 

with environmental risk factors, may affect age of onset 

and FRDA progression.22 For the described reasons, FRDA 

treatment options have been mostly directed at  antioxidant 

protection against  mitochondrial  damage.  Interestingly, 
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other studies  demonstrated that in FRDA  mitochondrial iron 

accumulation did not induce oxidative stress and that FRDA 

is a neurodegenerative disease not associated with oxidative 

damage.23

To date, no randomized controlled trial using antioxidants 

or any other pharmacological treatment has shown signifi-

cant benefit on neurological symptoms associated FRDA.24 

Moreover, the design of clinical trials in FRDA presents 

some problems, such as the lack of reliable biomarkers 

that correlate with clinical dysfunction and the rarity of 

the condition. Therefore, therapeutic strategies are still 

unclear. In this review, we try to provide an answer to some 

 questions related to current and emerging treatment options 

in the management of FRDA. References for this review 

were identified by searches of PubMed until May 2010 

with the term “Friedreich*”; articles especially considering 

potential therapeutic approaches were considered. Emphasis 

was placed on comprehensive reviews and original articles 

published after 1998. Other articles were identified through 

references from relevant articles. Only papers published in 

English were reviewed.

Which pharmacological agents 
were effective in FRDA cellular  
and animal models?
PPARγ agonists
A recent microarray analysis of heart and skeletal muscle in 

a mouse model of frataxin deficiency showed molecular evi-

dence of increased lipogenesis in skeletal muscle, and altera-

tion of fiber-type composition in heart, consistent with insulin 

resistance and cardiomyopathy, respectively.25 Since the 

peroxisome proliferator-activated receptor gamma (PPARγ) 

pathway is known to regulate both processes, dysregulation 

of this pathway may play a role in FRDA. PPARγ coactiva-

tor 1-alpha (PGC-1a) downregulation may contribute to the 

blunted antioxidant response observed in cells from FRDA 

patients.26 PGC-1a is a transcriptional master regulator of 

mitochondrial biogenesis and antioxidant responses, and can 

be restored by agonist pioglitazione in FRDA cells,26 suggest-

ing a potential therapeutic approach for FRDA. Moreover, 

Marmolino et al27 investigated the effect of another PPARγ 

agonist (Azelaoyl PAF) on the frataxin protein and mRNA 

expression profile in human neuroblastoma cells (SKNBE) 

and primary fibroblasts from skin biopsies from FRDA 

patients and healthy controls. Azelaoyl PAF increased both 

messenger RNA and protein levels of intracellular frataxin 

in SKNBE cells and fibroblasts from FRDA patients.27

iron chelators
Iron chelators that target the mitochondrion have been pro-

posed (ie, deferiprone).28,29 Adding the chelator deferiprone 

at clinical concentrations to inducibly frataxin-deficient 

HEK-293 cells resulted in chelation of mitochondrial labile 

iron, involved in oxidative stress.30 This led to restoration 

of impaired mitochondrial membrane and redox potentials, 

increased ATP production and oxygen consumption, and 

attenuation of mitochondrial DNA damage and reversal of 

hypersensitivity to apoptosis.30 On the other hand, a direct 

consequence of chelating mitochondrial free iron in various 

cell systems is a concentration and time-dependent loss of 

aconitase activity, which was shown to precede decreased 

cell proliferation.31 Therefore, if chelating excessive mito-

chondrial iron may be beneficial at some stage of the disease, 

attention should be paid to not fully deplete mitochondrial 

iron store.31 Li et al32 investigated the regulation of frataxin 

expression by iron and reported that frataxin mRNA levels 

decreased significantly in multiple human cell lines treated 

with the iron chelator desferal. In addition, frataxin mRNA 

and protein levels decreased in fibroblast and lymphoblast 

cells derived from both normal controls and from patients 

with FRDA.32 Lymphoblasts and fibroblasts of FRDA 

patients show evidence of cytosolic iron depletion, which 

may occur as frataxin-deficient cells overload their mito-

chondria with iron,32 as already discussed. Therapeutic efforts 

should focus on an approach that combines iron removal from 

mitochondria with a treatment that increases cytosolic iron 

levels to maximize residual frataxin expression in FRDA 

patients.32

Antioxidant agents
Coenzyme Q10 has been widely used for the treatment of 

neurodegenerative disorders, as well as its analog idebenone, 

which shares an identical modified parahydroxybenzo-

ate ring with Coenzyme Q10, but has a short carbon tail. 

 Idebenone was cytoprotective in fibroblasts from patients 

with FRDA.33 Because of the role of mitochondrial oxidative 

damage in FRDA, Jauslin et al34 compared the efficacy of 

mitochondria-targeted and untargeted antioxidants derived 

from coenzyme Q10 and from vitamin E at preventing oxi-

dative stress-induced cell death in cultured fibroblasts from 

FRDA patients in which glutathione synthesis was blocked. 

Ubiquinones have been shown to protect mitochondria from 

oxidative damage, but only a small proportion of externally 

administered ubiquinone is taken up by mitochondria.35 

Conjugation of the lipophilic triphenylphosphonium cation 

to a ubiquinone moiety has produced a compound, MitoQ, 
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which accumulates selectively into mitochondria. MitoQ 

passes easily through all biological membranes and, because 

of its positive charge, is accumulated several 100-fold 

within  mitochondria driven by the mitochondrial membrane 

potential.35 The mitochondria-targeted antioxidant MitoQ 

was 800-fold more potent than the untargeted analog ide-

benone.34 The mitochondria-targeted antioxidant MitoVit E 

was 350-fold more potent than the water soluble analog.34 

Therefore, targeted antioxidants may have therapeutic poten-

tial in FRDA and in other disorders involving mitochondrial 

oxidative damage, but have not been investigated in FRDA 

patients to date.

A dose-escalation trial found that idebenone was effi-

cacious in a frataxin-deficient mouse model of FRDA.36 

Low-dose idebenone (10 and 30 mg/kg per day) showed no 

benefit, whereas high-dose idebenone (90 mg/kg per day) 

delayed the cardiac disease onset, progression, and death of 

frataxin-deficient animals by 1 week.36

Gene-based strategies
FRDA is a loss of function disorder, therefore gene-based 

strategies designed to increase frataxin levels could be an 

ideal therapy for this disease, although there are still tech-

nological limitations to their clinical applicability.37 Viral 

vectors expressing frataxin partially corrected sensitivity to 

oxidative stress in FRDA fibroblasts.38,39 Furthermore, in mice 

with a localized frataxin reduction in the brainstem functional 

impairment could be corrected by exposure to HSV-1 vector 

expressing frataxin cDNA.40 Other studies reported that com-

pounds specifically targeting the GAA repeat, such as DNA 

sequence-specific polyamides41 or pentamidine,42 were capable 

of increasing frataxin transcription. The exact mechanism by 

which these DNA-binding compounds increase transcription 

through GAA repeats still needs further characterization.37

HDAC inhibitors
Alternative gene-based strategy for the treatment of FRDA 

would involve the development of small-molecules increas-

ing frataxin gene transcription.37 Expanded GAA repeats 

may silence frataxin expression inducing heterochromatin 

formation, and/or forming non B-DNA structures, such as 

triplex and sticky DNA, which block gene transcription. 

Therefore, possible treatments for FRDA may include drugs 

that facilitate chromatin opening, such as histone deacetylase 

(HDAC) inhibitors.37 Gene silencing at expanded FXN alleles 

is accompanied by hypoacetylation of histones H3 and H4 and 

trimethylation of histone H3, observations that are consistent 

with a heterochromatin-mediated repression mechanism.43 

Herman et al43 reported the synthesis and characterization of 

a class of HDAC inhibitors that reversed FXN silencing in 

primary lymphocytes from individuals with FRDA. These 

molecules directly affected the histones associated with FXN, 

increasing acetylation at particular lysine residues on histones 

H3 and H4. One compound, BML-210, showed a significant 

increase in frataxin message levels by approximately 2-fold.43 

Butyric acid is another HDAC inhibitor reported to increase 

frataxin expression.44 Furthermore, compounds with pimelic 

diphenylamide basic structure were able to upregulate frataxin 

in cells from FRDA patients and in a mouse model.45 HDAC3 

could be the likely cellular target of the pimelic diphenyl-

amides HDAC inhibitors and the target for therapeutic 

intervention in FRDA.46 Although both the HDAC3 and 

HDAC1/2-specific compounds share a similar mechanism 

of inhibition of their target enzymes, only HDAC3-specific 

compounds increase frataxin gene expression and frataxin 

protein in cells.46 Rai et al47 treated KIKI mice (homozygous 

mice carrying a [GAA]
230

 repeat in the first intron of the mouse 

frataxin gene) with a novel HDAC inhibitor, compound 106, 

which substantially increases frataxin mRNA levels in cells 

from FRDA individuals. The treatment increased histone 

H3 and H4 acetylation in chromatin near the GAA repeat 

and restored wild-type frataxin levels in the nervous system 

and heart, as determined by quantitative reverse transcription 

polymerase chain reaction and semiquantitative western blot 

analysis.47 Lack of acute toxicity, normalization of frataxin 

levels, and of the transcription profile changes resulting from 

frataxin deficiency may provide support to a possible efficacy 

of this or related compounds in FRDA patients.47

Conclusive remarks
In conclusion, gene-based strategies (including HDAC inhibi-

tors), the agonist pioglitazione, iron chelators that target the 

mitochondrion such as deferiprone, coenzyme Q10, vitamin E 

(especially their mitochondria-targeted forms), and idebenone 

were found to be effective in FRDA cellular and animal 

 models. Clinical studies with some of these agents are reviewed 

in the next paragraphs. Moreover, there is some preliminary 

evidence that flavin adenine dinucleotide48 and hemin44 may 

rescue the phenotype of frataxin deficiency in cellular and 

animal models, but further studies are still needed.

Is there a role for idebenone and 
other antioxidants in FRDA patients?
idebenone
The antioxidant idebenone is a short-chain benzoquinone 

derivative with a structure similar to coenzyme Q10 but with 
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a more favorable pharmacokinetic profile.49 In vitro studies 

have shown that it acts both as an antioxidant, preventing 

damage to the mitochondrial membrane, and as an electron 

carrier, supporting mitochondrial function and ATP produc-

tion.50 High doses of idebenone are safe and well tolerated in 

patients with FRDA.49 The idebenone half-life was relatively 

consistent across dose levels (2.6–21.7 hours).49 It exhib-

ited dose-dependent pharmacokinetics in daily doses up to 

2,250 mg.51 Idebenone plasma levels are thought to correlate 

with central nervous system concentrations because of its 

ability to penetrate central nervous system.49

Schulz et al52 measured concentrations of 8-hydroxy-

2′-deoxyguanosine (8OH2′dG), a marker of oxidative DNA 

damage, in urine and of dihydroxybenzoic acid (DHBA), 

a marker of hydroxyl radical attack, in plasma of 33 patients 

with FRDA. They found a 2.6-fold increase in normal-

ized urinary 8OH2′dG but no change in plasma DHBA as 

compared with controls. Oral treatment with 5 mg/kg/day 

of idebenone for 8 weeks significantly decreased urinary 

8OH2′dG concentrations.52

Idebenone is a promising drug for treatment of FRDA.53 

Early trials have demonstrated that low-dose idebenone 

(5 mg/kg per day) reduced cardiac hypertrophy (as deter-

mined by echocardiography)54,55 in the majority of patients 

with FRDA, with no influence upon clinical progression of 

the neurological disease.54,56

Recently, a randomized, placebo-controlled trial has 

been conducted on 48 patients with genetically confirmed 

FRDA.57 Treatment with higher doses of idebenone (up to 

45 mg/kg) was generally well tolerated and associated with 

improvement also in neurological function and activities of 

daily living in patients with FRDA. The degree of improve-

ment correlated with the dose of idebenone, suggesting that 

higher doses may be necessary to have a beneficial effect on 

neurological function.57 It has been also suggested that the 

disease stage and patient age at which idebenone treatment is 

initiated may be important factors in the effectiveness of the 

therapy.58,59 Larger randomized trial focusing on the response 

to idebenone therapy of both neurological and heart symp-

toms are required to confirm whether an early diagnosis of 

FRDA can be exploited to initiate such antioxidant treatment 

in order to prevent the progression of this disorder.

Other antioxidants
To evaluate the long-term efficacy of a combined antioxidant 

and mitochondrial enhancement therapy on the bioenergetics 

and clinical course of 10 patients with FRDA, Hart et al60 

 performed an open-labeled pilot trial over 47 months with 

a combined coenzyme Q10 (400 mg/d) and vitamin E 

(2,100 IU/d) therapy. They reported a significant improvement 

in cardiac and skeletal muscle mitochondrial bioenergetics as 

assessed using phosphorus magnetic resonance spectroscopy, 

and heart function assessed by echocardiographic fraction 

shortening significantly improved. Although improved fraction 

shortening was reported, there was no impact upon the degree 

of cardiac hypertrophy evident before therapy was started.60 

These results must be interpreted with caution because of 

limited patient numbers and the absence of a placebo group.

Another pilot study investigated the potential for high-

dose CoQ10/vitamin E therapy to modify clinical progres-

sion in FRDA.61 Fifty patients were randomly divided into 

high-dose or low-dose CoQ10/vitamin E groups. At base-

line, serum CoQ10 and vitamin E levels were significantly 

decreased in patients.61 During the trial, CoQ10 and vitamin 

E levels significantly increased in both groups. Serum CoQ10 

level resulted to be the best predictor of a positive clinical 

response to CoQ10/vitamin E therapy.61

Conclusive remarks
Overall, because of the lack of controlled studies, the vari-

able doses used and the association with other antioxidant 

medications, vitamin E has not been appropriately tested in 

FRDA, and no conclusions can yet be drawn about its safety 

and efficacy in this disorder.62 More research is needed to 

identify the role of vitamin E, and of other antioxidant 

agents, if any, in the management of FRDA and other neu-

rodegenerative disorders.63 A meta-analysis (which included 

68 randomized trials with 232,606 healthy participants and 

patients with various diseases) reported that treatment with 

β-carotene, vitamin A, and vitamin E may increase all-cause 

mortality.64 Further study of causes of mortality is needed. 

These findings contradicts observational studies, claiming 

that synthetic antioxidant supplements improve health.64 

Therefore, more research is needed to establish the real safety 

of such compounds, including vitamin E.63

In conclusion, available evidence (Table 1) seems to sug-

gest that patients with FRDA should be treated with idebenone, 

because it is well tolerated and may reduce cardiac hypertrophy 

and, at higher doses (up to 45 mg/kg), also improve neurological 

function, but large controlled clinical trials are still needed.

Other pharmacological agents 
could be useful in FRDA patients?
Carnitine and creatine
L-carnitine and creatine are natural compounds that may 

enhance cellular energy transduction.63 A placebo-controlled 
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triple-phase crossover trial of L-carnitine (3 g/d) and creatine 

(6.75 g/d) has been performed in 16 patients with genetically 

confirmed FRDA.65 Ataxia rating scale and echocardio-

graphic parameters remained unchanged.65

erythropoietin
Peripherally administered erythropoietin (EPO), which could 

increase the amount of frataxin protein at posttranslational 

level in primary fibroblast cell cultures66 or isolated lympho-

cytes67 derived from FRDA patients, crosses the blood – brain 

 barrier.68 It may stimulate neurogenesis, neuronal differ-

entiation, and activate brain neurotrophic, antiapoptotic, 

antioxidant, and anti-inflammatory signaling.68 Boesch 

et al69 performed an open-label clinical pilot study with 

recombinant human EPO. Twelve FRDA patients received 

5,000 units recombinant human EPO 3 times weekly subcu-

taneously. Treatment with recombinant human EPO showed 

a persistent and significant increase in frataxin levels after 

8 weeks and a reduction of oxidative stress markers (urinary 

8-hydroxydeoxyguanosine and serum peroxides).69 The 

same research group70 subsequently reported a 6-month 

open-label clinical pilot study of safety and efficacy of EPO 

treatment in 8 FRDA patients (2,000 units thrice a week). 

Scores in Ataxia Rating Scales improved significantly, 

with a persistent increase of frataxin levels and a reduction 

of oxidative stress parameters, but increases in hematocrit 

requiring phlebotomies occurred in 4 of 8 patients. Safety 

monitoring with regular blood cell counts and parameters 

of iron metabolism is a potential  limitation of this approach, 

which to date has not been evaluated with a double-blind 

controlled study.70

Conclusive remarks
To date, pharmacological approaches other than idebenone 

and symptomatic therapies are not routinely indicated in 

patients with FRDA.

Which symptomatic 
countermeasures are available  
for FRDA patients?
Symptomatic therapy, which comprises antidiabetic therapy 

in case of diabetes and cardiologic therapy in case of 

rhythm abnormalities or heart failure,71 as well as baclofen 

for spasticity,72 may markedly improve quality of life and 

prognosis of affected individuals. The levorotatory form 

of 5-hydroxytryptophan could be able to modify the cer-

ebellar symptoms in patients with FRDA, but the effect is 

only  partial and not clinically major.73 Recent preliminary 
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evidence  suggests that riluzole may be potentially  effective 

as  symptomatic therapy in diverse forms of cerebellar 

ataxia.74

Furthermore, in patients with cerebellar ataxia, coordi-

native training improved motor performance and reduced 

ataxia symptoms, enabling them to achieve personally 

meaningful goals in everyday life.75 Rehabilitation therapies 

usually focus on strategies and compensatory techniques for 

maintaining or improving abilities to continue to participate 

in all environmental contexts for as long as possible.76 The 

benefits of physical exercise programs have been demon-

strated for patient with other degenerative disabilities that 

include ataxia, but at present there is little evidence sup-

porting specific physical therapy interventions that would 

address impairments or functional concerns in patients with 

FRDA.76 Patients with FRDA may improve aerobic fitness 

by participating in stationary cycling for 20–25 minutes at 

70%–85% of their maximum heart rate.77 The plan of care 

should include daily attention to range of motion, including 

muscle length and soft-tissue extensibility, as well as main-

taining independence in mobility.77

Maintaining biomechanical alignment is another impor-

tant therapeutic consideration.76 Orthopedic problems such as 

foot deformities and scoliosis are often treated with orthoses78 

or surgery79 and may result in a temporary improvement in 

function.76 Early intervention for biomechanical changes in 

the foot significantly improves alignment and thus weight 

bearing ability and mobility outcomes.79

Conclusion and perspectives
In conclusion, to date the best care for patients with FRDA 

has not been defined according to evidence-based criteria, 

and all efforts should be made to obtain solid standards 

of care, although this goal is difficult to accomplish for 

a rare disease.80 The first phase 2 trial of idebenone has 

shown dose-dependent effects on neurological scale scores 

in children and adolescents with FRDA.57 Large trials are 

needed to investigate whether all patients with FRDA can 

benefit from idebenone treatment, regardless of age and 

disease stage.80

Additional studies with animal models will be essential 

for an enhanced understanding of the disease pathophysiol-

ogy and for the development of better therapies.81 Animal 

and human studies are strongly needed to assess if any of the 

described new treatment strategies, such as iron-chelating 

therapies or treatment with EPO or HDAC inhibitors and 

other gene-based strategies, may translate into an effective 

therapy for this devastating disorder.
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