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Purpose: Super-enhancer (SE)-associated oncogenes extensively potentiate the uncontrolled

proliferation capacity of cancer cells. In this study, we aimed to identify the SE-associated

hub genes associated with the clinical characteristics of chronic myeloid leukemia (CML).

Methods: Eigengenes from CML clinical modules were determined using weighted gene

co-expression network analysis (WGCNA). Overlapping genes between eigengenes and SE-

associated genes were used to construct protein–protein interaction (PPI) networks and

annotate for pathway enrichment analysis. Expression patterns of the top-ranked SE-

associated hub genes were further determined in CML patients and healthy controls via real-

time PCR. After treatment of K562 cells with the BRD4 inhibitor, JQ1, for 24 hrs, mRNA

and protein levels of SE-associated hub genes were evaluated using real-time PCR and

Western blotting, respectively. H3K27ac, H3K4me1 and BRD4 ChIP-seq signal peaks were

used to predict and identify SEs visualized by the Integrative Genomics Viewer.

Results: The yellow module was significantly related to the status and pathological phase of

CML. SE-associated hub candidate genes were mainly enriched in the cell cycle pathway.

Based on the PPI networks of hub genes and the top rank of degree, five SE-associated genes

were identified: specifically, BUB1, CENPO, KIF2C, ORC1, and RRM2. Elevated expression

of these five genes was not only related to CML status and phase but also positively

regulated by SE and suppressed by the BRD4 inhibitor, JQ1, in K562 cells. Strong signal

peaks of H3K27ac, H3K4me1 and BRD4 ChIP-seq of the five genes were additionally

observed close to the predicted SE regions.

Conclusion: This is the first study to characterize SE-associated genes linked to clinical

characteristics of CML via weighted gene co-expression network analysis. Our results support

a novel mechanism involving aberrant expression of hub SE-associated genes in CML patients and

K562 cells, and these genes will be potential new therapeutic targets for human leukemia.
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Introduction
Chronic myeloid leukemia (CML), a homogeneous genetic disease and clonal myelo-

proliferative disorder of pluripotent hematopoietic stem cells, is mainly triggered by

a Philadelphia (Ph) chromosome encoding the BCR-ABL oncogenic fusion protein

with constitutive and aberrant tyrosine kinase activity.1–3 While the causes and

mechanisms underlying progression of CML in most cases remain unknown, it is

suggested that genetic variations and aberrant expression of key genes play a role in the

pathogenesis of the disease.4
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Recent studies have identified hundreds of hub genes in

critical signaling pathways involved in oncogenesis and

that may be effectively utilized as therapeutic targets of

CML.5 BCR-ABL, a fusion tyrosine kinase, was initially

determined as a therapeutic target for patients with CML.6

Several other genes and pathways have been reported as

potential prognostic markers and drug-sensitive indicators

for CML, including ephrin type-B receptor 4 (EPHB4),7

Janus kinase 2 (JAK2),8 epidermal growth factor receptor

(EGFR),9 β-catenin (CTNNB1),10 vascular endothelial

growth factor A (VEGFA),11 KIT proto-oncogene receptor

tyrosine kinase (c-Kit), and tumor protein p53 (TP53).12

Due to the small sample sizes of the studies performed to

date, the molecular mechanisms associated with clinical

traits, such as development and progress of CML, are yet

to be fully elucidated.

Weighted gene co-expression network analysis (WGCNA)

is a widely used systems genetic data analysis strategy based

on pairwise correlations between variables.13–15 WGCNA is

used to definemodules, intramodular hubs, and network nodes

with regard to module membership to determine the relation-

ships between co-expression modules and compare the topol-

ogy of different networks, thereby defining the significant

eigengenes related to clinical traits.14 WGCNA has been

extensively applied for analyzing genomics and metabolomics

data, including microarray data,16,17 single-cell RNA-Seq

data,18 DNA methylation, data19 and non-coding RNA

data,20,21 peptide counts,22,23 and microbiota 16sRNA data,24

and shown to be suitable for investigating integrated co-

expression networks obtained with large-scale samples.

Super-enhancers (SEs) are a special group of enhancers,

which have since been identified in many cell types.25–27

Compared with typical enhancers (TEs), SEs recruit an

exceptionally large number of transcription factors/co-

factors and consequently induce transcription of multiple

target oncogenes. H3K27ac and H3K4me1 are both indica-

tors for identifying active enhancers. Compared to

H3K4me1, mediators (CDK7, BRD4) and other biomar-

kers, H3K27ac is a common and efficient biomarker for

identifying super-enhancers.25–27 Aberrant expression of

oncogenes triggered by SEs is a key factor underlying

tumorigenesis, so the screening and identification of hub

oncogenes-driven by SEs attract many researchers.

In the present study, we developed a WGCNA-based

method to effectively identify the SE-associated hub genes

involved in clinical characteristics of CML. The CML

microarray datasets and corresponding clinical traits were

applied to performWGCNA and determine key eigengenes.

SE-associated genes were obtained using the dbSuper data-

base based on H3K27ac ChIP-seq.28 Node genes were

selected on the basis of gene overlap in the yellow module

and SE-associated genes. SE-associated hub genes were

further predicted according to the signal peaks of

H3K27ac, H3K4me1 and BRD4 ChIP-seq. The BRD4-

specific inhibitor, JQ1, was additionally applied to identify

SE-associated genes in the CML cell line K562. Elucidation

of the mechanisms associated with upregulation of these

hub genes by SEs should facilitate our understanding of the

tumorigenesis process and aid in improving therapeutic

options.

Materials And Methods
Data Collection
CML datasets of GSE77191 were available from the NCBI

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.

nih.gov/geo/). GSE77191 is composed of 4 normal and 36

CML samples, including 26 chronic phase (CP), 7 acceler-

ated phase (AP), and 3 blast phase (BP) samples. Annotation

of the probe and clinical information was downloaded from

the [HTA-2_0] Affymetrix Human Transcriptome Array 2.0

platform [transcript (gene) version]. Raw data were pro-

cessed to generate an expression matrix and all probes

matched to their gene symbol using the R package “limma”

and annotation information on the GPL17586 array platform.

SE-associated genes in K562 CML cells were downloaded

from the dbSuper database (http://asntech.org/dbsuper/).28

Master transcriptional factors and mediators (SOX2, OCT4,

Nanog and BRD4) as biomarkers were reported to be used to

identify SEs.25–27 H3K27ac and H3K4me1 as active enhancer

markers are frequently used as biomarkers for the identifica-

tion of SEs.25–27 In the present study, according to the algo-

rithm of rank ordering of super-enhancers (ROSE), H3K27ac

ChIP signal peaks (GSM733656) within 12,500 bp were

stitched into one peak and considered as a super-enhancer,

while peaks entirely contained within a window of ± 2,000 bp

around transcription start site (TSS) were excluded from

stitched regions.28 SE-associated genes were in the closest

proximity to their corresponding SEs. We also use BRD4

(GSM2700494) and H3K4me1 (GSM788085) ChIP-seq to

verify super-enhancer.

Construction Of WGCNA
The R package of “WGCNA” provides functions for carry-

ing out all aspects of weighted network analysis (module

construction, hub gene selection, module preservation
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statistics, differential network analysis, and network statis-

tics). Here, WGCNAwas used to construct a co-expression

network for whole genes in samples from GSE77191 with

the corresponding clinical information. Firstly, we employed

Pearson’s correlation analysis to identify the outlying micro-

array samples. A matrix of similarity using Pearson’s corre-

lation analysis of all gene pairs was constructed, which

excluded outlying samples. The power value of the appro-

priate soft-thresholding was estimated for network construc-

tion by calculating the scale-free topology fit index (0.9) for

several powers through the pickSoftThreshold function of

WGCNA. The best-fit power value was selected to raise the

matrix of similarity to achieve a scale-free co-expression

network. Cluster analysis was subsequently performed with

flashClust. Moreover, adjacency matrix was converted into

a topological overlap matrix (TOM). According to the TOM-

based dissimilarity measure with a minimum size (gene

group) of 30 for the gene dendrogram, average linkage

hierarchical clustering was conducted and genes with similar

expression profiles classified into the samemodules using the

dynamic tree cut algorithm (deep split = 2, cut height = 0.25;

default values were used for the other parameters).29 Module

eigengenes (MEs) with dissimilarities were merged into the

same modules under the cut line of 0.25.

Identification Of Clinically Significant

Modules
Two approaches were applied to establish the relationships

between modules and clinical phenotypes of CML via

WGCNA. Firstly, the Pearson’s correlation coefficient was

calculated to analyze the correlation between MEs and

clinical traits. In addition, gene significance (GS) was cal-

culated as the log10 transformation of the p-value of each

gene (GS = LgP) in the linear regression slope between gene

expression and clinical information. Module significance

(MS) representing the average GS value for all the genes

in a selected module was measured to incorporate clinical

information into the co-expression network. The module

with the highest MS value was considered the key module

related to clinical traits.

Functional Annotations Of Clinically

Significant Modules And SE-Associated

Genes
Metascape (http://metascape.org/gp/index.html) is a web-

based tool for gene annotation and functional enrichment

analysis of pathways.30 Eigengenes within the clinically

significant modules and SE-associated genes were anno-

tated and analyzed using Metascape with default para-

meters, and p-values < 0.05 were regarded as significant.

Identification Of SE-Associated Hub

Genes In Clinically Significant Modules
Venn diagrams were obtained with the online tool Venny

2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html) to

identify the genes intersecting between eigengenes from

clinically significant module and SE-associated genes.

A protein–protein interaction (PPI) network was con-

structed using overlapping genes via Networkanalyst

(https://www.networkanalyst.ca/). The network diagram

of all PPI node genes was visualized with Cytoscape.31

SE-associated hub genes were further selected based on

the rank of node degree. Differential expression of node

genes in CML patients was examined via Heatmap and

Dotplot. Due to broad usage of the predicted markers of

SE, signal peaks of H3K27ac, H3K4me1 and BRD4 ChIP-

seq were downloaded from the dbSuper database and

visualized using Integrative Genomics Viewer (IGV).32

Identification Of SE-Associated Hub

Genes In CML Samples And K562 Cells
Thirty healthy and thirty CML blood samples were collected

with the approval of Medical Ethics Committee of the

Xiangya Hospital of Centre South University (201502032).

The blood donors have written informed consent in accor-

dance with the declaration of Helsinki. K562 cells were

obtained from the Cell Bank of the Chinese Academy of

Sciences (Shanghai, China) where they were characterized

by mycoplasma negative, DNA-Fingerprinting, isozyme

detection and cell vitality detection. K562 cells cultured in

RPMI-1640 were treated with 1 or 10 μM JQ1 (CSNpharm,

Shanghai, China, Cat # CSN13058) for 24 hrs. Total RNAwas

extracted using TRIzol (Thermol Fisher Scientific, Shanghai,

China, Cat # 15596026) and expression levels of SE-

associated hub genes identified using SYBR Green quantita-

tive real-time PCR (TOYOBO, shanghai, China, Cat #

QPK-201). Primer sequences were downloaded from

PrimerBank.33 The antibodies, including BUB1 (Cat #

14H5), KIF2C (Cat # 2488C3a), ORC1 (Cat # F10), RRM2

(Cat # ab57653) and CENPO (Cat # ab173489) were pur-

chased from Santa Cruz Biotechnology (Shanghai, China) and

Abcam (Shanghai, China). Protein levels of SE-associated

genes were analyzed via Western blotting according to the

previous methods in our publications.34
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Statistical Analysis
Statistical analysis of differential gene expression was

conducted by a one-way ANOVA and post-hoc analysis

by Student–Newman–Keuls test using SPSS version 13.0

(SPSS, Inc., Chicago, IL, USA). Biological differences

were considered significant at p-values < 0.05.

Results
Construction Of The Weighted Gene

Co-Expression Network
To build the weighted gene co-expression network, raw data

of GSE77191 were downloaded from the GEO database. In

total, 40 samples were enrolled for study, including 26 CML

CP, 7 CMLAP, 3 CMLBP, and 4 normal samples. A total of

3538 probes were annotated and gene expression prepro-

cessed identically using the “limma” R package for back-

ground correction and normalization. Expression for each

gene was calculated and ranked from large to small, and the

top 3000 genes selected for WGCNA. Cluster analysis was

further performed using the flashClust function of the

WGCNA package (Figure 1A). GSM2045756 as an outlier

sample was removed in the following analysis.

To construct the gene co-expression network, the

power value of appropriate soft-thresholding was obtained

through prediction of the scale-free topology fit index

(scale-free R2=0.90) for several powers. We selected β =

10 as the soft-thresholding power to ensure a scale-free

network as the same analysis of the mean connectivity for

various soft-thresholding powers (Figure 1B and C).

A power of β = 10 was applied to produce a hierarchical

clustering tree of module eigengenes (Figure 2A). We set

the cut line at 0.25 to merge similar modules (Figure 2A),

consequently generating 6 merged modules (Figure 2B).

Identification Of Clinically Significant

Modules
We further analyzed the interactions of eigengenes in six

modules and mapped the network heat map based on ran-

domly 500 selected genes (Figure 3A). A module–trait rela-

tionship was calculated according to the Pearson correlation

coefficient and displayed in the heat map. The yellowmodule

displayed a higher correlation with CML status (r = 0.44, p =

0.005) and phase (r = 0.46, p = 0.003), compared with other

modules (Figure 3B), with the highest module gene signifi-

cance (GS) in relation to CML status (p = 3.5e-156) and

phase (p = 8e-86) (Figure 3C, D). A scatter plot in Figure 3E

illustrates the significant relationship between yellowmodule

membership and GS. The heat map and column chart of gene

expression in the yellow module further confirmed the sig-

nificance of the relationship (Figure 3F). Accordingly, the

yellow module was identified as the most significant clini-

cally related unit and selected for subsequent analyses.

Functional Annotation Of Clinically

Significant Modules And SE-Associated

Genes
SEs in K562 were downloaded from dbSuper and 806 SE-

associated genes estimated according to the “ROSE” algo-

rithm based on the H3K27ac ChIP-seq signal (Figure 4A).

To identify the functions of eigengenes within the yellow

module and SE-associated genes in K562, 254 eigengenes

(Supplementary Table 1) and 806 SEs-associated genes

(Supplementary Table 2) were annotated for pathway ana-

lysis via Metascape. Heat map was applied to determine the

top enrichment clusters for SE-associated genes and eigen-

genes (Figure 4B) (Supplementary Table 3). The rows

represent SE-associated genes and eigengenes, with

a discrete color scale used to indicate statistical significance

(-Log P). Both SE-associated genes and eigengenes in the

yellow module were significantly enriched in eight path-

ways (red box). Metascape enrichment network visualiza-

tion disclosed intra-cluster and inter-cluster similarities of

enriched terms between SE-associated genes and eigen-

genes (Figure 4C and D). One term from each cluster was

selected for description, shown as a color label. Common

pathways are additionally depicted in the figure, whereby

nodes are represented by pie charts, indicating their associa-

tions with each input gene.

Identification Of SE-Associated Hub

Genes Related To CML Status And Phase
To identify the common genes between SE-associated genes

and genes from yellow module, 25 node genes of the inter-

sections were identified in the Venn diagram (Figure 5A). 25

genes were further uploaded into the STRING database for

PPI analysis (Figure 5B). We visualized the 25 node genes

and other connecting genes in the PPI network using cytos-

cape and identified 12 hub genes by sorting the node degree

of candidate genes (Figure 5B and C). UBC was excluded in

the following study. UBC is a selected hub gene in the PPI

network, but is not SE-associated gene. The hierarchical

clustering heat map further disclosed expression levels of

11 node genes in different disease status groups, including

CP, AP, and BP, compared to normal control (Figure 5D).
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Figure 1 Clustering of samples and determination of soft-thresholding power. (A) The clustering heat map was based on expression data of GSE77191, including 26 CML

CP, 7 CML AP, 3 CML BP, and 4 normal samples. The top 10,000 genes with the highest SD values were used for WGCNA analysis. Color intensity was proportional to

sample outliers, disease status (CML and normal control), phase (normal control, CP, AP, BP), sex, and age. (B) Analysis of the scale-free fit index (y-axis) for various soft-

thresholding powers (β value of x-axis). (C) Analysis of the mean connectivity (y-axis) for various soft-thresholding powers (β value of x-axis).
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Five SE-associated hub genes showing significantly different

expression levels were selected to analyze ChIP-seq tracks of

SE. As shown in Figure 6, signal peaks of H3K27ac in blue

were used to predict SE regions. H3K4me1 and BRD4 ChIP-

seq were also used to display in pink and green, respectively.

In Figure 6, predicted SEs and several constituent active

enhancers are shown in red. The five SE-associated hub

genes identified (BUB1, CENPO, KIF2C, ORC1, and

RRM2) were located close to the predicted SE. Strong peak

signal of H3K4me1 and BRD4 is also observed at the pre-

dicted active enhancer. Thus, these biomarkers are favorable

biomarkers for the identification of super-enhancer. In the

boxplot diagram (Figure 7A), expression levels of the five

genes from GSE77191 in the normal control group were

markedly lower than those of CML (CP, AP, and BP) groups

(p < 0.05). These hub genes also showed higher mRNA

expression in CML patients, compared to healthy controls

(Figure 7B). Expression of the genes gradually decreased

after treatment with JQ1 (1 or 10 μM) at both the mRNA

and protein levels (Figure 7C and D). Our results clearly

demonstrate that expressions of SE-associated hub genes in

both CML patients and K562 cells are probably upregulated

by SEs.

Discussion
CML is characterized by accumulation of myeloid cells

in blood and caused by uncontrolled growth of myeloid

cells in the bone marrow.4 Despite improvements in

Figure 2 Construction of co-expression modules using WGCNA. (A) Cluster dendrogram of module eigengenes. (B) Dendrograms of differentially expressed genes

clustered based on dissimilarity measures (1-TOM). Each short vertical line represents one gene, and the area of each color signifies the number size of each cluster of co-

expression modules.
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CML treatments during the last decade, the ability to

treat advanced cases remains limited due to the lack of

precise molecular targets. Thus, identification of novel

biomarkers potentially involved in specific prognosis

and progression of CML is essential to improve thera-

peutic options.

Figure 3 Identification of key modules associated with the clinical traits of CML. (A) Topological overlap matrix plot. The different colors on the horizontal and vertical axes

represent different modules. The brightness of the yellow in the middle represents the degree of connectivity of different modules. We observed no significant differences in

interactions among the different modules, indicating a high-scale independence degree. (B) Heat map of the correlation between modules and clinical traits of CML.

Numbers in the table signify the correlations of the corresponding module eigengenes and clinical traits, with the p-values specified below the correlations in parentheses.

(C and D) Distribution of the average gene significance and errors in the modules associated with status and phase of CML. (E) Scatter plot of module eigengenes related to

status and phase in the yellow module. (F) Heat map and column chart of gene expression in the yellow module. Intensity and direction of the correlations are indicated in

the heat map (red, positively correlated; green, negatively correlated).
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In this study, we identified the key modules and hub

genes in tumorigenesis and phases of CML usingWGCNA.

While genome-wide gene expression results from CML

datasets are available, analyses that can effectively link

expression patterns to clinical traits remain a major

challenge.35 WGCNA methods avoid this limitation by

focusing on a group of genes rather than individual genes

through screening the modules and eigengenes associated

with clinical traits. The top 3000 genes based on SD ranking

were used to construct a co-expression network and six

significant modules were subsequently identified. Based

on the analysis of module–trait relationships, the yellow

module was most significantly associated not only with

CML disease status but also with CML phase. Within the

yellow module, 254 genes with high connectivity were

screened and enrichment analysis of signaling pathways

and GO function conducted. Genes in the yellow module

and SE-associated genes were mostly enriched in the path-

ways involved in cell cycle phase transition, megakaryocyte

differentiation, Ub-specific processing proteases, hemosta-

sis, regulation of chromosome organization, signaling by

interleukins, and centromere complex assembly.

Super-enhancers are an emerging sub-class of regulatory

regions that recruit master regulators and co-activators, and

control cell identity and disease-related genes.36,37 Recent

findings indicate that SE-associated specific oncogenes may

Figure 4 Pathways and functional annotations for SE-associated genes and eigengenes in the yellow module. (A) Prediction of SEs and SE-associated genes. SEs were

predicted using the ROSE algorithm, and SE-associated genes were located closest to their respective SEs. A dot plot of the rank of enhancers based on the H3K27ac ChIP-

seq signal was generated. In total, 806 SEs and SE-associated genes were predicted (red dots). Blue dots represent typical enhancers (TE). (B) Heat map showing top

enrichment clusters for SE-associated genes and eigengenes, one row per cluster, with a discrete color scale representing statistical significance (-Log P). Gray color indicates

lack of significance. (C) Metascape enrichment network visualization showing intra-cluster and inter-cluster similarities of enriched terms for SE-associated genes and

eigengenes in the yellow module. Each term is represented by a circle node, where its size is proportional to the number of input genes falling into that term, and its color

represents cluster identity. Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). One term from each cluster

was selected to have its description shown as a label. (D) Enrichment network visualization of results from SE-associated genes and eigengenes in the yellow module,

whereby nodes are represented by pie charts indicating association with each input study.
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Figure 5 Screening of SE-associated hub genes. (A) Venn plot of SE-associated genes and yellow module eigengenes. Genes intersecting within the Venn plot were

considered candidate hub genes. (B) Plot of ranking node genes based on node degree. Genes with a node degree of >3 were considered hub genes. (C) PPI network of SE-

associated genes constructed using NetworkAnalyst. The square and oval boxes represent node and hub genes, respectively. The continuous color map depicts the node

degree. (D) Heat map of SE-associated hub gene expression in CML patients and control groups.
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be required for tumor cell proliferation but are not observed

in normal cells.37 The utility of SEs in the therapeutic target-

ing strategies has been minimally explored to date.38 Given

the pivotal roles of SE-associated genes in determining can-

cer cell identity and supporting cancer cell growth, we specu-

lated that the SE-associated genes screened from eigengenes

in the clinically related module are also critical for CML

tumorigenesis and development. In our study, 25 SE-

associated genes from K562 cells were selected and further

subjected to PPI analysis.

Based on the ranking of node genes in the PPI network

and differences in expression levels between the normal

Figure 6 Signal tracks for H3K27ac (blue), H3K4me1 (pink) and BRD4 (green) ChIP-seq profiles of SE-associated hub genes in K562 cells visualized using IGV. The stitched

regions of active enhancers and SEs are shown in red.
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control and CML groups, five SE-associated genes were

identified as hub genes. In particular, KIF2C and RRM2

displayed significant differences between the CP and AP

phases of CML while the other genes were associated with

status but not phase. Following the treatment of K562 with

a specific BRD4 inhibitor, JQ1, the levels of five SE-

associated genes were reduced. These findings imply that

five hub genes significantly related to CML status and

phase are upregulated by SEs and suppressed by JQ1.

Although KIF2C and BUB1 connected each other in

Figure 5, there is no report about this connection and

binding partners. In future, the interaction of KIF2C and

BUB1 is probably interfered by drugs as a therapeutic

target. Other interactions between the five SE-associated

genes were not found. Based on the signal peaks of

H3K27ac ChIP-seq shown in blue, five SE-associated

hub genes (BUB1, CENPO, KIF2C, ORC1, and RRM2)

were identified close to their respective predicted SEs. The

high signal peaks of H3K4me1 and BRD4 ChIP-seq also

showed near SE-associated hub genes. Our results support

the enhancement of expression of the hub genes identified

in CML patients. While several critical SEs have been

previously reported, it remains unclear whether the regula-

tion of these genes is relevant to the development and

status of CML.26,39 The SE-associated gene CCND3 was

reported in an earlier study, but was not significantly

changed in CML patients in GSE77191 dataset (p >

0.05).26,39 Thus, these SE-associated genes probably play

pivotal roles in K562 cell line but not in CML patients.

Here, we focused solely on the most important module and

genes displaying the most significant fold changes. Thus,

several SE-associated genes in K562 cells previously

reported as important were excluded from our study due

to the indistinct expression changes.

BUB1 encodes a serine/threonine–protein kinase that func-

tions, in part, by phosphorylating members of the mitotic

Figure 7 Identification of SE-associated hub genes in CML patients and K562 cells. (A) Boxplots showing mRNA expression of SE-associated hub genes in CML patient

groups (CP, AP, and BP) (GSE), compared to the control group. Differences were considered significant at p-values < 0.05 (*). Compared to different phase groups, p-values
< 0.05 were considered significant (#). (B) Boxplots and dotplots showing mRNA expression of SE-associated hub genes in CML patients from Xiangya Hospital. Differences

were considered significant at p-values < 0.05 (*), compared to the control group. (C and D) mRNA and protein levels of SE-associated genes in K562 cells after treatment

with JQ1 (1 and 10 μM). Differences were considered significant at p-values < 0.05 (*), compared to the control group.
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checkpoint complex and activating the spindle checkpoint.40

BUB1 additionally plays a role in abrogating activation of the

anaphase-promoting complex/cyclosome.40 Germline muta-

tions or aberrant expression in BUB1 have been associated

with aneuploidy and several forms of cancer.41–43 The BUB1

inhibitor, BAY 1816032, is reported to sensitize tumor cells to

taxanes, ATR Serine/Threonine Kinase (ATR), and Poly

(ADP-Ribose) Polymerase (PARP) inhibitors in human triple-

negative breast xenograft models.44 These findings highlight a

role of BUB1 in inducing a state of tumorigenesis and suggest

promising new therapeutic avenues for treating highly inva-

sive cancer.

Kinesin Family Member 2C (KIF2C), also known as

mitotic centromere-associated kinesin (MCAK), functions as

a microtubule-dependent molecular motor involved in related

cell cycle, mitotic, and reelin pathways.45 The function of

KIF2C is correlated to its conformational changes and depo-

lymerization activity.45 A model of its regulation by multiple

mitotic kinases has been proposed and its potential involve-

ment in oncogenesis and drug resistance highlighted.45 KIF2C

serves as a novel prognostic marker in human gliomas, and

suprarenal epithelioma.46,47 Expression of this protein is also

correlated to poor prognosis of operable esophageal squamous

cell carcinoma in male patients.48 Thus, repression of KIF2C

may present a novel therapeutic strategy for combating malig-

nancy in some tumor entities.

Ribonucleotide reductase regulatory subunit M2 (RRM2)

encodes one of two non-identical subunits for ribonucleotide

reductase involved in interrelated cell cycle, mitotic, and

pyrimidine metabolism pathways. Integration of transcrip-

tomic data revealed significantly elevated RRM2 in

glioblastoma,49 breast cancer,50–53 prostate cancer,54

neuroblastoma,55 colorectal cancer,17,56 pancreatic cancer,57

hepatocellular carcinoma,58,59 and adrenocortical cancer.60

Knockdown of RRM2 with siRNA effectively impeded pan-

creatic tumor growth either alone or synergistically with

doxorubicin.61 Delivery of RRM2 siRNA to vascular smooth

muscle cells through liposome–polycation–DNA complex

conjugated with cell-penetrating peptides could also mark-

edly inhibit RRM2 mRNA and protein expression, resulting

in significant suppression of cellular proliferation and

migration.62 Trans−4, 4ʹ-dihydroxystilbene (DHS) was

shown to suppress DNA replication by inhibiting RRM2,

thereby decreasing the growth of pancreatic, ovarian, and

colorectal tumor.63 In summary, RRM2 as a hub gene and

related pathways may serve as biomarkers or therapeutic

targets for cancer.

ORC1, a highly conserved six-subunit protein com-

plex, binds specifically to origins of replication and serves

as a platform for the assembly of additional initiation

factors, such as Cdc6 and Mcm proteins.64 ORC1 is

reported to be involved in cell cycle, mitosis, and E2F-

mediated regulation of DNA replication.65,66 Recent find-

ings revealed that knocking down of ORC1 memorably

suppressed cell proliferation, blocked cell cycle, decreased

the expression of Bcl-2 while increased the apoptosis rate

and the expression of c-caspase3 and cleaved PARP in

cervical cancer cell lines HeLa and C33A.67 CENPO

encodes a component of the interphase centromere com-

plex, which localizes to the centromere throughout the cell

cycle and is required for bipolar spindle assembly, chro-

mosome segregation, and checkpoint signaling during

mitosis.68 Although few reports have linked ORC1 and

CENPO to cancer treatment to date, the findings that these

genes are enriched in the signaling pathways of cell cycle

and mitosis support their utility as novel therapeutic bio-

targets for CML.

Conclusion
This is the first study to apply WGCNA-based methods to

identify SE-associated hub genes expressed in association

with CML clinical traits. Further investigation of these

genes should not only enhance our understanding of

CML tumorigenesis and development but also provide

potential therapeutic targets. Our study presents proof of

principle applicable to other diseases and clinical traits,

which can be used to redefine molecular mechanisms and

disease phenotypes for optimization of clinical practice.
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