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Background: Pituitary adenoma (PA) is a prevalent intracranial tumor. Metabolites differ

between pituitary tumor and healthy tissues or among different tumor subtypes. However, the

transcriptional changes in metabolic enzymes, which are usually seemed as targets for meta-

bolic therapy, remain unidentified.

Methods: Using microarray data for 160 samples from the Gene Expression Omnibus

database, across the four most common tumor subtypes, we present the integrated identifica-

tion of differentially expressed genes (DEGs) between tumors and controls.

Results: Subtype-specific DEGs revealed 1081 prolactin tumor-specific DEGs, 437 non-

functioning tumor-specific DEGs, and 217 common DEGs among the four subtypes.

Functional enrichment showed that a lot of biological functions related to metabolism had

changed. Twenty-one prolactin and twenty-three nonfunctioning tumor-specific metabolic-

related DEGs are mainly involved in fatty acid and nucleotide metabolism, redox reaction,

and gluconeogenesis. Eighteen metabolic-related DEGs enriched in the metabolism of

xenobiotics by the cytochrome P450 pathway, sulfur metabolism, retinoid metabolism, and

glucose homeostasis were abnormal in all subtypes of PA.

Conclusion: Based on a comprehensive bioinformatics analysis of the available PA-related

transcriptomics data, we identified specific DEGs related to metabolism, and some of them

might be new attractive therapeutic targets. Especially, PDK4 and PCK1 might be new

attractive biomarkers and therapeutic targets.

Keywords: pituitary adenoma, differentially expressed genes, metabolic dysregulation,

microarray data, metabolism pathway

Introduction
Pituitary adenomas (PAs) are the secondmost common primary intracranial tumor with

an overall prevalence of about 16.7% in the general population.1,2 According to

hormone secretion, PAs are grouped into clinical nonfunctioning (NF) adenomas and

functional adenomas which include prolactin (PRL)-secreting adenomas, growth hor-

mone (GH)-secreting adenomas, and adrenocorticotropic hormone (ACTH)-secreting

adenomas.3 Although PAs are benign tumors, they significantly disturb hormone

secretion and affect the quality of life and life span. Of the four most common PA

subtypes, those associated with Cushing’s disease (ACTH-secreting), acromegaly

(GH-secreting), and NF adenomas are generally treated with transsphenoidal surgery

as first-line therapy. However, some PAs can invade the cavernous sinus or surrounding

bone in the sellar region, and so it is sometimes difficult to achieve total surgical
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resection.3 Moreover, currently available pharmacotherapies

are not satisfactory. Therefore, there is an urgent need for

a new treatment strategy.

Metabolic abnormality is considered as one of the hall-

marks of tumor cells.4 Although been a benign tumor, PAs

have also shown to undergo metabolic remodeling. Several

studies have confirmed differences in metabolites between

the pituitary tumor and healthy tissues or among different

tumor subtypes by using mass spectrometry or nuclear mag-

netic resonance spectrometry.5,6 Based on the metabolomics

profiles of PAs, several differential metabolite-related

enzymes were regarded as the specific therapeutic targets

clinically. We previously reported that lactate dehydrogenase

A (LDHA), a key glycolysis enzyme, was overexpressed in

invasive PAs and was a promising therapeutic target.7

Along with the continuous development of transcrip-

tomics techniques, a large amount of datasets were released

in public databases, such as Gene Expression Omnibus

database (GEO),8 ArrayExpress,9 and so on. These valuable

resources bring an opportunity for exploring the molecular

pathogenesis underlying the complex disease. For instance,

the systematical investigation for various metabolic repro-

gramming of tumors was performed using the published

transcriptomics data.10,11 To date, there is almost no such

transcriptomics research identifying metabolic-related genes

and the mechanisms underlying PA development.

In this study, several datasets on PAs fromGEOdatabases

were collected and systematically integrated into a large gene

expression dataset. Subsequently, differentially expressed

genes (DEGs) were screened, annotated, and analyzed sta-

tistically. As a result, screened DEGs were enriched in doz-

ens of pathways associated with metabolism, and next, many

metabolism-related genes were identified. These results

showed that dysregulated metabolisms may be crucial roles

in PA pathogenesis. This is the first transcriptome analysis of

metabolism-related pituitary tumors, including four hormone

subtypes and the normal pituitary. The strategy proposed,

along with the metabolism-related DEGs identified in this

study, provides a theoretical framework for understanding

metabolic changes and developing metabolism-based thera-

peutics for PAs.

Materials and Methods
Identification of Eligible Gene Expression

Datasets
Published studies on the expression profile of human pitui-

tary adenomas were screened by searching “pituitary”,

“pituitary adenoma”, “pituitary tumor”, “prolactinoma”,

“growth hormone”, and “Cushing disease” in the GEO

database (http://www.ncbi.nlm.nih.gov/geo/). Datasets con-

taining the gene expression data of normal human pituitary

or the four main subtypes of pituitary tumors were collected

and for which raw data were not available were excluded.

Data Preprocessing and Normalization
For raw probe-level microarray datasets, those from

Affymetrix platform were normalized using the robust multi-

array averagemethod,12while those fromAgilent and Illumina

were quantile-normalized and then log2-transformed.13,14 It is

worth noting that the negative value was replaced with the

smallest positive value in the gene expression matrix before

log2 transformation.Byusing array probe-gene annotationfiles

from GEO, the microarray-specific probe identifiers (IDs)

were parsed into gene Entrez IDs, and then the mean expres-

sion value was calculated as the expression value in repeated

genes according to Entrez IDs.

Data Integration and Batch Effect Removal
To combine these datasets from diverse sources, we

extracted the shared genes of all microarray platforms

used in this study. Based on the shared genes, the multiple

normalized datasets were merged into a large dataset by

gene Entrez IDs. Then, we used a combat algorithm in sva

package to remove the batch effect so that the compar-

ability between these datasets or samples was enhanced.15

Identification of Differentially Expressed

Genes
DEGs between tumors and healthy controls for each sub-

type of PAs were identified using limma package.13

Specifically, linear model and empirical Bayes (eBayes)

statistics were utilized to evaluate the differential expres-

sion for all genes, and finally, those with fold change (FC)

>1.4 and P value <0.1 were considered as the DEGs.

Subtype-Specific and Common Tumor

Markers
To pick up subtype-specific and common tumor markers,

the intersection and union of subtype DEGs were com-

puted and visualized using the Venn Diagram package.16

The genes appearing in only one subtype were considered

as subtype-specific candidate markers, while those appear-

ing in the four subtypes were considered as common

candidate tumor markers.
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Gene Ontology and Pathway Enrichment

Analysis
To investigate the functional annotation of specific and

common markers in each subtype, the enrichment analysis

for gene ontology (GO) were performed using the DAVID

web server (version 6.8) with a 0.05 cutoff criterion.17

Enriched pathway analysis was carried out using

clusterProfiler package with a 0.05 cutoff criterion,18

based on Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database.

To determine the changed tendency of pathways in

tumors, the Z-score was calculated in each term using

the following formula:19,20

Z� score ¼ Nup � Ndown
ffiffiffiffiffiffiffiffiffiffiffi

count
p

TheNupNdown separately represents the number of up- and

down-regulated genes between tumors and normal controls,

and the count is the number of DEGs belonging to this term.

Specific Marker in the PPI Network
Protein–protein interaction (PPI) networks were constructed

using the STRINGdb package.21 The interaction pair in PPI

networks with a combined score >0.7 was identified. The

networks were visualized and analyzed in Cytoscape soft-

ware (version 3.6).22 The Molecular Complex Detection

(MCODE) plugin Cytoscape was applied to screen notable

modules from the PPI network,23 and the following para-

meters were set in the advanced options: degree cutoff = 2,

node score cutoff = 0.2, and K-core = 2. Significant modules

were identified with scores and nodes > 2.

The whole process steps are diagramed in Figure 1.

Results
Data Integration and Identification of DEGs
Nine gene expression profiles were collected from the GEO

database. A total of 160 samples included 52 ACTH-secreting

PAs, 38 GH-secreting PAs, 40 NF PAs, 9 PRL-secreting PAs,

and 21 normal pituitary (NP) samples (Table 1).

After datasets were combined, 6818 shared genes were

obtained. The large dataset was then performed global normal-

ization and batch effect correction (Supplemental Figure 1A),

and the expression values of PAs and NPs were compared to

identify the DEGs related to the subtype. To extract more

DEGs from each subtypes, we set relax cut-off criterion as

p < 0.1 and |logFC| >1.4, provided by Xinxia Peng’ research,24

leading to the identification of 512 DEGs in GH-secreting

PAs, 392 DEGs in ACTH-secreting PAs, 1581 DEGs in PRL-

secreting PAs, and 1149 DEGs in NF PAs (Supplementary

Materials S1-4). Cluster analysis showed that tumor and nor-

mal samples were well separated (Supplemental Figure

1B–E).

Identification of Markers and KEGG

Pathway Analysis of DEGs
Twenty-two GH-specific DEGs, 1081 PRL-specific DEGs,

437 NF-specific DEGs, and 217 common DEGs were iden-

tified and visualized using the Venn diagram (Figure 2A),

except for ACTH-specific DEGs. Detailed information of

specific and common DEGs are displayed in Supplementary

Materials S1-5. The top five up- and down-regulated spe-

cific DEGs are listed in Table 2.

Based on KEGG pathway mapping, PRL-specific

DEGs were enriched mostly in osteoclast differentiation,

toxoplasmosis, inflammatory bowel disease, and apoptosis

(Figure 2B). NF-specific DEGs were primarily enriched in

glycosphingolipid biosynthesis-globo and isoglobo series,

cAMP signaling pathway, proteasome, and serotonergic

synapse (Figure 2C). Common DEGs were enriched

mostly in the PI3K-Akt signaling pathway, extracellular

matrix–receptor interaction, TGF-β signaling pathway, and

cytokine–cytokine receptor interaction (Figure 2D).

Metabolism KEGG Pathway and Gene

Ontology Analysis
To identify metabolic-related DEGs, subtype-specific

DEGs and common DEGs enriching in metabolism GO

terms and pathways were further analyzed. Based on GO

analysis, PRL-specific DEGs were enriched in 28 metabo-

lism-related GO terms (Figure 3A), except for cellular

response to retinoic acid (GO: 0071300, Z-score = −0.30),
and all the other terms are up-regulated. However, NF-

specific DEGs were enriched in 7 metabolism-related GO

terms, and all terms are down-regulated (Figure 3B).

Detailed information about metabolism-related GO terms

was provided in Supplementary Materials S6.

There are six metabolism pathways enriched in PRL sub-

type, including pentose phosphate pathway (Z-score = 0.35),

fructose and mannose metabolism (Z-score = 3.16), fatty acid

degradation (Z-score = 1.17), tryptophan metabolism (Z-score

= 2.64), beta-alanine metabolism (Z-score = 2.12), and carbon

metabolism (Z-score = 0.81) (Figure 4A). Twelve metabolism

pathways were enriched in NF subtype, including steroid

biosynthesis (Z-score = −1.73), arginine biosynthesis
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(Z-score = −0.57), purine metabolism (Z-score = −1.66),
tyrosine metabolism (Z-score = −1.00), cysteine and methio-

nine metabolism (Z-score = −1.34), glycosaminoglycan bio-

synthesis-heparan sulfate/heparin (Z-score = −0.57), linoleic
acid metabolism (Z-score = 0), arachidonic acid metabolism

(Z-score = −0.18), glycosphingolipid biosynthesis-globo and

isoglobo series (Z-score = −2.00), alpha-linolenic acid meta-

bolism (Z-score = 0.57), pantothenate and CoA biosynthesis

(Z-score = −0.57), and sulfur metabolism (Z-score = 0)

(Figure 4B).

Common DEGs showed enrichment in only two

KEGG metabolism pathways: metabolism of xenobiotics

by cytochrome P450 and sulfur metabolism. GO terms

showed enrichment in glucose homeostasis and retinoid

metabolic process (Table 3).

PPI Construction and Module Analysis
To explore the role of each gene in the metabolic path-

way and the mutual regulatory mechanism, PPI networks

for specific DEGs in the PRL-enriched, NF-enriched and

Figure 1 The workflow of microarray data integrating and subsequently analyzing in this study. Nine datasets were analyzed in the study after normalization and batch effect

removal, the DEGs were extracted by pairwise comparison (GH-NP, ACTH-NP, PRL-NP, NF-NP), and the visualization of clustered results showing with heatmap,

respectively. The specific markers and common markers obtained from the DEGs overlap by the Venn diagram. Each specific and common marker was functionally

characterized using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, protein–protein interaction network and network

modules were constructed.
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common-enriched in metabolism pathways were con-

structed, respectively.

PPI module analysis showed that genes involved in

metabolic processes and pathways were highly correlated

(Supplementary Materials S7). Based on PPI network

Module analysis. The PRL-specific PPI network contain-

ing 21 nodes and 93 edges could be divided into 3 mod-

ules (Figure 5A), modules 1, 2, 3 with scores of 12, 3, 3,

Table 1 Microarray Datasets for PA Collected for Analysis in This Study

Subtypes of PA PA Samples Platform Reference of the Studied Datasets

GSE72490 ACTH 12 GPL5175 Affymetrix [47]

GSE93825 ACTH 40 GPL18281 Illumina [48]

GSE46311 GH 16 GPL6244 Affymetrix [49]

GSE51618 NF 10 GPL6480 Agilent [50]

GSE36314 PRL vs NP 4 vs 3 GPL8300 Affymetrix [51]

GSE26966 NF vs NP 14 vs 9 GPL570 Affymetrix [52]

GSE119063 PRL vs NP 5 vs 4 GPL13607 Agilent [53]

GSE62866 GH vs NF 9 vs 9 GPL6480 Agilent [54]

GSE63357 GH vs NF vs NP 13 vs 7 vs 5 GPL570 Affymetrix [55]

Figure 2 Overlap of DEGs and KEGG biomarker enrichment. (A) Traditional Venn diagram showing overlap between DEGs across four tumor types. (B–D) Top 20

pathways in PRL-specific, NF-specific, and common markers. * Full name: AGE-RAGE signaling pathway in diabetic complications.
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respectively. In module 1 of the PRL-specific network,

ACAA1 (acetyl-CoA acyltransferase 1), ACOX1 (acyl-

CoA oxidase 1), ALDH2 (aldehyde dehydrogenase 2),

CAT (catalase), ECHS1 (enoyl CoA hydratase, short

chain, 1), and TALDO1 (transaldolase 1) were mainly

responsible for fatty acid metabolism and oxidation–reduc-

tion process. Genes in module 2 were mainly responsible

for the pentose phosphate pathway and nucleotide meta-

bolism. Genes in module 3 were primarily responsible for

glutamate decarboxylation and tryptophan metabolism.

The NF-specific PPI network containing 23 nodes and 33

edges was grouped into 3modules (Figure 5B), modules 1, 2,

3 with scores of 3.667, 3.5, 3, respectively. In module 1 of the

NF-specific network, LDHC (lactate dehydrogenase C),

LTA4H (leukotriene A4 hydrolase),MDH1 (malate dehydro-

genase 1), GOT1 (glutamic-oxaloacetic transaminase 1), and

BCAT1 (branched chain amino-acid transaminase 1) were

most enriched in gluconeogenesis and transamination path-

way; MAOA (monoamine oxidase A), TH (tyrosine hydro-

xylase), and COMT (catechol-O-methyltransferase) were the

most enriched in dopamine metabolism; NPR2 (natriuretic

peptide receptor 2), ENTPD1 (ectonucleoside triphosphate

diphosphohydrolase 1), PDE4B (phosphodiesterase 4B),

PDE6C (phosphodiesterase 6C), and PDE6D (phosphodies-

terase 6D) were the most enriched in purine metabolism.

These interactions between genes that play roles in different

metabolic processes reveal the complex metabolic distur-

bances of the NF PAs. It is noticeable that most genes in

the PRL subtype were up-regulated (n=19), while only three

genes were down-regulated, containing FBP2 (fructose-

1,6-bisphosphatase 2), MAOB (monoamine oxidase B), and

PRPS1L1 (phosphoribosyl pyrophosphate synthetase

1-like 1). In contrast, most genes in the NF subtype were

down-regulated (n=17), and six genes, including BCAT1,

TH, NPR2, NOS3 (nitric oxide synthase 3), ALOX15 (arachi-

donate 15-lipoxygenase), and PLA2G2A (phospholipase A2,

group IIA), were up-regulated.

The PPI network on common DEGs contained 85 nodes

and 179 edges. Among the identified metabolic target candi-

dates for PA therapy, PDK4 (pyruvate dehydrogenase

kinase 4) and PCK1 (phosphoenolpyruvate carboxykinase 1)

were the top two metabolic genes with the highest connec-

tivity to other genes (Figure 6). Moreover, PDK4 connected

to STAT5b (signal transducer and activator of transcription

5B), one of the hub genes in the network.

Discussion
This is the first study to systematically analyze metabolism-

related DEGs specific to the main PA subtypes. We analyzed

gene expression in 9microarray datasets based on the NP and

four major subtypes of human PAs. A total of 139 tumor

samples and 21 normal samples were included. Except for

the ACTH subtype, 22 GH-specific DEGs, 1081 PRL-

specific DEGs, 437 NF-specific DEGs, and 217 common

DEGs were identified. We utilized bioinformatics methods

to explore the biological function of these DEGs, including

GO and KEGG pathway enrichment, PPI network construc-

tion, and metabolic-related DEG annotation.

Table 2 Top Five Up-Regulated and Down-Regulated Specific DEGs

Subtypes Up-Regulated logFC p Value Down-Regulated logFC p value

GH TRAF4 1.736627 0.004794 ZKSCAN4 1.492069 0.000137

COL9A1 1.43918 0.008345 POP1 1.538518 0.001843

GLI3 1.539545 0.009605 IL12RB1 1.755727 0.001845

FOXD1 1.648576 0.028342 COPS7A 1.630502 0.003096

MXRA8 1.411838 0.036798 MFN1 1.402943 0.003139

PRL INHBB 2.231295 4.83E-07 DMWD 1.941849 0.000137

SPARCL1 3.132262 6.58E-07 PTPRN 2.405829 0.000160

TGFBR3 2.640177 1.22E-06 PPP1R11 1.576218 0.000304

HSPA2 2.851662 1.25E-06 GRIK2 1.643703 0.000387

VAMP8 2.507604 2.20E-06 UTF1 3.123438 0.000528

NF TIAM1 1.896465 2.02E-07 MAD2L1 1.499621 7.02E-10

TEAD3 2.207000 1.06E-06 MCM4 2.159558 1.71E-08

PIK3C3 1.647165 1.33E-06 PPIH 1.919924 4.98E-08

HPCAL1 2.498038 2.30E-06 ATP2B2 1.701433 7.86E-08

TCIRG1 1.733527 3.19E-06 AKAP6 1.533483 1.12E-07
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KEGG pathway enrichment of common DEGs revealed

many previously identified therapy targets. Signaling path-

ways such as PI3K-Akt, TGF-β, JAK-STAT, MAPK, and

Hippo are well known to be involved in the pathophysiol-

ogy and treatment of pituitary adenomas.25–30 The PI3K-

Akt and Hippo signal pathways were also revealed by

ubiquitin proteomics analysis of human pituitary adenoma

and normal pituitary tissues.31 In addition to these signal

transduction pathways, the neuroactive ligand–receptor

interaction pathway was shown to be related to PA tumor-

igenesis in studies using microarray data.32,33 The extracel-

lular matrix (ECM) delivers signals through membrane

receptors and is involved in PA cell proliferation and hor-

mone production.34,35 These results indicate the reliability

of the present data; however, studies of these related

potential therapeutic targets are mostly in the laboratory

stage.

Although recent efforts have renewed awareness of cancer

as a metabolic disorder, and the causal relationship between an

oncogene and metabolic reprograming is still controversial.36

However, there is a general consensus regarding the idea

that the change of metabolic enzyme expression ultimately

alters the metabolic flow. Recently, transcriptomics data, in

conjunction with the current biochemical understanding, have

Figure 3 GOCircle of metabolism-related GO terms in PRL-specific DEGs (A) and NF-specific DEGs (B). GOCircle was performed by using GOplot package.19
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been exploited to construct genome-scale metabolic

workflows.11,37

In the functional enrichment of commonDEGs, we found

that the metabolism of xenobiotics by the cytochrome P450

pathway (Figure 2D) is correlated with two Phase III clinical

trial drugs, levoketoconazole (NCT03277690) and osilodro-

stat (NCT02697734). Another enriched KEGG metabolism

pathway was sulfur metabolism, which was also enriched by

PAPSS2 (3ʹ-phosphoadenosine 5ʹ-phosphosulfate synthase 2)

and TAT (thiosulfate sulfur transferase) in the common

DEGs. Sulfation is a common modification of exogenous

(drugs and xenobiotics) and endogenous (carbohydrates,

lipids, and proteins) compounds.38 Although few studies

have examined the two genes in PA, they are suitable as

therapeutic targets in future studies. Metabolism-related GO

terms of common DEGs mentioned retinoid metabolism and

glucose homeostasis. Our previous study about LDHA indi-

cated that glucose was the most critical energy source of PA.7

Retinoid acid and isotretinoin had been proved to be effective

and safe alternative therapeutic options for patients with

Cushing disease.39,40 Altogether, these results indicate the

possibility of metabolism-related therapy for PA and also the

reliability of the present data.

Additionally, in the PPI network of common DEGs, we

identified PDK4 and PCK1 as two key molecules involved

in PA glucose metabolism and other related signaling path-

ways in PA development. Inhibition of PDK4 reportedly

increases colon cancer cellular apoptosis and reduces cel-

lular migration and invasion.41 Proteins connected to PDK4

in the PPI network such as PON3, CEBPB, PCK1, and

STAT5B have also been reported to be involved in cancer

development.42–45 Moreover, STAT5B was the downstream

molecule of PRL, GH1, andGH2, and its mutation had been

proved to be involved in growth hormone insensitivity.46

Overexpression of STAT3, another gene of STAT family,

had been proved to induce growth hormone hypersecretion

in pituitary somatotroph adenomas.27 However, the roles of

STAT5B, PDK4, and PCK1 in PA are still unknown. Aside

Figure 4 Bubble plot of metabolism-related pathways in PRL-specific (A) and NF-specific (B) DEGs.

Table 3 Metabolism-Related KEGG Pathway and GO Terms in Common DEGs

ID Description Genes Count p Value

KEGG: 00980 Metabolism of xenobiotics by cytochrome P450 EPHX1, HSD11B1, GSTM5, ADH1A, ADH1C 5 5.92E-03

KEGG: 00920 Sulfur metabolism TST, PAPSS2 2 9.59E-03

GO:0001523 Retinoid metabolic process RBP4, RARRES2, RLBP1, AKR1C3, GPC3 5 6.99E-03

GO:0042593 Glucose homeostasis RBP4, PDK4, PCK1, NGFR, PAX6, POMC 6 8.60E-03
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from these observations, the current status is that till date,

no drugs have been approved for treating non-functional

PA; however, the present study provides some potential

metabolic therapeutic targets.

In conclusion, based on a comprehensive analysis of

the available PA-related transcriptomics data, we identified

specific DEGs in different hormone-secreting PA subtypes

and found that several biological functions related to

Figure 5 Protein–protein interaction network of PRL and NF metabolic-specific markers. The dark purple nodes represent a higher tumor degree, and white nodes

represent a lower tumor degree. Red circles represent up-regulated genes, and green circles represent down-regulated genes.

Figure 6 Protein–protein interaction network was constructed based on 217 common DEGs. The diameter of each protein was defined by its network degree, and blue

color wi identified to be “metabolic-related genes” in this study. Green cycle means down-regulated.
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metabolism had changed. PRL and NF tumor-specific

DEGs were mainly involved in fatty acid and nucleotide

metabolism, redox reaction, and gluconeogenesis.

Metabolism of xenobiotics by the cytochrome P450 path-

way, sulfur metabolism, retinoid metabolism, and glucose

homeostasis were abnormal in all subtypes of PA. PDK4

and PCK1 might be considered as targets for the develop-

ment of anticancer strategies and therapies. However, the

raw transcriptomics data came from different sources, the

clinical or ethnicity variables might affect the results of the

particular research, and more solid scientific work was

needed to verify these findings.
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