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Abstract: Radiomics is a novel concept that relies on obtaining image data from examina-

tions such as computed tomography (CT), magnetic resonance imaging (MRI), or positron

emission tomography (PET). With the appropriate algorithm, the extracted results have broad

applicability and potential for a massive positive impact in radiology. For example, clinicians

can verify treatment efficiency, predict the location of tumor metastasis, correlate results with

a histopathological examination, or more accurately define the type of cancer. Combining

radiomics with other testing techniques allows every patient to have a personalized treatment

plan that is essential for advanced examination and treatment. This article explains the

process of radiomics, including data collection mechanisms, combined use with genomics,

and artificial intelligence and immunology techniques, which may solve many of the

challenges faced by doctors in diagnosing and treating their patients.
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Introduction
Clinical tumor diagnosis technology assists health care workers in making medical

decisions. Conventionally, cancer diagnosis and classification is based on histolo-

gical examination of biopsy specimens, but these classical methods are bound for

disruption by new, non-invasive technologies. New techniques, such as radiomics,

look at individual differences that exist in cancer cells in order to determine

a personalized, highly targeted treatment course, solutions that classical methods

cannot provide.1,2 In response to deficiencies in tissue testing, non-invasive medical

imaging, such as magnetic resonance imaging (MRI), computed tomography (CT),

and positron emission tomography (PET) are used to assess tumor locations and

metastases.3 In addition, imaging provides valuable information for personalized

medicine. When combined with traditional histology and new high-throughput

platforms, non-invasive imaging can diagnose tumors earlier and more accurately,

allowing tumor staging and prognosis at a level that truly achieves the concept of

precision medicine.4 Precision medicine is a component of personalized treatments

intended to design patient-tailored therapies that optimize the genotype and pheno-

typic characteristics of an individual (for example, using patients’ genes and their

transcripts, proteins, and metabolites). Research in precision medicine involves

systems biology methods that integrate mathematical modeling, biogenomics, tran-

scriptomics, proteomics, and metabolomics. In addition, precision medicine neces-

sarily considers not only the relatively static genetic code of an individual but also
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the dynamic and heterogeneous genetic code of cancer.5,6

Therefore, precision medicine relies on the discovery of

identifiable treatment targets and monitoring modifica-

tions, and also on reliable, non-invasive methods to iden-

tify changes in these targets over time.7

Although medical imaging techniques can be used to

assess tumor heterogeneity, imaging features are primar-

ily characterized qualitatively by radiologists or nuclear

medicine physicians. This visual assessment process is

influenced by internal tumor conditions, lymph node

inflammatory hyperplasia, and the subjective factors of

the observer. Thus, improving the objectivity and repro-

ducibility of imaging techniques and quantifying the

internal conditions of the tumor more comprehensively

will reveal imaging features such as potential biological

changes of the tumor,8,9 which is driving the growth of

the radiomics field. Radiomics uses high-throughput tech-

nology to extract advanced quantitative analyses describ-

ing the tumor phenotype objectively and quantitatively.

Radiomics algorithms, thus, find clinically essential

information in medical images that are invisible to

a human observer—and tumor characteristics are the

most valuable diagnostic information for personalized

medicine.10,11

The term ‘radiomics’ originated in 2012 and was first

introduced as a scientific discipline in advanced medical

imaging analysis. In addition to the micro-heterogeneity

associated with cell imaging and molecular markers of

tumors based on medical imaging, there are recent cate-

gorizations and analyses of tumors and phenotypes,12,13

localized regional modeling,14 and applications such as

prediction of future results.15 Other, more quantitative,

imaging models for specific tumor sites include head and

neck,16,17 lung,18 breast,19 liver,20 cervix,21 prostate,22

limbs (sarcoma),23 and the brain.24 In the past five years,

the field of radiology has garnered much more attention

from experts in other fields, and the number of medical

imaging publications has grown exponentially. Thus,

knowledge about the scope and application of radiomics,

within many sub-disciplines of radiology, is expanding

rapidly and broadly.25 In the next few years, international

cooperation, well-designed clinical trials, and joint testing

will be the most beneficial research that promotes the

clinical application of advanced radiology techniques.26

This review provides a summary of the latest research in

radiological spectroscopy in the joint diagnosis of cancer,

improves the awareness of radiology and promotes its

clinical application.

Radiology Workflow
The process of radiomics is (1) acquisition of image data,

(2) calibration of tumor regions, (3) segmentation of tumor

regions, (4) extraction and quantification of features, (5)

image database establishment, and (6) classification and

prediction. Traditional radiological tests are used to distin-

guish tumor types and predict a patient’s survival or tumor

recurrence. Proper data selection is critical for creating an

effective model, which requires a massive amount of data

collection and aggregation to eliminate the effects of indi-

vidual differences. In addition, the quality of the data

depends on the imaging characteristics of the imaging

instrument, reconstruction methods, and dynamic artifacts.

Therefore, image acquisition and standardized operational

procedures facilitate the generation of high-quality data

sets.27,28

After image acquisition and volume reconstruction,

a region of interest (ROI) can be defined. In the con-

structed 3D image of the tumor, the tumor image is

observed layer-by-layer; this workload can be reduced

with semi-automatic segmentation that also eliminates

human error. Image segmentation, operational flow, slice

spacing, reconstruction methods, time points, and respira-

tory motion all affect image reproducibility.29 Since the

extracted features’ value mainly depends on image recon-

struction and preprocessing methods, proper use of filter-

ing techniques, intensity separation methods, and voxel

resampling play a crucial role in the operability of

radiomics.30,31 Next, extracted features are aggregated

with clinical and pathological results to construct

a classification, prediction, or prognostic model, together

forming a big data set. Once this comprehensive big data

set is available, it is possible to build a variety of different

machine learning models (such as neural networks, deci-

sion trees, support vector regression, and multivariate

techniques), which affect the modeling process and the

prediction model. Prediction is based on the feature set

of radiation characteristics used in the construction, which

can be used to predict the performance characteristics for

internal validation or evaluate an external model.32 An

internal validation model (for assessing and mitigating

performance) is necessary. Data is used to train the

model, which may be performed by methods such as

analysis or verification of a baseline intersection. An exter-

nal validation set (using separate external data) is used to

verify the accuracy of the prediction model or evaluate

a universal prediction model.33,34

Meng et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Cancer Management and Research 2019:1110852

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


The goal of many radiology-focused guidelines is to

provide details on model development and validation to

provide better repeatability and critical assessment of pre-

dictive models. In future research, attention should be

given to calibrating the radiomics quality scoring (RQS)

and transparent reporting of a multivariable prediction

model for an individual prognosis or diagnosis

(TRIPOD) model,35 to determine whether the operational

procedures are clinically suitable, and to promote the

growing maturity of radiomics.

Combining Radiomics with
Genomics
For tumors, the goal of precision medicine is to link the tumor

phenotype to a clinical endpoint in order to improve clinical

decision making. Imaging through radiomics and genomics

will play an essential role in precision medicine.36 In 2003, the

European Society for Radiotherapy and Oncology (ESTRO)

first proposed the concept of radiogenomics (also known as

imaging genomics), which aims to establish a correlation

between gene expression profile data and imaging features.37

In 2007, in the journal Nature Biotechnology, Israeli scholar

Segal et al38 proposed a three-step strategy to establish

a correlation map between image features and gene expression

profiles. That study used a three-stage contrast-enhanced CT

scan to obtain 28 image features and the gene expression

profile of patients with primary hepatocellular carcinoma,

illustrating the three-step strategy. That three-step strategy

has become the standard for radiogenomics research.

Radiomics enhances radiogenomics by extracting enor-

mous amounts of quantitative data from digital images,

then documenting these with clinical and patient data into

a shared database that also includes genetic and radiomic

data. Radiogenomics provides voxel-by-voxel genetic

information or provides primary tumor information, in

the case of metastatic disease, to guide clinical treatment.

In addition, radiogenomics quantifies lesion characteristics

and better differentiates between benign and malignant

tumors to stratify patients based on disease risk, for more

accurate imaging and screening of tumors.39,40

In 2015, Mu Zhou and others collected preoperative CT

data, and postoperative tumor specimens from 113 patients

with non-small cell lung cancer (NSCLC) diagnosed

between April 2008 and September 2014 as subjects.

Radiographic features included nodular shape, margin, tex-

ture, tumor environment, and overall lung characteristics.

Changes in genetic information in the corresponding tumor

tissue were detected by RNA sequencing. That research

found that 10 meta-genes defined multiple molecular path-

ways, including the epidermal growth factor (EGF) pathway,

and also found meta-genes associated with frosted glass

opaque shadows, irregular nodules, and undefined knots on

the margins.41 Further, recent studies have found that color-

ectal cancer (CRC) is characterized by significant intratu-

morally genetic heterogeneity, which can be evaluated on

medical images also. A high-throughput platform has been

developed to obtain genomic and transcriptional group data

to characterize cancer at the molecular level better. The

current clinical application of genomic information comes

from mutational data from the Kirsten rat sarcoma virus

(KRAS), Neuroblastoma RAS viral oncogene homolog

(NRAS) and RAF murine sarcoma viral oncogene homolog

B (BRAF) genes, which are effectors of the MAPK (mito-

gen-activated protein kinase) pathway, as prognostic and

specific biomarkers, including HER2 for targeted gene ther-

apy. Bogdan and other scholars combined CT radiology,

gene expression analysis, histopathological examination of

primary CRC, and survival analysis to show that enhanced

CT and gene expression can more effectively predict the

prognosis of primary CRC, and it is also beneficial to

develop treatment plans.42 Experts such as Pascal O. Zinn

used image segmentation technology, radiological feature

extraction, feature normalization, and selection and predic-

tive modeling to establish a combined analysis method for

skull stripping and brain tissue standardization, allowing

cross-platform and cross-institutional comparison. The

study of radiomics also uncovered that the radiographic

texture characteristics of glioma might be causally related

to the expression of periostin (POSTN).43 Because of

a strong correspondence between radiology and the genome,

Claudia Kesch and other scholars further demonstrated that

radiomics technology, including multi-parameter magnetic

resonance imaging (MRI), 68Ga-prostate-specific mem-

brane antigen (PSMA)-PET/CT imaging combined with

genetic testing can guide the diagnosis and distinguish

between in situ and invasive prostate cancer.44 Various stu-

dies have shown that combining radiomics with genetic

testing provides not only more accurate test results but also

provides more effective treatment plans.

Combining Radiomics with Artificial
Intelligence
Artificial intelligence (AI) is a loosely-defined concept of

the intelligence exhibited by machines, as opposed to the
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natural intelligence exhibited by humans and other ani-

mals. However, in the context of medical imaging, we

specifically define AI as a system that “correctly interprets

external data and extracts information from these data,

using it flexibly to achieve specific goals and tasks.45”

AI systems are used for analysis, personal inspiration, or

personified AI. In the twenty-first century, artificial intelli-

gence technology benefits from improved theoretical

understanding (such as in neural network mathematics),

advances in computer functions (such as graphics proces-

sing units [GPU]), and high-end data processing platforms

(such as cloud storage and computing), as well as the

operability of the algorithm and the database itself.

Concerning medical imaging, it is theoretically possible

to perform many tasks, related to images, through AI

techniques, including lesion detection, disease classifica-

tion, diagnosis and staging, quantification, treatment plan-

ning, and assessment of response to treatment and

prognosis.46,47

Recent studies found that radiomics combined with AI

provide additional improvements, such as improved opera-

tional workflow, financial management, and quality. For

example, AI (trained via machine learning) was applied to

preoperativeMRI studies to distinguish between low-level and

high-level tumors using image texture features obtained using

multi-mode MRI to achieve World Health Organization

(WHO) tumor grading levels. Clinically relevant molecular

subtypes of glial cells, such as the presence of isocitrate

dehydrogenase (IDH) mutations, can be diagnosed by inten-

sive learning by training machines, such as the convolutional

neural network (CNN) method.48 In addition to neurological

tumors, there are applications in breast cancer. Since the

1980s, the five-year survival rate of breast cancer has been

demonstratively improved. In addition to improving treatment

methods, this also significantly relates to the reform in breast

imaging screening. Breast cancer is a heterogeneous disease,

and the presence of estrogen receptor (ER) is important for the

response of specific treatments (such as tamoxifen) and prog-

nosis (poor prognosis in ER-negative patients) and can define

the etiology type. Triple-negative—ER-negative, progesterone

receptor (PR)-negative, human epidermal growth factor recep-

tor (HER2)-negative—breast cancer has a poor five-year sur-

vival rate. There are no typical signs of a breast cancer

malignancy, which means interval or high-grade tumors

might be misdiagnosed.49 With the advancement of radiomics

and computer analysis capabilities, the response of breast

tumors to treatment has improved, from the perspective of

detection and diagnosis.

Despite the success of AI in cancer imaging, some

limitations and barriers must be overcome before exten-

sive clinical use. With the continuous advancement of

systems such as Picture Archiving and Communication

Systems (PACS) and Medical Digital Imaging and

Communications (DICOM), the needs for imaging are

shifting to access and retrieval.50,51 However, these data

are rarely set-up ahead of time in terms of labeling, anno-

tation, segmentation, quality assurance, or adaptability,

and thus, even advanced AI technology may fail.

However, as the power and potential of AI are increasingly

recognized, there are many ways in which AI can be

transformed into conventional clinical practice. For ima-

ging analysis, if AI is to replace some parts of a clinician’s

work, the accuracy of the diagnosis, and the ability to

predict the disease must keep improving. Globally, the

lack of imaging experts means clinical needs are not met

worldwide. AI technology can reduce the cost and training

of clinicians by providing a range of imaging diagnostic

tools for uncommon diseases. In short, AI has an extensive

range of applications in medical imaging. It is easy to see

from early research that AI has made meaningful progress

in adding intelligence to medical imaging equipment, stan-

dardization of data acquisition, and automation of data

analysis. The combination of AI and radiomics will pro-

duce dramatic social and economic benefits, and rapidly

improve the level of diagnosis and treatments by grass-

roots doctors, with the accumulation of more data and the

continued maturity of the technology.52–54

Combining Radiomics with Tumor
Biomarkers
The National Institutes of Health (NIH) defines biomar-

kers as “a major indicator that can be measured and used

to assess changes in a normal biological process, patho-

genic process, or treatment intervention.” Valuable tumor

markers must guide clinical decision making to improve

the patient’s disease status.52,55 The combination of radio-

mic and biomarkers is a multi-step development process.

Moreover, this combination will undoubtedly improve the

accuracy and timeliness of cancer diagnosis, reduce

trauma to patients, and reduce healthcare costs.

Professor Wang Dengbin and his team in China retro-

spectively studied 177 patients with rectal adenocarcinoma

(confirmed by histopathology) and collected 385 radiomic

groups. Features of the study were establishing a clinical-

radiomics combinatorial model, validating predictive
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performance through receiver operating characteristic curve

(ROC) analysis, implementing clinical routines for nomo-

gram and decision curve analysis, and predictive radio-

scopy combined with clinical detection of tumor markers

in prediction the value of synchronous distant metastasis

(SDM) in rectal cancer. The experimental results demon-

strated that clinical radiology combined with CEA and

CA199 molecular models could be used as non-invasive

biomarkers to identify high-risk patients with SDM, which

helps to customize treatment strategies.56

Immunohistochemistry (IHC) is a well-established

technique that assists pathologists in improving the

accuracy and precision of diagnosis in the field of sur-

gical pathology. IHC has moved beyond diagnostic

applications in laboratory medicine and is now used to

discover prognoses and predict biomarkers, which may

lead to the development of more valuable cancer-

targeted treatment strategies in the next era of persona-

lized medicine.57,58 In parallel with the deepening of

imaging research, new analytical methods for the dis-

covery of image-based biomarkers are making progress.

Because of the need to associate image-based features

with IHC markers, IHC has also become an essential

part of radiology. Valuable tools and the combination of

these types of biomarkers increase the depth of explora-

tion of tumor biology to provide a variety of ways to

guide clinical oncology.59

Clinical practice in radiology and pathology requires

expertise and years of training to visually assess and

interpret abnormal phenotypic features in medical

images and tissue sections and then generate diagnostics

that guide disease management and treatment. In pros-

tate cancer IHC the most widely used markers are pros-

tate-specific antigen (PSA), prostate-specific acid

phosphatase (PSAP), Prostate-specific membrane anti-

gen (PSMA), and p63; all are commonly used as

a part of prostate radioimaging.60 Despite the initial

lack of correlation, the study also aimed to combine

serum and urine biomarkers with diffusion-weighted

imaging (DWI)-MRI to predict prostate cancer with

vascular IHC markers and assess microvessel density

in large prospective cohorts. In the future, the correla-

tion between integrated radiology and IHC expression

will provide clinicians with more diagnostic information

and evidence to predict clinical outcomes and formulate

a treatment response, which should significantly

improve the quality and efficiency of medical services.

Combining Radiomics with
Immunological Detection
Tumor immunotherapy has significantly improved the treat-

ment for cancers such as melanoma, lymphoma, and lung

cancer, but unfortunately, only 20–50% of patients with

advanced solid tumors respond to treatment.61,62 Therefore,

there is an urgent need to develop a test that can determine

the likely efficacy of immunotherapy. Numerous studies

have indicated that the effectiveness of immunotherapy is

related to the number and function of immune cells in tumors

and peritumoral invasiveness. In immunotherapy, three dif-

ferent reaction states are produced: the immune response

phase, the immune exclusion phase, and the immune cell

deficiency phase. Tumors in the immune response phase are

characterized by dense functional CD8 cell infiltration,

increased expression of interferon-gamma, and cell check-

point markers (e.g., PD-L1), which tend to respond to immu-

notherapy. In the immune rejection phase, several biological

signals are generated in the tumor, including the signal of

transforming growth factor-β, activation of myeloid-derived

suppressor cells, and angiogenic signals, suggesting that

T cell infiltration is inhibited.63,64 The immunodeficiency

phase is characterized by a low infiltration of CD8 cells.

Radiomics can assess the immune infiltration of tumors

and thus become a novel predictor of the efficacy of immu-

notherapy. Roger Sun and colleagues reported CD8 cell

expression profiles based on eight-feature radiology, which

were developed using CT images and RNA sequencing data

from 135 patients enrolled in the MOSCATO trial. The

consistency of radiology histological features with gene

expression was confirmed by comparison with the genetic

markers of CD8 cells. The study used data from 119 patients

from the Cancer Genome Atlas dataset and 100 patients from

their registry that stratified tumors into high-CD8 cell and

low-CD8 cell infiltration, to make this comparison. While

radioimmunological features have been shown to correlate

with clinical outcomes in independent cohort patients who

have been treated with anti-PD-1 or PD-L1 immunotherapy,

to the best of our knowledge, this is one of the first studies to

correlate pathology with clinical outcomes using radioim-

muno-based biomarkers. Therefore, this study provides

a potential role for stimulation analysis of radiomics for

personalized immunotherapy.65 Chinese imaging experts

Tian Jie and Professor Yu Ming recently developed

a radiological model based on gadolinium ethoxybenzyl

diethylenetriamine (Gd-EOB-DTPA) enhanced MRI, com-

bined with intra-tumor and peri-tumor radiographic features.

Dovepress Meng et al

Cancer Management and Research 2019:11 submit your manuscript | www.dovepress.com

DovePress
10855

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


The model, which uses clinical data and a select combination

of radiographic features, first attempted to provide compre-

hensive radiomics using a combination of novel intra-tumor

and peri-tumor radiology to suggest tumor-infiltrating lym-

phocytes (TIL) density better.66 Through this research, it was

found that the combination of radiomic results and immuno-

logical characteristics in the analysis of tumor prognosis or

prediction could predict results more accurately, which is

also a goal of radiomics.

Conclusion
Radiomics is the product of the era of big data. Sufficient

feature data and database construction are the premises of

imaging radiomics research. At present, many radiomic stu-

dies have small sample sizes. Small data sets generated by

insufficient sample sizes reduce the accuracy of a model’s

prediction and increase the risk of overfitting.67–69 Therefore,

many problems and challenges in radiomics must be

addressed. Firstly, because of the semi-automatic or manual

delineation of ROI, there are subjective differences. The

repeatability of the extracted features needs further observa-

tion, and the analysis results from the texture parameters

extracted by 2D and 3D ROI are different, which leads to

poor data repeatability. Secondly, each study has different

choices and different approaches to feature extraction and

quantification and modeling. Most studies have found the

appropriate feature extraction and modeling method through

trial and error. However, the human bias and randomness of

this method are significant. The statistics and data for most of

the radiomic studies have not been verified by an indepen-

dent cohort study, so the patient population is not universal.

Finally, the degree of standardization is not high. Since most

studies are retrospective studies, the methods for acquiring

and reconstructing images and the standards for radiomics

post-processing have not been standardized. The images (CT,

MRI, PET-CT) of each study were of different quality, and

the radiomic processing software used was different, and the

results obtained by different scanners were also different.

With the advocacy of precision therapy, radiomics pro-

vide an innovative approach to personalized medicine with

low cost, non-invasiveness, and avoidance of unnecessary

treatment and toxicity risks. In the future, a large amount

of data will be available for radiomics to predict tumor

stage, distinguish between healthy tissue and pathological

tissue, detect genetic characteristics, and predict response

to treatment, patient survival, and drug side effects.

Despite the great promise of radiomics, these radiological

features must be combined with other relevant sources of

information (e.g., biology, genomics, and immunology) to

improve the prognosis and predictive value of persona-

lized medicine treatments.
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