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Abstract : Accompanying the rapid development of genome research, how to correctly  recognize 

functional sites and structural modes of DNA and protein sequences has become a great chal-

lenge to bioinformatics. Therefore, a great number of algorithms and tools have been proposed 

and applied to sequence pattern recognition. Increment of Diversity with Quadratic Discriminant 

analysis (IDQD) is one of the efficient computational tools. In this article we shall introduce the 

main points of IDQD method and review its application in DNA and protein sequence pattern 

recognition, and finally give some discussions on the prospects of the approach.

Keywords: Increment of Diversity, Quadratic Discriminant analysis, sequence pattern 

recognition

Introduction
The availability of genome sequences provides an unprecedented opportunity to explore 

genetic variability and biological function of organisms from a very fundamental 

point. In genome analysis the information is generally given by a statistical distribu-

tion of sequence segments (called sequence pattern). The sequence pattern is formed 

under evolutionary pressure and functional needs. “From sequence to structure, then 

to function” is the basic logic for the expression of life information. Sequence is the 

starting point of the logic. In the past 20 years, many statistical models and recognition 

algorithms were introduced and employed in the sequence pattern recognition. Among 

them, Bayes probability model, Artificial Neural Network (ANN), Hidden Markov 

model (HMM) and Support Vector Machine (SVM) are the most famous examples 

widely used in sequence analysis. Focused on the problem of sequence pattern recog-

nition, in 2003, Zhang and Luo for the first time proposed the algorithm of Increment 

of Diversity with Quadratic Discriminant analysis (IDQD) and successfully employed 

it in intron splice site recognition.1 In the following years, our group has made more 

detailed investigations on this method and applied it extensively to various bioinformat-

ics problems, for example, the promoter and transcriptional starts recognition,2,3 the 

DNase I hypersensitive site recognition,4 the protein classification,5–7 the nucleosome 

positioning prediction.8 All these studies proved that IDQD is an efficient tool for 

sequence pattern recognition and prediction.

IDQD algorithm can be divided into two parts, Increment of Diversity (ID) and 

Quadratic Discriminant analysis (QD). The diversity measure was firstly introduced 

and employed in biogeography.9 In that study the geographical distribution of species 

(the absolute frequencies of the species in different locations) was used as a source of 

diversity. Now, we employ the measure to the sequence pattern recognition. A pattern 
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or a distribution of sequence segments is described by several 

feature variables. To recognize or predict a sequence, for 

example, to recognize intron splicing sites, to predict tran-

scription starts in a DNA sequence, one should define a set of 

feature variables first and then synthesize them in a scheme 

to give a prediction. The diversity measure and ID provide 

a method to extract information from genome sequence and 

QD gives a nonlinear approach to integrate different kinds 

of information into a scheme to recognize the pattern.

An introduction to IDQD
increment of diversity algorithm9

Suppose the peculiarities of a sample, a sequence or a group 

of sequences, are described by a set of numbers. The i-th pecu-

liarity is expressed by number n
i
. For example, n

i
 describes 

the number of certain base in given site of sequences. We call 

n
i
 the informational parameter of the sample (i = 1, …, s). 

Define the diversity of sample X as

 
D X D n n n N n ns i i

i

s

( ) ( , , , ) log log= = −
=
∑1 2 2 2

1

 N
 

(1)

 
( )N ni

i

= ∑

Generally, to give a classification of sequence X we should 

compare it with some standard samples (called standard 

diversity source). Let the i-th peculiarity in standard source 

expressed by number m
i
 (i = 1, … , s), where m

i
 is the sum 

of peculiarity i over standard samples (training set samples). 

The diversity of standard source S is defined by

 
D S = D m ,m ,...,m = M M m ms i

i=

s

i( ) ( ) log log1 2 2
1

2− ∑
 
(2)

 
( )M mi

i

= ∑
Likewise, the total diversity of the system X + S, D(X + S), 

can be defined in the same manner. The increment of diversity 

is defined by

 ID(X, S) = D(X + S) – D(X) – D(S) (3)

ID gives the relation of sequence X with standard source S. 

The smallest ID, the most intimate relation of X to S. It can 

be proved that ID changes from 0 to D(N,M), where

D(N,M) = (N + M) log
2
 (N + M) – N log

2
 N – M log

2
 M (4)

Because the dimension of informational parameters s (called 

the dimension of ID) may be large enough, the ID algorithm 

contains the projection manipulation of sequence peculiarity 

information onto high-dimension space.

The sequence pattern classification can be formulated by 

ID algorithm. For a c-classification problem one can form 

c standard sources S
l
 (l = 1, …, c) which are derived from 

some set of sequence peculiarities of c classes of samples 

in training set. Then the standard diversity measures D(X) 

for sequence X to be classified and D(S
l
) for the l standard 

sources can be obtained from Eq (1) and (2), respectively. 

The increment of diversity ID(X,S
l
) (l = 1, 2 …, c) is deduced 

from D(X), D(S
l
) and D(S

l
 + X) by use of Eq (3). The  decision 

rule is

X ∈ l if ID(X, S
l
) = min {ID(X, S

1
), 

 ID(X, S
2
), …, ID(X, S

C
)} (5)

When there exits r sets of sequence peculiarities, we have r 

feature variables ID
1
 to ID

r
 forming an r-dimensional vector 

and need to integrate it by quadratic discriminant analysis 

to give a decision.

integrating iDs by quadratic  
discriminant analysis
Consider a 2-classification problem at first. For a sequence 

X to be classified into two sets (positive set ω
1
 and negative 

set ω
2
), the discriminant function is defined by

	 ξ = ln p(ω
1
 | X) − ln p(ω

2
 | X) (6)

where p(ω
i
|X) means conditional probability. According to 

Bayesian Theorem,

 p(ω
l
 | X) = p(ω

l
) p(X | ω

l
) / p(X) (l = 1, 2) (7)

where p(ω
l
) is the priori probability, proportional to the size 

of set l. Inserting (7) into (6), we obtain

 

ξ
ω
ω

ω
ω

= +ln
( )
( )

ln
( | )
( | )

p
p

p X
p X

1

2

1

2

 (8)

Set the feature vector of sample X being R
X
 = (ID

1
, …, ID

r
). 

Assume normal distribution of feature variables in two sets

 p X
Zl

l
X l

T
l X l( | ) exp( ( ) ( ))ω = − − ∑ −−1 1

2
1R Rµµ µµ  (9)

 Z
l
 = (2π)r/2|Σ

l
|

1/2

where 
l
 (l = 1, 2) (r-dimensional vector) and Σ

l
 (l = 1, 2) 

(r × r matrix) are the mean and covariant of feature variables 

over positive and neg ative sets respectively, |Σ
l
| is the deter-

minant of matrix Σ l . Inserting (9) into (8), we obtain10,11
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(10)

This result can easily be generalized to the classification 

of more than two-groups. For any two, say i and j, in c 

classes one can deduce a discriminant function between 

class i and j,

	 ξ
ij
 = g

i
 (R

X
) − g

j
 (R

X
) (11)

where

 
g = Pl X l l l( ) log 1

2
logR − δ − 1

2
Σ ,

 δ l X l
T

l X l= ( ) ( ) (1R R− −−µµ µµΣ l c= 1 2, , , )…  (12)

Here P
l
 means the total number of samples in the l-th class of 

training set. Eq (11) and (12) are in the same form as Eq(10). 

So, the general decision rule for c-classification is

 X∈l if g
l
 (R

X
) = max{g

1
(R

X
), g

2
(R

X
), …, g

c
(R

X
)} (13)

In particular, for c = 2 classification, the decision rule is

 
X

positive,  if   >
negative,  otherwise

∈




ξ ξ0  (14)

In the common use of quadratic discriminant analysis the thresh-

old of ξ (denoted as ξ
0
) is taken to be 0. However, due to the 

limited sizes of positive and negative sets and the large difference 

between them, the optimal threshold ξ
0
 may not be 0.

Determination of threshold ξ0
For a 2-classification problem, the choice of the best-fit ξ

0
 

depending on the size ratio of positive set to negative set 

should be determined empirically in principle. Consider 

N (N .. 1) samples stochastically taken from positive 

and negative set (N+ samples in positive set and N− sam-

ples in negative set) and classify them. For a sample X
i
 

(i=1,2, …, N), we obtain ξ
i
 according to Eq(10). Then we 

arrange the Nξ
i
 ’s in a decreasing order. The former N N

N N
+

+ −+  

samples (with larger ξ-values) should be predicted as posi-

tive ones and the latter N N
N N

−

+ −+  should be predicted as nega-

tive ones. Thus the best threshold ξ
0
 is deduced, which we 

denote as ξ
T
. In general, as the size of positive set does not 

equal to that of negative set, it is evidently that ξ
T
 ≠0.

One can calculate the prediction sensitivity Sn and 

specificity Sp for each assumed ξ
0
 and plot receiver operating 

characteristic (ROC) curve – the relation between Sn and 

1–Sp – for varying ξ
0
. Set y = Sn = TP/N+, x = 1–Sp = FP/N

–
, 

where TP means true positive and FP means false positive. 

The slop of ROC curve is

 

dy
dx

TP
FP

N
N

FN
FP

N
N

= = −−

+

−

+

δ
δ

δ
δ

 (15)

where FN means false negative, N+ = TP + FN, N− = TN + FP. 

The minus at the right hand of (15) means the variation of 

FN and FP is always in opposite direction as ξ
0
 changing. 

It can be shown that δFN = −δFP at ξ
0
 = ξ

T
 (the intersection 

of the distribution curves of positive and negative samples 

at ξ-axis). Therefore

 

dy
dx

N
N T= =−

+

( )ξ ξ0  (16)

We have demonstrated that the best ξ
0
 value can be deter-

mined from the ROC curve at the point where the slope of 

ROC curve equals the negatives-to-positives ratio.

In fact, two groups of performance measures can be 

used to assess the accuracy on classification prediction. 

The first group includes sensitivity Sn, specificity Sp, false 

positive rate FPR, positive predictive value PPV and cor-

relation coefficient CC, etc. Second group “single-number” 

performance measures include auROC (area under the curve 

Receiver Operator Characteristics) and auPRC (area under 

the curve Precision Recall Curves, PRC curve giving the 

relation between positive predictive and true positive). Since 

in our approach the only parameter is ξ
0
, so in the latter per-

formance measures the ROC curve and PRC curve can be 

plotted by use of all ξ
0
 values taken from the full parameter 

space. These performance evaluations are independent of 

the parameter choice.

examples
The biological signal occurs in a sequence can generally 

be two types: one is the k-mer content in a given region of 

sequence and the other is the consensus sequence segment 

at some particular sites. The former describes the compo-

sitional features of a sequence and the latter describes the 

base (or amino acid) dependencies at adjacent/non-adjacent 

positions of a group of sequences of same kind. We will 

give examples to show how the IDs are defined. For splice 

site recognition, suppose there are a consensus sequence 

of length m around the splice site GT or AG and a longer 
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sequence (say, length L) containing compositional signals. 

Consider  base-triplet  compositional signal and base-pair 

 conservative signal only. One can define D
1
(S) of standard 

source to describe base-triplet content by use of Eq (2) where 

m
i
 means the frequency of i-th triplet (i = 1,…,64) occur-

ring in all L-long sequences in positive or negative training 

set, and define D
1
(X) by use of Eq (1) where n

i
 means the 

frequency of i-th triplet occurring in sequence X . Likewise, 

one can define D
1
(X + S) of the mixed system of X and stan-

dard source and obtain ID
1
 following Eq (3). To describe the 

base pair dependencies at adjacent or non-adjacent positions 

nearby splice site one can define D
2
(S) of standard source 

by use of Eq (2) where m
i
 means the frequency of i-th base-

pair correlation (i = 1,…, m(m-1)/2) occurred in all m-long 

sequences in positive or negative training set, and define 

D
2
(X) by use of Eq (1) where n

i
 means the frequency of i-th 

base-pair correlation in sequence X. Then one can define 

D
2
(X + S) of the mixed system and obtain ID

2
. ID

1
 and ID

2
 

form a 2-dimensinal feature vector ID. They should be inte-

grated into a single discriminant function by QD through 

Eq (10), where R
X
 means 2-dimensinal feature vector ID for 

sample X,
l
(l = 1,2) is the 2-dimensional vector obtained 

from the average of ID over training positive or negative sets 

respectively and Σ
l
 (l = 1,2) the corresponding 2 × 2 matrix 

deduced from the covariant of feature variables.

Application of IDQD in DNA 
and protein sequence pattern 
recognition
IDQD algorithm is an efficient tool for sequence pattern 

recognition. From 2003 on, we have applied the algorithm 

to many examples of DNA and protein sequence recognition 

and prediction and achieved admirable results.

Application of iDQD in DnA sequence 
pattern recognition
The splice site recognition of eukaryotic genes is one of 

the important problems in computational biology. In 2003, 

Zhang and Luo for the first time applied IDQD algorithm 

to the recognition of constitutive splice sites of several 

species including human.1 In that study, eight diversity 

sources were constructed based on the conservation of 

nucleotides at splicing sites and the features of base com-

position and base correlation around these sites. It includes 

the adjacent and nonadjacent base correlation in donor and 

acceptor consensus sequences, and the triplet content in 

48 (80)-base-long sequences around splice sites. Then the 

quadratic discriminant vector constructed by eight IDs was 

deduced. The 3-fold cross-validation results were higher 

than the  leading software Genesplicer.12 In later years 

Zhang et al applied IDQD  algorithm to the recognition 

of human alternative splice sites and obtained the overall 

accuracies of prediction 87.9% and 89.9% for donors 

and acceptors respectively (with the chosen threshold-2), 

higher than currently reported accuracy by use of other 

prediction methods.

From 2005 on, Lu and Luo applied IDQD algorithm to 

the recognition of human promoter and transcription start 

site.2,3 In the neglect of nucleosome positioning and histone 

modification information and by use of DNA sequence 

information only they chose different k-mer frequencies as 

the diversity sources. They constructed 14 diversity sources 

by use of 6-mer frequencies in four 500bp segments as the 

main recognition information and 5-mer and 4-mer frequen-

cies as the initiator sequence and DNA structure informa-

tion, respectively. For each diversity source, two IDs were 

introduced, one from the comparison with positive set and the 

other from the comparison with negative set. They found that 

the employment of two-ID always improves the prediction. 

The result showed that both sensitivity and positive predictive 

value have achieved a value higher than 65% with positives/

negatives ratio 1:58, higher than the upper limit deduced from 

eight leading algorithms as analyzed by Bajic.13 The result 

of IDQD was also better than the SVM model ARTS14 by 

comparison of auROC and auPRC in two models when the 

same data were used.

Recently, Chen and Luo employed IDQD algorithm to 

the prediction of DNase I hypersensitive sites (DHSs).4 For 

DHSs prediction in K562, CD4+ T, Hela and GM06990 cell 

lines, the average accuracies of 10-fold cross-validation test 

are 98.52%, 96.50%, 99.25% and 97.58%, respectively, and 

the mean areas under ROC curves (auROC) are all greater 

than 0.90. The results showed that the IDQD method is an 

effective tool for DHSs recognition.

Application of iDQD in protein sequence 
pattern recognition
The secondary structure is the basis of spatial structure of a 

protein. Chou and Fasman were the first authors to formulate 

an approach to the empirical prediction of protein secondary 

structures based on amino acid sequence. The successful score 

was about 50% or larger. After 40 year’s effort, most predic-

tion accuracy of various methods still paces up and down at 

the level of 75% or higher. So the dinosaurs of secondary 

structure prediction are still alive and any 1% improvement 

of the prediction will be a great progress. In 2008, Feng 
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and Luo developed the IDQD algorithm and used it to 

the secondary structure prediction and attained a higher 

accuracy.5 Based on tetra-peptide signals of structures they 

proposed tetra-peptide-based increment of diversity with 

quadratic discriminant analysis (TPIDQD). As predicting the 

structure of the central residue for 21-residue fragments in 

the noted CB513 dataset the three-state overall per-residue 

accuracy (Q3) is about 80% in the 3-fold cross-validated 

test. The results show the efficiency of IDQD method and 

indicate the importance of tetra-peptide signals as the protein 

folding code in the protein structure prediction.

Based on N-terminal amino acid sequence peculiari-

ties the method of IDQD also predicted the subcellular 

localization of proteins of four plant categories and three 

nonplant categories and obtained accuracies 87.4(± 0.5)% 

and 91.2(± 0.2)% respectively in 5-fold cross-validation test 

better than other published methods.7

Specific examples of applications  
of iDQD method
example 1
Antimicrobial peptides are crucial components of the innate 

host defense system of most living organisms. Since their 

discovery in 1925,15 hundreds of antimicrobial peptides 

have been identified and some of them have been suc-

cessfully used for defense against both animal and human 

pathogens.16,17 Thus, recognizing the biological activities of 

these peptides is critically important for the design of novel 

therapeutic agents. However, theoretical classification of 

antimicrobial peptides according to biological activities is 

not yet explored.

In 2009, Chen and Luo successfully applied the IDQD 

method to the classification of antimicrobial peptides for the 

first time.6 By use of amino acid and dipeptide composition 

as the diversity source, 37 antiviral/HIV, 41 anticancer/

tumor, 389 antibacterial and 177 antifungal peptides were 

classified with accuracies of 94.38%, 89.36%, 90.32% and 

95.46%. These results are superior to that of support vector 

machine, Table 1.

example 2
Protein phosphorylation is one of the most important revers-

ible post-translational modifications (PTMs). Zhang, Luo 

and Lu used the method of IDQD to predict the phosphory-

lation sites recognized by three kinase families CK2, PKA 

and PKC and obtained 7-fold cross-validation test accuracy 

(Ac) 86%, 90% and 85% respectively for these three kinds 

of phosphorylation sites. The results are comparable with 

or better than other published top software. The results are 

summarized in Table 2.

example 3
H2A.Z, the variant of H2A, is involved in diverse bio-

logical functions, such as gene activation, chromosome 

segregation, heterochromatin silencing and cell cycle 

progression. In view of this, differentiating histone variant 

containing nucleosomes with canonical nucleosomes will 

provide novel insights into the full understanding of gene 

regulation.

We extracted 2000 H2A.Z and 2000 H2A containing 

nucleosomes with lowest P-values from human CD4+ T cells 

and constructed a training set.19 Based on the presence 

(or absence) of 20 histone methylations (H2BK5me1, 

H3K27me1, H3K36me1, H3K36me3, H3K79me1, 

H3K79me2, H3K79me3, H3K9me3, H3K9me1, H3R2me1, 

Table 1 Comparative result for the classification of antimicrobial 
peptides by the jackknife test*

Methods Antimicrobial  
Peptides

Sn (%) Sp (%) Acc (%) MCC

iDQD Antiviral/hiV 95.23 83.33 94.38 0.85
Antifungal 84.07 90.91 89.36 0.76
Anticancer/tumor 89.29 83.33 90.32 0.80
Antibacterial 90.91 90.48 95.46 0.85

sVM Antiviral/hiV 71.43 75.00 90.58 0.65
Antifungal 81.48 78.57 87.50 0.71
Anticancer/tumor 78.57 75.86 86.52 0.67
Antibacterial 81.82 85.71 91.67 0.78

Abbreviations: *Sn, sensitivity; Sp, specificity;  Acc, accuracy; MCC, matthew’s 
correla tion coefficient.

sn
TP

TP Fn
, sP

TP

Tn FP
, Acc

TP Tn

TP Fn Tn FP
,

Mcc
(TP Tn) (Fn

=
+

=
+

=
+

+ + +

=
× − ××

+ × + × + × +

FP)

(TP Fn) (Tn FP) (TP FP) (Tn Fn)

TP, true positive; Fn, false negative; Tn, true negative; FP, false positive.

Table 2 comparative result of prediction for phosphorylation 
site by 7-fold cross-validation test

Method Kinase  
family

Acc (%) Sn (%) Sp (%) MCC

iDQD cK2 86.14 78.32 91.14 0.71
PKA 90.12 89.33 90.63 0.80
PKc 84.63 76.94 90.28 0.68

sVM* cK2 91.47 83.90 96.43 0.82
PKA 89.98 88.32 91.11 0.79
PKc 82.90 78.71 85.79 0.65

Notes: *The results are given by Kim and colleagues18 for comparison.
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H3R2me2, H3K27me2, H3K27me3, H3K4me1, H3K4me2, 

H3K4me3, H3K9me2, H4K20me1, H4K20me3, H4R3me2),19 

all the nucleosomes in the training set were recoded in a 

20-dimensional space by 1 (or 0). For example, if all of the 

20 histone methylations appeared, the nucleosome would 

be represented as “11111111111111111111”. By using 

IDQD algorithm, we for the first time obtained an accuracy 

of 89.30 for the classification of H2A.Z and H2A containing 

nucleosomes in the 5-fold cross validation test. These results 

demonstrate the effectiveness of the IDQD model.

Discussions and prospects  
on IDQD method
remarks on iDQD method
The Maximum Information Principle (MIP) is a fundamental 

principle in nonequilibrium statistical theory. The principle 

states that the information content (Shannon information 

quantity) of any nonequilibrium system tends towards a 

maximum under a set of constraint conditions. Nucleic acid 

sequence is a typical nonequilibrium system, where bases 

often undergo the mutation stochastically due to the inher-

ent perturbation in the microenvironment. Simultaneously, 

the stochastic mutation happens under some functional 

constraints. The base mutation is a fast-varying variable 

while the functional constraint evolves relatively slow. 

So the base occurrence in nucleic acid sequence takes a 

stable distribution due to stochastic mutation under func-

tional constraints. Luo et al proposed that the MIP can be 

introduced as a guiding principle in the genetic language 

research and bioinformatics of nucleic acid sequence.20 Jin 

and Luo developed the MIP formalism and applied it to 

the prediction of gene splicing sites.21 Due to information 

maximization in the course of the evolution the Shannon 

information quantity of k-mer frequency of a DNA sequence 

segment around some functional sites (for example, splice 

sites, transcriptional starts, etc) always takes a stable value. 

Therefore, Shannon information is a key quantity which 

can be utilized in the bioinformatics analysis. The diversity 

measure is essentially a measure of information content. In 

fact, the diversity of any sequence X, Eq (1), is equal to the 

Shannon information quantity of the sequence multiplied 

by sequence length N. So, the ID analysis is essentially the 

information-theoretic analysis. This is the very reason why ID 

method is so successful in the bioinformatics study. Another 

point is: when several feature variables (IDs) are integrated 

into one discriminant function we start from Bayes theorem 

and use quadratic discriminant analysis. As long as the 

number of samples both in positive and negative sets is large 

enough one may always assume the distributions of feature 

variables in two sets are of Gaussian type. In this case QD 

is a good formalism applicable for information integration 

(see Generalization of QD section).

extracting information for pattern 
recognition
In IDQD method the sequence pattern information is 

extracted by use of the diversity measure and the increment 

of diversity (ID). In fact, other measures for extracting 

information can be designed.22 Let us study two kinds of 

Information Deviation Measure (IDM): the first is based on 

Laxton’s diversity9 and called ID
L
 and the second is based 

on Kullback’s information gain,23 called ID
K
. The definition 

of ID
L
 has been given in Eqs (1) – (3). Suppose that the 

probability distribution of the character in standard source 

and in the sample to be predicted is p m m m Mi i i i= =∑/ /
and ′ = =∑p n n n Ni i i i/ / , respectively. The probability in 

the mixed set including standard source and the predicted 

sample is q
i  

= (m
i
 + n

i
) / (M + N). The Information Devia-

tion ID
L
 of the inquired sequence from the standard source 

can be expressed as

 

ID

      

L = − + +

′ ′

= −

∑ ∑
∑

+( ) log log

log

( log

M N q q M p p

N p p

N q

i i
i

i i
i

i i
i

i qq p p

M q q p p

i
i

i i
i

i i
i

i i
i

∑ ∑
∑ ∑

− ′ ′ −

−

log )

( log log )

 (17)

Easily shown that ID
L
 $ 0 and the smallest ID

L
, the most 

intimate relation of the inquired sequence to the standard 

source. ID
L
 is essentially the increment of diversity defined by 

Laxton.9 The meaning of ID
L
 can be understood as follows. For 

Boltzmann distribution the free energy E
i
 is proportional to log 

p
i
. So − ∑M p pi i

i
log  describes the average energy of standard set, 

− ′ ′∑N p pi i
i

log  describes the average energy of inquired sequence 

and − + ∑( ) logM N q qi i
i

 the average energy of the mixed system. 

Therefore ID
L
 gives the energy difference as the inquired 

sequence merged into standard source. Our computational 

experience shows ID
L
 is a sensitive parameter to measure 

if the inquired sequence belongs to the standard set. This is 

because of a large amount of terms appeared under the sum-

mation of Eq (17) (for example, if the character is the hexamer 

frequency, there are 46 terms in the summation) and the ID
L
 

algorithm containing the projection manipulation of sequence 
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increment of diversity with quadratic discriminant

information onto  high-dimension space. So, we are able to 

use ID
L
 to  evaluate the detailed difference of any sample with 

the standard set and find the optimal hyperplane for the clas-

sification of samples in multi-dimensional space.

Following Kullback, the deviation of the probability dis-

tribution ′pi  from the standard distribution p
i
 is described 

by { log( / )}′ ′ ≥∑ p p pi i i 0 .23 We introduce the total Kullback 

distance of inquired sequence from source p
i
 and from mixed 

system q
i
,

 
KD1 = +∑{ ' log ' ' log ' }p p

p
p p

qi
i

i
i

i

ii

 (18)

Simultaneously we introduce the mutual Kullback distance 

between p
i
 and q

i
,

 
KD2 = −∑ = +∑{( ) log } ( log log )pi qi

pi
qii

pi
pi
qi

qi
qi
pii

 

(19)

The Information Deviation ID
K
 of the inquired sequence 

from standard set is defined by

 ID
K
 = NKD

1
 + MKD

2
 (20)

Equation (20) can be comparable with Equation (17). ID
K
$0. 

The smallest ID
K
, the most intimate relation of the inquired 

sequence to standard source. Our computational experience 

shows ID
K
 is also a sensitive parameter to measure the devia-

tion of the inquired sequence from the standard set.

generalization of QD
In some cases of bioinformatics applications the distribu-

tion of feature vector ID may not be of Gaussian type. The 

generalization of QD can be deduced as follows. Instead of 

Eq (10) we have

 
ξ ω

ω
ω ω= + −ln ( )

( )
ln ( ) ln ( )P

P
P x P x1

2
1 2  (21)

If the r components of vector ID are stochastic variables 

independent of each other, then

 
p p x ll i i l

i

r

( | ) ( ) ( , )x ω ω= =∏         1 2

The ratio of P(x|ω
1
) to P(x|ω

2
) in Eq (21) can be obtained 

through comparison with P
i
(positives|ω

1
) and P

i
(negatives|ω

2
), 

namely through direct statistics of the distribution of  feature 

vector IDs in positive samples and negative samples. 

However, the r components of vector ID are generally not 

independent each other. In this case we make linear trans-

formation of ID components to diagonalize the covariance 

matrix Σ
l
. Set

 S Sl l l lΣ Ξ− =1
 S Sl l

+ −= 1  (22)

where Ξ
l
 is diagonal. Since Σ

l
 is real and symmetric, the 

unitary transformation S
l
 does exist. That is, by introducing 

different representations the feature vector in old representa-

tion x, ID(x, set-l), is related to that in new representation y, 

ID(y, set-l), by linear transformation

 S
l
ID(x,set-l) = ID(y,set-l) (23)

In y-representation the r components of vector ID are 

independent. Now both the probability functions p(y|ω
1
) of 

positives and p(y|ω
2
) of negatives in y-representation can be 

expressed as the product of r factors,

 
p p y ll i i l

i

r

( | ) ( | ) ( , )y ω ω= =∏        1 2  (24)

It is easily to prove the normal distribution remains 

unchanged under unitary transformation S
l
. For a sample x to 

be classified, through transformation S
l
 we deduce the feature 

vector in y-representation, S
l
ID(x) = ID(y

l
) Note that two 

y-representations corresponding to transformations S
1
 and 

S
2
 are generally different. Finally, as Eq (21), by using prob-

ability functions of positives and negatives in y-representation 

we obtain the decision parameter ζ

 
ξ ω

ω
ω ω= + −ln ( )

( )
ln ( ) ln ( )P

P
P P1

2
1 2y y  (25)

The central point of the method is the unitary transformation 

(U-transformation) made for calculating probability dis-

tribution. As a natural generalization of IDQD the method 

is called IDUD22 which can be utilized in cases where the 

normal distribution does not hold. We have shown that both 

IDQD and IDUD are efficient tools for sequence pattern 

recognition in many examples and expect that they can be 

applied broadly to genome and proteome analysis.

The sequence pattern recognition is a fundamental 

problem of bioinformatics analysis. We have proposed a 

unified computational approach – IDQD and IDUD – which 
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Lu et al

includes 1) the information extraction through Information 

Deviation (ID) of the inquired sequence from standard 

set, and 2) the information integration through Quadratic 

 Discriminant analysis (QD) in case of feature variables obey-

ing multi-dimensional normal distribution or its generaliza-

tion, U-transformation Discriminant analysis (UD) in more 

 general cases.
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