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Purpose: To investigate the role of glypican-3 (GPC3) in cobalt chloride (CoCl2)-induced

cell apoptosis in hepatocellular carcinoma.

Methods: HepG2 cells were treated with CoCl2 in the absence or presence of GPC3 plasmid

transfection. Cell viability and apoptosis were assessed by MTT assay and flow cytometry,

respectively. The expression of GPC3, hypoxia-inducible factor 1α (HIF-1α), c-myc, sp1,

poly-ADP-ribose polymerase (PARP) and caspase-3 was determined by real-time PCR,

Western blotting, and immunofluorescence after the cells were treated with different con-

centrations of CoCl2 or siRNA targeting HIF-1α.

Results: CoCl2 significantly inhibited the proliferation of HepG2 cells and induced apopto-

sis. Additionally, the expression of GPC3 mRNA and protein was decreased, and over-

expression of GPC3 attenuated the tumour inhibiting effects. Further studies showed that

CoCl2 increased the expression of HIF-1α while reducing the expression of sp1 and c-myc;

knockdown of HIF-1α elevated the expression of GPC3, sp1, and c-myc.

Conclusion: CoCl2 inhibited the growth of HepG2 cells through downregulation of GPC3

expression via the HIF-1α/c-myc axis.

Keywords: cobalt chloride, c-myc, glypican-3, hepatocellular carcinoma, hypoxia-inducible

factor 1α

Introduction
Hepatocellular carcinoma (HCC) is the most common malignancy, ranking third in

morbidity and fifth in mortality among cancers worldwide. It is especially prevalent in

Asia and sub-Saharan Africa.1 The complex mechanism underlying HCC carcinogen-

esis has yet to be elucidated for the development of effective targeted drugs. Therefore,

the identification of the pathogenic mechanism of HCC is crucial for HCC therapy.

Tumour growth relies on the formation of new blood vessels to supply oxygen and

nutrition. It has been demonstrated that oxygen deficiency modulates tumour growth,

angiogenesis, vascular invasion, and metastasis by hypoxia-induced target genes,2 which

is primarilymediated by hypoxia-inducible factor 1α (HIF-1α).When the tumour volume

reaches 1–2 mm3, angiogenic factors, such as VEGF, are upregulated by HIF-1α and

released to accelerate neovascularization.3 As a solid tumour, the hypoxic environment

plays an important role in HCC tumour progression and metastasis.

Glypican-3 (GPC3) is a member of the heparan sulfate proteoglycan family,

anchoring at the cell membrane by glycosylphosphatidylinositol. GPC3 is highly

expressed in HCC tissues and has recently been identified as a novel potential HCC
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tumour biomarker.4–6 Several studies have shown that

GPC3 plays a major role in HCC development and

progression.7–10 However, the mechanism of hypoxia-

mediated GPC3 regulation in HCC tissues is unknown.

In the present study, CoCl2 was used to mimic cell hypoxia

in HCC cells and investigate the effect of hypoxia on

GPC3 expression, as well as explore the role of GPC3 in

hypoxia-induced cell apoptosis in HCC.

Materials and Methods
Chemicals and Reagents
CoCl2 was purchased from Sigma-Aldrich (St. Louis, MO,

USA). Primers forGAPDH, GPC3, andHIF-1αwere synthe-

sized by Sangon Biotech (Shanghai, China). The protease

inhibitor was purchased from Roche (Mannheim, Germany).

PowerUp™ SYBR™ Green Master Mix was purchased

from Applied Biosystems (Foster City, CA, USA) Mouse

anti-human monoclonal antibodies against β-actin and GPC3
were acquired from Santa Cruz Biotechnology (1:1000,

Santa Cruz, CA, USA). Rabbit anti-human monoclonal anti-

bodies against HIF-1α, c-myc, sp1, PARP and caspase-3

were obtained from Cell Signaling Technology (1:1000,

Danvers, MA, USA). Anti-rabbit and anti-mouse IgG HRP-

linked antibodies were procured from Cell Signaling

Technology (1:2000, Danvers, MA, USA). RIPA lysis buffer

was obtained from Beyotime Institute of Biotechnology

(Shanghai, China).

Cell Culture
HepG2 cells were purchased from ATCC (Manassas, VA,

USA) and maintained in DMEM medium (Gibco, Grand

Island, NY, USA) with 10% foetal bovine serum (Gibco,

Grand Island, NY, USA), 1% penicillin-streptomycin

(10,000 U/mL penicillin and 10 mg/mL streptomycin) at

37 °C in a humidified atmosphere with 5% CO2. The cells

were passaged using 0.25% trypsin (Gibco, Grand Island,

NY, USA).

Cell Viability Assay
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

bromide (MTT) (Beyotime Institute of Biotechnology,

Shanghai, China) was used to assess cell viability according

to the manufacturer’s instructions. Briefly, 2×104 HepG2

cells/well were seeded in 96-well plates and cultured for 24

h. The mediumwas replaced with 100 µL/well fresh medium

containing various concentrations (0, 50, 100, and 200 μmol/

L) of CoCl2 for 24 h. Then, 20 µL of 5 mg/mL MTT was

added to each well and incubated at 37 °C for 4

h. Subsequently, the reaction was quenched by adding 150

µLDMSO, and the absorbance wasmeasured at 490 nmwith

a microplate reader (Foster City, CA, USA).

Flow Cytometry
To confirm the effects on cell apoptosis, annexin

V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)

double staining was performed with an annexin V-FITC

apoptosis detection kit (BD Biosciences, Bedford, MA,

USA) as according to the manufacturer’s instructions.

Briefly, the cells were harvested and resuspended in 1×

annexin V binding buffer at a concentration of 1×106 cells/

mL. Then, 100 μL of this suspension was incubated with 5

μL FITC annexin V and 5 μL PI for 15 min at room

temperature. The stained cells were analysed by flow cyto-

metry (Beckman Coulter, CA, USA) within 1 h.

Real-Time PCR
Real-time PCRwas performed as described previously.11 Total

RNAwas extracted using TRIzol reagent. Approximately 1 μg
of RNA from each sample was used to synthesize cDNAusing

the PrimeScript™ RT reagent kit with gDNA Eraser

(TakaraBio, Inc., Otsu, Japan). PCR was performed using

PowerUp™ SYBR™ Green Master Mix on a StepOne Plus

instrument (Applied Biosystems, Foster City, CA, USA)

according to the following programme: 30 s at 95 °C and 60

s at 60 °C for 40 cycles. The PCR primers were as follows:

GAPDH-F: 5ʹ-CTGGGCTACACTGAGCACC-3ʹ; GAPDH-

R: 5ʹ-AAGTGGTCGTTGAGGGCAATG-3ʹ; GPC3-F: 5ʹ-

ATTGGCAAGTTATGTGCCCAT-3ʹ; GPC3-R: 5ʹ-TTCGG

CTGGATAAGGTTTCTTC-3ʹ; HIF-1α-F: 5ʹ-GAACG TCG

AAAAGAAAAGTCTCG-3ʹ; and HIF-1α-R: 5ʹ-CCTTATCA

AGATGCGAACTCACA-3ʹ. GAPDH was used to normalize

mRNA expression. Quantification of the real-time PCR results

was performed with the 2−ΔΔCT method.

Western Blot Analysis
HepG2 cells were treated with CoCl2 and harvested in RIPA

lysis buffer (50 mM Tris-HCl pH 7.4, 0.5% sodium deoxy-

cholate, 150 mMNaCl, 1% NP-40, and 0.1% sodium dodecyl

sulfate) containing protease inhibitors. Then, the cells were

lysed for 30 min on ice and subjected to centrifugation at 4 °C

to collect the supernatant of the lysates. An equivalent amount

of protein extracts was separated by SDS-PAGE and trans-

ferred to a nitrocellulose membrane. Subsequently, the mem-

brane was blocked with 5% non-fat milk at room temperature

and probed with primary antibodies overnight at 4 °C,
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followed by incubation with HRP-conjugated secondary anti-

bodies at room temperature for 2 h. The immunoreactive

proteins were visualized using an ECL kit (Millipore,

Billerica, MA, USA).

Immunofluorescence and Laser Confocal

Microscopy
HepG2 cells were cultured on glass chamber slides in the

presence or absence of 200 μmol/L CoCl2 for 24 h, fixed with

4% paraformaldehyde, permeabilized with 0.3% Triton

X-100, and blocked with 5% normal goat serum for 1 h at

room temperature. Next, the cells were incubated with pri-

mary antibody (1:200) at 4 °C overnight, followed by prob-

ing with Alexa Fluor® 488-conjugated goat anti-rabbit or

anti-mouse IgG (H+L) (1:100, ZSGB-BIO, Beijing, China).

DAPI (Beyotime Institute of Biotechnology, Shanghai,

China) was used for nuclei staining. The fluorescence inten-

sity was analysed by confocal laser microscopy (Olympus

Corporation, Japan).

Vector Construction and siRNA

Transfection
The GPC3 plasmid was constructed in the pcDNA3.1(-)

vector (Addgene, Watertown, MA, USA). The recombinant

plasmid was verified by enzyme cleavage and sequencing

analysis. The HIF-1α-targeting siRNA and control siRNA

were synthesized by Guangzhou RiboBio (Guangzhou,

China). HepG2 cells were seeded in 6-well plates and cul-

tured overnight before plasmid or 20 nmol/L siRNA trans-

fections were performed using Lipofectamine 3000TM

(Invitrogen, Carlsbad, CA, USA) according to the manufac-

turer’s protocol.

Luciferase Reporter Assay
HepG2 cells were plated at a density of 2×104 cells/well in

24-well plates. Then, the cells that had been transfected with

the c-myc luciferase reporter plasmid (Genomeditech,

Shanghai, China) were cultured in the presence or absence

of 200 μmol/L CoCl2 for 24 h. The cells were also co-

transfected with pRL-TK (Renilla luciferase vector) for

background normalization. The plasmid transfection was

performed using LipofectamineTM 3000 transfection reagent.

After 24 h, the cells were lysed, and luciferase activity was

detected using the Genecopoeia Luc-Pair Duo-Luciferase

Assay Kit (Genecopoeia, Inc., Shanghai, China) according

to the instructions recommended by the manufacturer.

Statistical Analysis
All experiments were repeated at least two times. Data are

presented as the mean ± standard error. Student’s t-test was

used for data analysis using SPSS 17.0 software. P<0.05

was considered to be statistically significant.

Results
CoCl2 Induced Hypoxia Injury in HepG2

Cells by Inhibiting GPC3 Expression
It has been demonstrated that CoCl2 induces apoptosis in

several types of tumour cells.12–14 To explore the effect of

CoCl2 on HCC cells, HepG2 cells were treated with different

concentrations of CoCl2 for 24 h, and then cell viability and

apoptosis were assessed by MTT assay and flow cytometry,

respectively. As shown in Figure 1, CoCl2 significantly

repressed cell viability and induced cell apoptosis in

a concentration-dependent manner, and cell apoptosis was

further verified by the activation of caspase-3 and decreased

expression of poly-ADP-ribose polymerase (PARP). The pre-

sent study also confirmed that CoCl2 successfully induced

hypoxia in HepG2 cells, indicated by increased expression of

HIF-1α protein (Figure 2). Interestingly, the HIF-1α mRNA

level was downregulated, which might be a negative feed-

back mechanism to maintain homeostasis of the HIF-1α
protein level. Moreover, the expression of GPC3 was detected

at both the mRNA and protein levels. Compared to the levels

in the control group, 50–200 μmol/L CoCl2 treatment reduced

the GPC3 mRNA level by more than 80%; accordingly, the

protein level assessed by Western blotting and immunofluor-

escence was also significantly decreased in a concentration-

dependent manner (Figure 2). Notably, immunofluorescence

results suggested that CoCl2 also induced the translocation of

GPC3 from the cytoplasm to the membrane, but the under-

lying mechanism remains to be investigated.

CoCl2 Downregulated GPC3 Expression

via the HIF-1α/c-Myc Axis
Accumulating evidence has shown that GPC3 is transcrip-

tionally regulated by c-myc,15 and overexpression of c-myc

induces GPC3 promoter-dependent luciferase activity and

elevates GPC3 expression at both the mRNA and protein

levels. Since CoCl2 decreased the expression of GPC3

mRNA, we hypothesized that CoCl2 might suppress the

transcriptional activity of c-myc. Strikingly, the luciferase

reporter data demonstrated that CoCl2 resulted in a 50%

decline in the transcriptional activity of c-myc in HepG2

cells compared to that of the control group (Figure 3A). In
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Figure 1 CoCl2 inhibited HepG2 cell viability and induced cell apoptosis. (A) HepG2 cells were treated with different concentrations of CoCl2 for 24 h, and the cell viability

was determined by MTT assay. (B) Cell apoptosis induced by CoCl2 for 24 h was assessed by flow cytometry. (C) Apoptosis rate of HepG2 cells induced by different

concentrations of CoCl2. (D) Expression of PARP and caspase-3 induced by CoCl2 for 24 h was determined by Western blotting. *p<0.05 vs 0 μM.

Figure 2 CoCl2 inhibited the expression of GPC3 in HepG2 cells. (A, B) HepG2 cells were treated with 50~200 μM CoCl2 for 24 h, and the mRNA levels of GPC3 and HIF-
1α were evaluated by real-time PCR. (C) Protein expression of GPC3 and HIF-1α was determined by Western blotting. (D) Expression of GPC3 and HIF-1α in HepG2 cells

was assessed by immunofluorescence, and the images were acquired by confocal laser microscopy. Scale bar=20μM. *p<0.05.
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addition, the expression of c-myc was significantly reduced

by CoCl2 treatment in a concentration-dependent manner

(Figure 3B). Additionally, the expression of sp1 was

decreased by CoCl2. Furthermore, the interaction between

HIF-1α and c-myc has been shown to play a pivotal role in

malignant progression.16–18 Thus, to verify whether the

HIF-1α/c-myc axis mediates the CoCl2-induced downregu-

lation of GPC3, siRNA targeting HIF-1α was transfected

into HepG2 cells, followed by 200 μMCoCl2 treatment. As

shown in Figure 3C, knockdown of HIF-1α elevated the

expression of GPC3, c-myc, and sp1, thereby indicating that

the HIF-1α/c-myc axis mediated the inhibitory effect of

CoCl2 on GPC3.

Overexpression of GPC3 Attenuated

CoCl2-Induced Hypoxia Injury
Our previous studies have demonstrated that GPC3 promotes

HepG2 cell proliferation and inhibits cell apoptosis through

the Wnt/β-catenin signalling pathway,10 thereby suggesting

a tumour-promoting effect of GPC3 on cell growth. To

further explore the role of GPC3 in CoCl2-induced hypoxia

injury, a GPC3 overexpression plasmid was constructed and

transfected into HepG2 cells with or without CoCl2 treat-

ment. As shown in Figure 4, GPC3 overexpression reversed

cell proliferation and attenuated cell apoptosis induced by

CoCl2 compared to those of the CoCl2 group.

Discussion
HCC is a common refractory tumour with high morbidity

and mortality globally. Approximately 600,000 cases are

diagnosed every year.19 Although surgical resection is the

primary choice for HCC therapy, the majority of patients

are diagnosed at a late stage with distant metastasis due to

the concealed symptoms of the cancer. Thus, the opportu-

nity for surgery or transplantation is missed, and the five-

year survival rate of 3–11% is due to the lack of effective

treatments.20

Although the pathogenesis of HCC is complicated, an

array of critical genes or proteins have been identified as

being involved in HCC tumour progression. Recent studies

have shown that the level of GPC3 is drastically upregu-

lated in HCC tissues,6,21–23 while a low level has been

observed or remained undetected in normal hepatic cells

and benign liver tumours. The upregulated expression of

GPC3 displays a positive association with tumour size,

histopathological differentiation, tumour invasion, and

metastatic24 dysplasia in cirrhotic livers and could enrich

the expression of HCC-related genes.25 Accumulating evi-

dence has shown that GPC3 promotes HCC tumour

growth via the Wnt/β-catenin signalling pathway,26,27

silences GPC3-induced cell apoptosis, and inhibits cell

proliferation,28–31 indicating a critical role for GPC3 in

HCC tumourigenesis and development.

Hypoxia is a distinct hallmark of HCC. HIF-1α is

a hypoxia-induced transcription factor and a critical regulator

of genes that are activated in responses to an oxygen-

deficient environment. Under normoxic conditions, HIF-1α

is hydroxylated by prolyl hydroxylase (PHD) and undergoes

proteasomal degradation, while during hypoxia, HIF-1α is

stabilized and cannot be hydroxylated by PHD, thereby pre-

venting it from undergoing proteasomal degradation. Then,

the accumulated HIF-1α is translocated to the nucleus,

Figure 3 CoCl2 inhibited the expression of GPC3 via the HIF-1α/c-myc axis. (A) HepG2 cells transfected with the c-myc luciferase reporter plasmid were cultured in the

presence or absence of CoCl2 for 24 h, and the Renilla luciferase reporter plasmid was used as a control. (B) HepG2 cells were treated with 50~200 μM CoCl2 for 24 h, and

the expression of sp1 and c-myc was determined. (C) HepG2 cells were transfected with siRNA targeting HIF-1α, the control group was transfected with negative control

(NC) siRNA, and all of the groups were stimulated with 200 μM CoCl2. The expression of GPC3, HIF-1α, c-myc, and sp1 was evaluated. *p<0.05.
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leading to the elevated expression of its target genes, which

are involved in energy metabolism, cell proliferation, apop-

tosis, vascular remodelling, and erythropoiesis.32 Although

cell survival is induced by the upregulation of HIF-1α target

genes in the hypoxic microenvironment, rapid hypoxia could

also induce irreversible cell damage.33

GPC3 is a critical oncoprotein in HCC; however,

whether its expression is regulated by hypoxia remains

unknown. Mimicking the oxygen-deficient environment

in tumour cells by CoCl2 treatment is the canonical

in vitro model. It was confirmed that CoCl2 blocks the

oxygen signal and stabilizes the expression of HIF-1α by

Figure 4 Overexpression of GPC3 attenuated cell apoptosis induced by CoCl2. Con, control. (A) HepG2 cells were transfected with the GPC3 plasmid or blank vector, and

GPC3 expression was verified by Western blotting. (B) The transfected cells were treated with 200 μM CoCl2, and cell viability was assessed by MTT assay. (C) The

transfected cells were treated with 200 μM CoCl2, and cell apoptosis was assessed. (D) Apoptosis rate of HepG2 cells in each group. (E) The transfected cells were treated

with 200 μM CoCl2, and the expression of PARP and caspase-3 was determined by Western blotting. *p<0.05.
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displacing Fe2+ in the proline hydroxylase cofactor,34

which led to a series of cell reactions induced by hypoxia,

thereby making CoCl2 useful in hypoxia studies. In the

current study, it was found that CoCl2 significantly

reduced the expression of GPC3 at both the mRNA and

protein levels in HepG2 cells and induced cell apoptosis in

a dose-dependent manner. The overexpression of GPC3

attenuated CoCl2-induced cell apoptosis, indicating that

CoCl2 induced cell apoptosis by inhibiting the expression

of GPC3.

As expected, CoCl2 significantly elevated HIF-1α pro-

tein levels. To verify whether HIF-1α mediated the inhibi-

tory effects induced by CoCl2, HIF-1α expression was

silenced by siRNA. GPC3 expression was reversed by

knockdown of HIF-1α in the presence of CoCl2, suggest-

ing that GPC3 expression may be negatively regulated by

HIF-1α. Our present study also demonstrated that the HIF-

1α/c-myc axis mediates this biological process.

Both HIF-1α, c-myc and sp1 are crucial transcription

factors regulating proliferation and metabolism in cancer

cells. HIF-1α and c-myc partially modulate the complex

pathways by acting alone in response to low oxygen and

also function in concert to reprogram cell metabolism.

Reportedly, crosstalk between HIF-1α and the proto-

oncogene c-myc during hypoxia plays a major role in

controlling genetic instability and cancer progression.35

Although HIF-1α and c-myc share certain common target

genes, they exert inverse effects on cell proliferation,

mitochondrial biogenesis, and DNA repair.17 Under nor-

mal oxygen conditions, c-myc interacts with sp1 and Max

to form a transcriptional complex which drives the tran-

scription of c-myc target genes.18 During oxygen defi-

ciency, c-myc could be replaced by HIF-1α due to the

high affinity of sp1 to HIF-1α36

Conclusions
Conclusively, the present study revealed that CoCl2
induced cell apoptosis via downregulated expression of

GPC3. Further studies showed that the HIF-1α/c-myc

axis mediates the inhibitory effects induced by CoCl2
and that knockdown of HIF-1α upregulates the expression

of GPC3. This was the first evidence reporting that GPC3

is reduced by a hypoxia mimicking reagent and that GPC3

is negatively regulated by HIF-1α. Notably, although

CoCl2 is commonly used to mimic hypoxia, cell metabo-

lism is not consistent with oxygen deficit. Hypoxia is

known to induce a more robust and extensive transcrip-

tomic alteration than that of CoCl2,
37 while the latter

induces a more marked upregulation of hypoxia-induced

genes, thereby necessitating further hypoxia studies.
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