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Purpose: Ovarian cancer is the leading cause of gynecologic cancer-related death world-

wide. Early diagnosis of ovarian cancer can significantly improve patient prognosis. Hence,

there is an urgent need to identify key diagnostic and prognostic biomarkers specific for

ovarian cancer. Because high-grade serous ovarian cancer (HGSOC) is the most common

type of ovarian cancer and accounts for the majority of deaths, we identified potential

biomarkers for the early diagnosis and prognosis of HGSOC.

Methods: Six datasets (GSE14001, GSE18520, GSE26712, GSE27651, GSE40595, and

GSE54388) were downloaded from the Gene Expression Omnibus database for analysis.

Differentially expressed genes (DEGs) between HGSOC and normal ovarian surface epithe-

lium samples were screened via integrated analysis. Hub genes were identified by analyzing

protein–protein interaction (PPI) network data. The online Kaplan-Meier plotter was utilized

to evaluate the prognostic roles of these hub genes. The expression of these hub genes was

confirmed with Oncomine datasets and validated by quantitative real-time PCR and Western

blotting.

Results: A total of 103 DEGs in patients with HGSOC—28 upregulated genes and 75

downregulated genes—were successfully screened. Enrichment analyses revealed that the

upregulated genes were enriched in cell division and cell proliferation and that the down-

regulated genes mainly participated in the Wnt signaling pathway and various metabolic

processes. Ten hub genes were associated with HGSOC pathogenesis. Seven overexpressed

hub genes were partitioned into module 1 of the PPI network, which was enriched in the cell

cycle and DNA replication pathways. Survival analysis revealed that MELK, CEP55 and

KDR expression levels were significantly correlated with the overall survival of HGSOC

patients (P < 0.05). The RNA and protein expression levels of these hub genes were

validated experimentally.

Conclusion: Based on an integrated analysis, we propose the further investigation of

MELK, CEP55 and KDR as promising diagnostic and prognostic biomarkers of HGSOC.

Keywords: high-grade serous ovarian cancer, integrated analysis, bioinformatic analysis,

differentially expressed genes, survival, biomarker

Introduction
Ovarian cancer is the leading cause of gynecologic cancer-related death and the

fifth most common cause of cancer death in the United States. In 2018, approxi-

mately 22,240 new ovarian carcinoma cases and 14,070 associated deaths were

expected in the United States, corresponding to almost 39 deaths per day.1 Because

of the location of the ovaries and the lack of symptoms of early-stage disease,

approximately 70% of ovarian cancer patients present with advanced disease (FIGO

stage III/IV) and have a poor prognosis.1–4 In contrast, if ovarian cancer could be
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diagnosed at a local stage, the 5-year relative survival rate

would exceed 90%.1,2 Hence, there is an urgent need to

identify key early diagnostic and prognostic biomarkers

specific for ovarian cancer that could significantly impact

patient survival.

Approximately ninety percent of ovarian cancers are

epithelial ovarian cancers (EOCs), which are divided into

four main histologic subtypes—serous, mucinous, endo-

metrioid, and clear cell.3,5–7 The vast majority (70%) of

EOCs are serous.8 Serous ovarian cancer can be categor-

ized as high-grade serous ovarian cancer (HGSOC, grade

2 or 3) or low-grade serous ovarian cancer (LGSOC,

grade 1), which have different pathogeneses and clinico-

pathologic features.9–13 HGSOC is the most common type

of EOC and has aggressive behavior, thereby accounting

for the majority of deaths. Thus, we focused on HGSOC in

this study.

Recent advances in microarray-based profiling and

high-throughput biological sequencing technologies have

yielded considerable abilities to identify differentially

expressed genes (DEGs) and discover potential biological

mechanisms, thus allowing the identification of promising

biomarkers for cancer diagnosis, treatment and prognosis.

In this study, gene expression profiling data for human

HGSOC and normal ovarian surface epithelium (OSE)

samples were used to identify DEGs and analyzed their

underlying biological functions by functional and pathway

enrichment analyses. Then, protein-protein interaction

(PPI) networks and Cytoscape were utilized to identify

the hub genes, which were found to be closely related to

the pathogenesis and progression of HGSOC; thus, these

genes may play a vital role in the early diagnosis of

HGSOC. Finally, the prognostic value of the hub genes

in HGSOC was further confirmed by survival analysis,

which can be used to identify predictors of poor clinical

outcomes for patients with HGSOC. A flowchart of the

analysis process is shown in Figure 1.

Materials And Methods
Gene Expression Profiling Data
Gene expression microarray data (GSE14001, GSE18520,

GSE26712, GSE27651, GSE40595, and GSE54388) were

downloaded from the National Center for Biotechnology

Information Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/). All included datasets

met the following criteria: (1) they contained human

HGSOC and normal OSE tissue samples; (2) the data

were subjected to expression profiling by array analysis;

and (3) they contained at least ten samples. These profile

datasets were based on the Affymetrix GPL570 platform

(Affymetrix Human Genome U133 Plus 2.0 Array), except

for GSE26712, which was based on the Affymetrix

GPL96 platform (Affymetrix Human Genome U133A

Array). Six datasets including a total of 359 tissue samples

(318 HGSOC samples and 41 normal OSE samples) were

chosen for analysis.

Integrated Analysis Of Microarray

Datasets
Raw data from GSE14001, GSE18520 and GSE27651

were first subjected to base 2 logarithmic conversion for

further analysis in R software. The BetweenArray normal-

ization function in the limma package of R was applied to

normalize the matrix data from each GEO dataset.14 After

normalization, DEGs between HGSOC and OSE were

screened by using empirical Bayes methods within the

limma package.15 Based on the robust rank aggregation

(RRA) method,16 the RobustRankAggreg package in R

was utilized to integrate the DEGs identified in the six

Figure 1 Flowchart of the analysis process.

Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
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datasets. The following threshold values were established

for screening DEGs: |log2FC| ≥ 2, where FC is the fold

change; adjusted P < 0.05; and P < 0.05.

Functional Enrichment Analysis Of DEGs
We performed Gene Ontology (GO) enrichment analysis

of the DEGs using the Database for Annotation,

Visualization and Integrated Discovery (DAVID, version

6.8) (http://string-db.org/).17 GO analysis annotates genes

with respect to three independent ontologies—biological

process (BP), cellular component (CC), and molecular

function (MF).18 To elucidate potential pathways asso-

ciated with the DEGs, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis was con-

ducted in the clusterProfiler package19 to annotate genes

with pathways.20 The false discovery rate (FDR) was

obtained by adjusting the P value according to the

Benjamini-Hochberg method.21 Genes with P < 0.05 and

adjusted P < 0.05 or FDR < 0.05 were considered statis-

tically significant.

PPI Network Construction And Module

Analysis
The STRING online database (version 11.0) (http://string-

db.org/) was used to assess potential interactions among the

DEGs.22 PPIs with an interaction score ≥ 0.4 (medium

confidence) were utilized to construct the PPI network.

Cytoscape software (version 3.7.0) was used to visualize

and analyze the degree of connectivity to identify hub genes

in the PPI networks.23 According to the degree of

connectivity,24 we screened the top 10 hub genes. To detect

the densely connected protein complexes in the PPI net-

work, the Molecular Complex Detection (MCODE) app

from Cytoscape was utilized with the default parameters

to identify modules.25 Then, for significant module 1, we

performed further GO and KEGG pathway enrichment

analyses as previously described.

Survival Analysis
The Kaplan-Meier Plotter website (www.kmplot.com/ovar)

was utilized to validate the prognostic role of the ten hub

genes in ovarian cancer patients. This website includes

data for 2190 ovarian cancer samples on Affymetrix

microarrays.26 We selected survival information for patients

with HGSOC (grades 2 and 3) from multiple datasets (all

available on the website) for the analysis.27 The patients

were divided into two groups based on the best cutoff for

gene expression (high vs low). The overall survival (OS)

rates of the two groups were analyzed and Kaplan-Meier

survival plots were then generated. Then, we performed a

subgroup analysis considering stage, grade, TP53 mutation

and treatment to understand how the expression of the

identified hub genes impacts OS. Hazard ratios (HRs)

with 95% confidence intervals (CIs) were calculated to

identify protective (HR < 1) or risk genes (HR > 1), and

the survival curves were plotted to visualize the relation-

ships. A log rank P < 0.05 was set as the cutoff criterion.

Validation Of Key Genes
Hub genes were identified as the top 10 nodes in the PPI

network. To confirm the reliability of these detected genes,

we evaluated their expression in ovarian serous adenocarci-

noma and normal ovarian tissues using datasets from

Oncomine (www.oncomine.org). In addition, the expression

of the ten hub genes was experimentally validated by quanti-

tative real-time PCR (qRT-PCR). Among the hub genes,

EPCAM (epithelial cell adhesion molecule), ZWINT

(ZW10-interacting kinetochore protein), DLGAP5 (DLG-

associated protein 5) and KDR (kinase insert domain recep-

tor) protein expression levels were confirmed by Western

blotting.

Clinical Samples
With the approval of the Ethics ReviewCommittee of Peking

Union Medical College Hospital, Chinese Academy of

Medical Sciences (ZS-1771), twenty-two HGSOC and

twenty-two normal ovarian tissue samples were collected

during initial operations between 2017 and 2018. All subjects

gave written informed consent in accordance with the

Declaration of Helsinki. HGSOC samples were obtained

from primary ovarian cancer patients who had not previously

received chemotherapy. Normal ovarian tissues were

obtained from patients who underwent a total hysterectomy

and bilateral salpingo-oophorectomy for benign uterine dis-

eases (uterine prolapse or uterine leiomyoma) or precancer-

ous lesions of the uterine cervix. Table 1 summarizes the

clinicopathological characteristics of the patients with

HGSOC included in the study. All tissue specimens were

pathologically confirmed before inclusion. All the fresh sam-

ples were frozen in liquid nitrogen and stored at −80°C.

RNA Isolation And qRT-PCR
Total RNAwas extracted using TRIzol Reagent (Invitrogen)

according to the manufacturer’s protocol. After the RNA

concentration was measured with the Genova Nano
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Micro-volume Spectrophotometer (Jenway), cDNA was

synthesized using GoScriptTM Reverse Transcriptase

(Promega). qRT-PCR was performed using GoTaq® qPCR

(Promega) with the LightCycler® 480 System (Roche) in

accordance with the manufacturer’s instructions. The qRT-

PCR primers are shown in Supplementary Table 1. The

conditions for all qRT-PCRs were as follows: Hot Start

Taq activation for 1 min at 95°C, followed by 45 cycles

of 95°C for 10 seconds, 58°C for 15 seconds and 72°C for

15 seconds, with a final step at 55°C for 1 min. The relative

expression of target genes was calculated by the 2−△△Ct

method using GAPDH as the internal control.

Western Blot Analysis
Tissues were lysed in RIPA buffer with HaltTM Protease and

Phosphatase Inhibitor Cocktail (Thermo Scientific). Protein

concentration was determined by the Bradford method

using the Enhanced BCA Protein Assay Kit (Beyotime).

Equal amounts of protein from each sample were separated

in NuPAGETM 4–12% Bis-Tris Protein Gels (Invitrogen)

and transferred to PVDF membranes (0.2 µm pore size)

using iBlot® 2 Transfer Stacks (Invitrogen). After being

blocked with 5% nonfat milk in TBS with 0.1% Tween

20 for 1 hr at room temperature, the membranes were

incubated overnight at 4°C with primary antibodies against

the following proteins: EPCAM (1:1000; Cell Signaling

#2929), ZWINT (1:2000; Abcam #71982), DLGAP5 (hepa-

toma upregulated protein, HURP; 1:2000, Abcam #70744),

KDR (VEGFR2, 1:1000; Cell Signaling #2479) and β-actin
(1:2000; ZSGB-BIO #TA-09). The membranes were subse-

quently incubated with a horseradish peroxidase (HRP)-

conjugated secondary antibody at room temperature for

1 hr. Then, immunoreactive bands were detected with

Immobilon Western Chemiluminescent HRP substrate

(Millipore).

Statistical Analysis
GraphPad Prism 6.0 software was used to analyze the experi-

mental data. The results are shown as the mean ± SEM. The

statistical significance of differences between two groups

was evaluated using Student’s t-test (two-tailed). P < 0.05

was considered to indicate statistical significance.

Results
Identification Of DEGs
Information on the six GEO datasets included in the current

study is provided in Table 2.28–34 The six datasets included

a total of 318 HGSOC samples and 41 normal OSE

Table 1 Clinicopathological Characteristics Of The Patients With HGSOC Included In The Study

Patient Age, y Histology Type Grade FIGO Stage Residual Lymphectomy Lymph Nodes Metastasis

1 41 Serous High IIIC Yes No NA

2 53 Serous High IIIC Yes No NA

3 55 Serous High IV Yes Yes +

4 51 Serous High III No Yes −

5 38 Serous High IA NA Yes −

6 55 Serous High IC No Yes −

7 63 Serous High IIIC Yes No NA

8 53 Serous High II Yes No NA

9 50 Serous High IV No Yes +

10 80 Serous High IIIC Yes No NA

11 40 Serous High III Yes Yes +

12 51 Serous High IIIC Yes Yes +

13 63 Serous High III Yes No NA

14 50 Serous High IIB No Yes −

15 49 Serous High IIIC Yes Yes +

16 48 Serous High IIIB Yes Yes −

17 63 Serous High III Yes No NA

18 59 Serous High IIIB Yes Yes −

19 65 Serous High IV No Yes −

20 52 Serous High III No Yes +

21 62 Serous High IV Yes No NA

22 56 Serous High III NA Yes +
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samples. Supplementary Table 2 presents detailed informa-

tion on the samples in each included dataset. The data from

each GEO dataset were normalized, and the results are

presented in Supplementary Figure 1. Using |log2FC| ≥ 2,

adjusted P < 0.05 and P < 0.05 as cutoff criteria, we

successfully screened a total of 103 DEGs via integrated

analysis of the six GEO datasets (Supplementary Table 3).

Of the 103 DEGs, 28 were significantly upregulated and 75

were downregulated in HGSOC tissues compared to normal

OSE tissues. The DEGs obtained from each GEO dataset

are shown in Figure 2. Figure 3 presents the 103 DEGs

identified by integrated analysis of the six GEO datasets

Table 2 Information On The Six GEO Datasets Included In The Current Study

Dataset Reference Platform Number Of Samples

(HGSOC/OSE)

GSE14001 Tung et al28 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 13 (10/3)

GSE18520 Mok et al29 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 63 (53/10)

GSE26712 Bonome et al30

Vathipadiekal et al31
GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 195 (185/10)

GSE27651 King et al32 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 28 (22/6)

GSE40595 Yeung et al33 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 38 (32/6)

GSE54388 Yeung et al34 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 22 (16/6)

Abbreviations: HGSOC, high-grade serous ovarian cancer; OSE, ovarian surface epithelium.

Figure 2 DEGs obtained from each GEO dataset (GSE14001, GSE18520, GSE26712, GSE27651, GSE40595, and GSE54388). The red points represent upregulated genes

screened with |log2FC| ≥ 2 and adjusted P < 0.05. The green points represent downregulated genes screened with |log2FC| ≥ 2 and adjusted P < 0.05. The black points

represent genes with no significant difference in expression.

Abbreviations: DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; FC, fold change.
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based on the RRA method. Supplementary Figure 2 shows

the heat map of these 103 integrated DEGs in HGSOC and

normal OSE tissues acquired from the GEO datasets.

Supplementary Table 4 shows the detailed expression data

for each included sample.

Functional Enrichment Analysis Of The

DEGs
GO enrichment analysis for the three GO categories (BP,

CC and MF) was performed in DAVID. As shown in

Figure 4A, a total of nine GO terms with P < 0.05 and

FDR < 0.05 were enriched (Supplementary Table 5). The

28 upregulated genes were significantly enriched in multi-

ple BPs related to cell division and cell proliferation. The

75 downregulated genes were closely correlated with the

ethanol oxidation term in the BP category; the extracellu-

lar region, proteinaceous extracellular matrix and extracel-

lular exosome terms in the CC category; and the frizzled

binding term in the MF category. Subsequently, we con-

ducted KEGG pathway analysis the integrated 103 DEGs

with the clusterProfiler package to explore potential

enriched pathways. The downregulated genes mainly par-

ticipated in the Wnt signaling pathway and diverse meta-

bolism-associated signaling pathways, such as retinol

metabolism, tyrosine metabolism, and drug metabolism/

cytochrome P450 (Figure 4B and Supplementary Table 6).

However, significantly enriched KEGG pathways were not

identified for the upregulated genes.

PPI Network Construction And Module Analysis

The STRING website was used to filter a total of 99 DEGs

(28 upregulated and 71 downregulated) with a combined

interaction score of > 0.4 and construct the PPI network,

which comprised 65 nodes and 226 interactions (Figure 5A

and Supplementary Table 7). The NetworkAnalyzer app in

Cytoscape was used to calculate the node degrees to iden-

tify hub genes.23 After analyzing the data from STRING

using the NetworkAnalyzer app, we screened the top 10

hub nodes according to node degree.24 Table 3 presents

detailed information for the 10 hub nodes—EPCAM,

ALDH1A1 (aldehyde dehydrogenase 1 family member

A1), ZWINT, BUB1B (BUB1 mitotic checkpoint serine/

threonine kinase B), NEK2 (NIMA-related kinase 2),

DLGAP5, MELK (maternal embryonic leucine zipper

kinase), CEP55 (centrosomal protein 55), CKS2 (CDC28

protein kinase regulatory subunit 2), and KDR. Among

these hub genes, only ALDH1A1 and KDR were

downregulated.

Next, we performed module analysis in the MCODE

app from Cytoscape to detect significant protein complexes

Figure 3 Heat map of the 103 DEGs identified in the integrated microarray

analysis. Each column represents one dataset, and each row represents one gene.

The number in each rectangle is the log2FC value. The color gradient from blue to

red represents the progression from down- to upregulation.

Abbreviations: DEGs, differentially expressed genes; FC, fold change.
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in this PPI network and obtained four modules

(Figure 5B-E, Supplementary Table 8). Seven of the

selected hub nodes were contained in module 1, suggesting

that this module might play a key role in this PPI network.

Thus, we performed further GO and KEGG enrichment

analyses for module 1 (Supplementary Tables 9 and 10).

As shown in Figure 6A, module 1 was closely correlated

with a variety of GO terms, such as cell division, cell

proliferation and mitotic nuclear division in the BP cate-

gory; kinetochore and condensed chromosome kinetochore

in the CC category; and protein binding in the MF category.

The KEGG pathways enriched by the genes in module 1

included cell cycle and DNA replication (Figure 6B).

Survival Analysis
To explore the association between the aforementioned

potential target genes and survival, the OS rates were calcu-

lated with the Kaplan-Meier Plotter website. A total of

1144 HGSOC patients from 9 datasets (TCGA, GSE9891,

GSE26193, GSE63885, GSE18520, GSE30161, GSE14764,

GSE23554 and GSE15622) were included in the OS analy-

sis. Patients were stratified by low and high expression of

each gene based on the best cutoff value. In the survival

analysis (Supplementary Table 11), the expression levels of

MELK, CEP55 and KDR were significantly correlated with

the OS rates of patients with HGSOC (P < 0.05).

Additionally, OS analyses of prespecified subgroups based

on stage, grade, TP53 mutation and treatment were also

performed (Supplementary Table 12). As shown in

Figure 7A–C, a high MELK expression level was associated

with a high OS rate for HGSOC patients, especially for those

with advanced-stage disease (stages 3 and 4), grade 3 disease,

and TP53 mutations and those administered platinum-con-

taining chemotherapy regimens. High CEP55 expression

afforded a poor OS, particularly for HGSOC patients in

stage 3, without a TP53 mutation and treated with che-

motherapy containing Taxol. Similarly, elevated KDR

expression was significantly associated with a poor prognosis

for HGSOC patients with grade 2 disease or under che-

motherapy with Taxol ± platinum. Taken together, these

findings indicate that MELK, CEP55 and KDR might repre-

sent important prognostic factors of survival for patients with

HGSOC.

Validation Of Key Genes
Oncomine was used to analyze the expression of the ten

selected hub genes in ovarian serous adenocarcinoma and

normal ovarian tissues35–38 (Table 4 and Figure 8). Our

findings regarding the expression of the ten selected genes

were consistent with the expression data in the Oncomine

datasets; P < 0.05 indicated statistical significance.

Specifically, EPCAM, ZWINT, BUB1B, NEK2, DLGAP5,

MELK, CEP55 and CKS2were upregulated, and ALDH1A1

and KDR were downregulated.

We performed qRT-PCR experiments to validate the

expression of these ten hub genes in 22 HGSOC sam-

ples and 22 normal tissues. Consistent with the

Oncomine data, the mRNA expression of EPCAM,

ZWINT, BUB1B, NEK2, DLGAP5, MELK, and CKS2

was significantly higher in HGSOC than in normal

ovarian tissue, and the mRNA expression of ALDH1A1

and KDR was lower in HGSOC tissues, as mentioned

Figure 4 Functional enrichment analysis of the 103 integrated DEGs. (A) GO annotation. The y-axis shows significantly enriched GO terms, and the x-axis shows the

enrichment factor and -log10P values. (B) KEGG pathway enrichment analysis. The y-axis shows significantly enriched KEGG pathways, and the x-axis shows the enrichment

factor and -log10P values.

Note: The enrichment factor refers to the ratio of the number of DEGs enriched in a GO term/KEGG pathway to the total number of annotated genes enriched in the GO

term/KEGG pathway.

Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular

component; MF, molecular function.
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above (Figure 9). Although the mRNA expression level

of CEP55 was elevated in HGSOC tissues compared

with normal tissues, the difference was not statistically

significant (Figure 9).

Additionally, we investigated EPCAM, ZWINT,

DLGAP5, and KDR protein expression in clinical tissue

specimens collected from patients. As shown in Figure 10,

Western blotting confirmed the overexpression of both

EPCAM and ZWINT and the downregulation of KDR in

HGSOC tissues (n= 22) compared with normal ovarian

tissues (n= 22). These results were consistent with the

qRT-PCR results. However, DLGAP5 expression levels

were not as expected. Although it is possible that complex

physiological regulatory mechanisms lead to discrepant

protein and RNA levels, more clinical samples are needed

to verify the results for this gene.

Figure 5 PPI network construction and module analysis of DEGs associated with HGSOC. (A) PPI network of the integrated DEGs visualized by Cytoscape software. The

node size represents the node degree (a larger node indicates a higher degree). The width of the edge indicates the combined score (a wider edge indicates a higher

combined score). The color of the edge represents the EdgeBetweenness (a more orange edge indicates a higher EdgeBetweenness). (B-E) MCODE module screening for

the DEGs, including module 1 (MCODE score = 7, nodes = 9, edges = 69), module 2 (MCODE score = 4, nodes = 5, edges = 28), module 3 (MCODE score = 3, nodes = 4,

edges = 17), and module 4 (MCODE score = 2, nodes = 3, edges = 9). The red rectangle indicates the seed gene, and the blue circles indicate the clustered genes.

Abbreviations: PPI, protein–protein interaction; DEGs, differentially expressed genes; HGSOC, high-grade serous ovarian cancer; MCODE, Molecular Complex

Detection.

Si et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:1210064

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Discussion
EOC is a highly lethal malignancy due to the difficulty of

early diagnosis and the lack of effective treatments for

advanced-stage disease. HGSOC, the main type of EOC,

accounts for the majority of deaths. Therefore, it is essen-

tial to identify key genes associated with the early diag-

nosis and prognosis of HGSOC to improve the survival

rate. Recently, integrated bioinformatics approaches based

on microarray technology have been widely used to dis-

cover promising biomarkers for cancer diagnosis, treat-

ment and prognosis.

In this study, we identified candidate biomarkers for

HGSOC via integrated bioinformatic analysis. Six microar-

ray datasets from GEO were integrated, and 103 DEGs

between HGSOC and normal OSE samples were success-

fully identified, comprising 28 upregulated and 75 down-

regulated genes. Functional enrichment analysis showed

that the upregulated genes were enriched in cell division

and cell proliferation, which are critical for tumor growth,

and that the downregulated genes mainly participated in

various metabolic processes, including retinol metabolism,

tyrosine metabolism, and drug metabolism/cytochrome P450

pathways, as well as the Wnt signaling pathway, which

contributes to carcinogenesis.40–42 A large number of studies

have proposed that disorders in metabolism, including retinol

metabolism43,44 and tyrosinemetabolism,45,46 play important

roles in carcinogenesis.

PPI network analysis enabled screening of the top 10

hub nodes according to the degree of connectivity, reveal-

ing eight upregulated genes (EPCAM, ZWINT, BUB1B,

NEK2, DLGAP5, MELK, CEP55 and CKS2) and two

downregulated genes (ALDH1A1 and KDR) that might be

important in HGSOC pathogenesis. These ten genes can

be used in the early diagnosis of patients with HGSOC.

The expression levels of these ten hub genes were vali-

dated in five Oncomine datasets. In addition, we per-

formed module analysis by using the MCODE app.

Seven of the selected hub nodes, namely, ZWINT,

Table 3 Information On The Ten Hub Nodes

Gene Name Node Degree Betweenness Centrality Closeness Centrality Category

EPCAM 10 0.36360281 0.34645669 Upregulated gene

ALDH1A1 9 0.47501762 0.32592593 Downregulated gene

ZWINT 8 0.00669486 0.22335025 Upregulated gene

BUB1B 8 0.00669486 0.22335025 Upregulated gene

NEK2 8 0.30443975 0.27160494 Upregulated gene

DLGAP5 8 0.00669486 0.22335025 Upregulated gene

MELK 8 0.00669486 0.22335025 Upregulated gene

CEP55 8 0.00669486 0.22335025 Upregulated gene

CKS2 8 0.00669486 0.22335025 Upregulated gene

KDR 8 0.16213254 0.30985915 Downregulated gene

Figure 6 Functional enrichment analysis of the genes partitioned into module 1. (A) GO annotation. The y-axis shows significantly enriched GO terms, and the x-axis shows
the enrichment factor and -log10P values. (B) KEGG pathway enrichment analysis. The y-axis shows significantly enriched KEGG pathways, and the x-axis shows the

enrichment factor and -log10P values.

Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 7 Survival curves and subgroup analyses of the OS rates of patients with HGSOC stratified by high and low expression of MELK (A), CEP55 (B) and KDR (C).

Abbreviations: OS, overall survival; HGSOC, high-grade serous ovarian cancer.
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BUB1B, NEK2, DLGAP5, MELK, CEP55 and CKS2, par-

titioned into module 1; coincidentally, these nodes con-

tained genes upregulated in HGSOC that are closely

associated with cell cycle and DNA replication.

Survival analysis revealed that MELK, CEP55 and

KDR expression levels were significantly correlated with

the OS rates of patients with HGSOC. MELK overexpres-

sion was associated with prolonged OS for HGSOC

patients, whereas increased CEP55 and KDR expression

levels in HGSOC tissues were significantly associated

with decreased OS rates for patients with HGSOC.

Similar results were found in some prespecified subgroup

analyses restricted to patients at different stages or grades

or based on TP53 mutations and chemotherapy regimens.

These analyses indicated that MELK, CEP55 and KDR are

potential predictors of HGSOC prognosis.

Integrated bioinformatics methods are efficient tools

for discovering promising biomarkers for cancer diagno-

sis, treatment and prognosis. However, further biological

experiments are needed to validate these data analysis

results. In this study, the significant expression levels of

nine hub genes, namely, EPCAM, ALDH1A1, ZWINT,

BUB1B, NEK2, DLGAP5, MELK, CKS2 and KDR, were

confirmed by qRT-PCR at the RNA level. The Western

blotting experiments showed that EPCAM, ZWINT, and

KDR protein expression levels were consistent with the

database information; only the DLGAP5 expression level

seemed contrary to expectations. Overall, our experimental

results verified the reliability of this research approach.

The current study identified ten hub genes that might

play important roles in HGSOC pathogenesis, and three

hub genes were significantly associated with HGSOC

prognosis. These genes have been widely studied in

many other types of cancer.

MELK is a serine/threonine kinase in the Snf1 (sucrose

nonfermenting 1)/AMPK family of kinases.47 Multiple stu-

dies have reported that MELK is overexpressed and

plays vital roles in various cancer types, including ovarian

cancer,48 colorectal cancer,49 breast cancer,50,51 small cell

lung cancer,52 brain cancer,53 pancreatic cancer,54 prostate

cancer,55 gastric cancer,56,57 hepatocellular carcinoma,58 and

melanoma.59 Pitner et al discussed the roles of MELK in

cancer, including its ability to mediate proliferation, apopto-

sis, cancer stem cell phenotypes, epithelial-to-mesenchymal

transition (EMT), metastasis, and therapeutic resistance,

characterizing MELK as a promising therapeutic target.60

In addition, Kohler et al showed that MELK overexpression

was associated with histological grade (P < 0.05) andT
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Figure 8 Heat map of the ten hub genes in the Oncomine datasets. Each column represents one dataset and each row represents one gene. The number in each rectangle is

the log2FC value. The color gradient from blue to red represents the progression from down- to upregulation.

Abbreviation: FC, fold change.
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progression-free survival (HR = 5.73, P < 0.01) in patients

with ovarian cancer;48 notably, MELK was shown to parti-

cipate in cell proliferation and tumor growth via cell cycle

arrest at the G2-M phase.48 Gray et al reported the same

results.49 Multiple studies have reported that MELK over-

expression in patients with cancer is correlated not only with

poor prognosis50,53,58 but also with chemoresistance and

radioresistance.61,62 Based on the above findings, MELK

inhibition may be a novel strategy for the treatment aggres-

sive malignancies and combining future MELK inhibitors

with chemotherapy and/or radiotherapy may enhance the

therapeutic effect of these traditional approaches.

Jeffery et al comprehensively discussed the roles of

CEP55 in regulating the PI3K/AKT pathway and stemness

and in promoting tumorigenesis.63 CEP55 overexpression is

common in cancer tissues and is correlated with an unfavor-

able prognosis in many human cancers, including non-small

cell lung carcinoma,64 pancreatic cancer,65 osteosarcoma,66

and ER+ breast cancer.67 Shiraishi et al identified CEP55 as a

marker to differentiate patients with prostate cancer recur-

rence following radical prostatectomy.68 Tao et al discovered

thatCEP55 expressionwas strongly elevated in gastric cancer

and that CEP55 overexpression promoted the proliferation,

colony formation and tumorigenesis of gastric cancer cells.69

KDR, one of the two VEGF receptors, is also known as

vascular endothelial growth factor receptor 2. It plays an

essential role in regulating VEGF-induced endothelial pro-

liferation, migration and sprouting and thus promoting

angiogenesis, which is essential for cancer growth and

metastasis. Takahashi et al showed that VEGF and KDR

were overexpressed in metastatic colon cancer, which cor-

related with the vascularity, metastasis, and proliferation

of human colon cancer.70 An et al found that KDR mRNA

expression levels were significantly higher in normal tis-

sues than in lung cancer tissues. In addition, higher KDR

expression levels in lung cancer tissues were associated

with a shorter survival.71 The prognostic value of KDR

was also identified in patients with stage I non-small cell

lung cancer.72 The authors suggested that patients with

KDR-positive tumors have a poor prognosis. Many studies

have also reported that SNPs in KDR are associated with

survival in patients with colorectal cancer.73–75

EPCAM is an epithelium-specific intercellular adhesion

molecule that mediates Ca2+-independent homophilic

Figure 9 qRT-PCR analysis of the ten hub genes in 22 HGSOC and 22 normal ovarian samples. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Abbreviations: qRT-PCR, quantitative real-time PCR; HGSOC, high-grade serous ovarian cancer.
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Figure 10 The protein expression levels of EPCAM (A), ZWINT (B), DLGAP5 (C) and KDR (D) in 22 HGSOC and 22 normal ovarian samples were analyzed by Western

blotting. Signal intensities were quantified by ImageJ and normalized to an internal control (β-actin). *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Abbreviation: HGSOC, high-grade serous ovarian cancer.
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cell-cell adhesion.76 EPCAM has been widely studied as a

therapeutic target and a prognostic marker in various epithe-

lial malignancies, including breast, ovarian, urothelial, and

non-small cell lung carcinomas. Tayama et al found that high

EPCAM levels correlated with chemotherapy resistance and

poor prognosis in ovarian cancer patients; thus, targeting

EPCAM is a potential promising approach to treat chemore-

sistant ovarian cancer.77 However, data from Woopen et al

showed that EPCAM overexpression in EOC was signifi-

cantly associated with improved OS (P = 0.015) and an

increased rate of response to platinum-based chemotherapy

(P = 0.048).78 Therefore, future large-scale and well-

designed studies are warranted to validate these contradictory

findings. In addition, Tomita et al demonstrated that EPCAM

gene deletion attributed to Lynch syndrome (also known as

hereditary nonpolyposis colorectal cancer, HNPCC) with

MSH2 defects.79 Notably, women with Lynch syndrome

have a high risk of ovarian cancer. Liu et al reported that

elevated EPCAM expression is correlated with metastasis

and cell adhesion in breast cancer tissue.80 In addition to

being observed in epithelial malignancies, EPCAM overex-

pression is associated with larger tumor size, lymph node

metastasis and a poorer prognosis in gastric cancer.81

However, Wen et al provided evidence strengthening the

role of EPCAM in endometrial carcinoma progression and

prognosis and reported that EPCAM overexpression favored

survival.82 Furthermore, EPCAM was found to regulate

EMT, which is important for cancer metastasis.83,84

The ZWINT protein is involved in kinetochore function

and cell proliferation and is thought to be an important

regulatory protein for chromosome movement and mitotic

spindle checkpoints.85,86 Consistent with our results, Xu

et al identified ZWINT overexpression in ovarian cancer

by integrated bioinformatic analysis and reported its asso-

ciation with reduced patient OS.87 Urbanucci et al demon-

strated that ZWINT expression was increased in patients

with castration-resistant prostate cancer.88 Moreover,

ZWINT expression has been proven to be significantly

upregulated and associated with tumor progression and

poor prognosis in various cancers, including hepatocellular

carcinoma86 and lung cancer.85 In contrast, a study by Yang

et al indicated that ZWINT expression is downregulated in

hepatocellular carcinoma and that patients with low ZWINT

expression have a shorter OS and time to recurrence than

patients with high ZWINT expression.89 Further studies are

required to define the detailed roles of ZWINT in cancer.

NEK2 is a centrosomal serine/threonine kinase that

plays a critical regulatory role in mitosis. Recent studies

have shown pivotal roles of NEK2 in the development

of several cancers. Wu et al showed that NEK2 over-

expression promoted liver cancer cell growth, metastasis

and angiogenesis.90 NEK2 induced chemotherapeutic

resistance in patients with multiple myeloma,91 hepato-

cellular carcinoma,92 and nasopharyngeal carcinoma.93

Many other reports have shown that high NEK2

expression predicts poor prognosis in various cancer

types.94–97

DLGAP5, also known as HURP and DLG7 (disks large

homolog 7), is a cell cycle-related protein that controls

microtubule organization and is required for formation of

the bipolar spindle.98,99 Chen et al identified DLGAP5 as

the direct target gene of NOTCH3 in ovarian cancer

progression.100 Many studies have suggested that DLGAP5

overexpression plays a role in carcinogenesis,101 for exam-

ple, in prostate cancer,102 lung cancer,103 gastric cancer,104

pancreatic carcinoma,105 and hepatocellular carcinoma.106

Moreover, elevated DLGAP5 expression levels were

strongly associated with poor survival in patients with non-

small cell lung cancer,107,108 breast cancer,109 and adreno-

cortical carcinoma.110 Moreover, Gomez et al found that

DLGAP5 was significantly overexpressed in prostate cancer

and that higher DLGAP5 transcript levels were associated

with advanced tumor progression and worse prognosis in this

disease.111 Thus, DLGAP5 might be a novel biomarker of

tumor progression and prognosis, but additional studies are

needed to clarify its role in cancer.

CKS2, a cyclin-dependent kinase-interacting protein, is

also a cell cycle regulatory protein. Studies have demon-

strated that CKS2 expression is elevated in multiple

types of cancer, including gastric cancer,112,113 prostate

cancer,114 cholangiocarcinoma,115 esophageal carcinoma,116

and liver cancer.117 CKS2 overexpression contributes to

tumor progression and predicts an unfavorable prognosis.

Kita et al found that CKS2 protein expression was signifi-

cantly correlated with several clinicopathologic parameters,

including the depth of tumor invasion, clinical stage and

poor five-year survival in esophageal squamous cell

carcinoma.118 Yu et al reported that CKS2 was upregulated

in colorectal cancer tissues and that CKS2 expression levels

were significantly associated with tumor size and tumor

stage. The author and his colleagues also observed that

higher CKS2 expression predicted a poor outcome.119

Conclusion
In conclusion, by performing an integrated bioinformatic

analysis of six GEO datasets, we identified ten hub genes
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that might be involved in HGSOC pathogenesis. Module

analysis placed seven of the selected hub nodes in module

1, in which cell cycle and DNA replication were identified

as the crucial pathways enriched by the hub genes.

Additionally, survival analysis revealed that three hub

genes are associated with the OS rate in patients with

HGSOC. Taken together, our findings reveal that MELK,

CEP55 and KDR are potential biomarkers that could facil-

itate the early diagnosis and treatment of HGSOC and

predict the prognosis of patients with HGSOC. However,

further molecular biology experiments are needed to verify

our findings and confirm the potential clinical value of

these genes as biomarkers.
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