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Purpose: Our previous studies have indicated that non-muscle myosin heavy chain IIA (NMMHC

IIA) is involved in H2O2-induced neuronal apoptosis, which is associated with the positive feedback

loop of caspase-3/ROCK1/MLC pathway. However, the neuroprotective effect of NMMHC IIA

inhibition with an adeno-associated virus (AAV) vector after transient middle cerebral artery

occlusion (MCAO) and its role in caspases-3/ROCK1/MLC pathway remain blurred.

Methods: Green fluorescent protein (GFP) and a small hairpin RNA targeting Myh9 (encoding

NMMHC IIA) were cloned and packaged into the AAV9 vector. AAV-shMyh9 or control vector

were injected into C57BL/6J mice four weeks prior to 60 min MCAO. Twenty-four hours after

reperfusion, functional and histological analyses of the mice were performed.

Results: In this study, AAV-shMyh9 was used to down-regulate NMMHC IIA expression in

mice. We found that down-regulation of NMMHC IIA could improve neurological scores

and histological injury in ischemic mice. Ischemic attack also activated neuronal apoptosis,

and this effect was partially attenuated when NMMHC IIA was inhibited by AAV-shMyh9.

In addition, AAV-shMyh9 significantly reduced cerebral ischemic/reperfusion (I/R)-induced

NMMHC IIA-actin interaction, caspase-3 cleavage, Rho-associated kinase1 (ROCK1) acti-

vation and myosin light-chains (MLC) phosphorylation.

Conclusion: Consequently, we showed that AAV-shMyh9 inhibits I/R-induced neuronal apop-

tosis linked with caspase-3/ROCK1/MLC/NMMHC IIA-actin cascade, which has also been

confirmed to be a positive feedback loop. These findings put some insights into the neuropro-

tective effect of AAV-shMyh9 associated with the regulation of NMMHC IIA-related pathway

under ischemic attack and provide a therapeutic strategy for ischemic stroke.
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Introduction
Ischemic stroke is one of the main causes of death and disability worldwide, which is due

to decreased cerebral blood flow and insufficient cerebral oxygen supply.1,2 Although we

have made great breakthroughs in understanding the pathophysiology of ischemic stroke,

there is no effective and safe treatment at present. Thrombolytic therapy is the most

effective treatment in clinic, but its limited time window and the associated high

recurrence rate limit its clinical application.3,4 Therefore, there is an extremely urgent

need to find new and effective therapeutic targets and drugs for ischemic stroke.

Apoptosis is one of the main forms of neuronal death induced by ischemic

stroke, which has been extensively studied.5–7 By now, it has been shown that Bcl-

2, Bax, caspase-3, and p53 are important proteins in the apoptotic cascade reaction.
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Knockout both caspase-3 and p53 decreased ischemic

injury, and a similar result is observed for Bcl-2

overexpression.8 Rho-associated kinase1 (ROCK1) is

a Rho-binding protein with serine/threonine protein kinase

activity, which is closely related to the process of apopto-

sis and cell membrane blebbing. ROCK1 is a direct sub-

strate of caspase-3 and is activated by caspase-3-mediated

cleavage at its C-terminus inhibitory region. ROCK1 can

also directly induce phosphorylation of myosin light-

chains (MLC).9,10 We have previously illustrated the cas-

pase-3/ROCK1/MLC feedback loop in hydrogen peroxide

(H2O2)-induced PC12 cell apoptosis, and the non-muscle

myosin heavy chain IIA (NMMHC IIA)-actin interaction

regulates caspase-3/ROCK1/MLC signal cascade by

a feedback mechanism upon oxidative stress-induced neu-

ronal apoptosis.11,12 NMMHC IIA, a member of the cytos-

keleton, which is encoded by myosin heavy 9 (Myh9) gene

and interacts with actin filaments to form a contractile

unit.13–15 Additionally, NMMHC IIA has been identified

to participate in blood-brain barrier (BBB) dysfunction in

ischemia stroke,16 and the NMMHC IIA-actin interaction

mediates oxidative stress-induced neuronal apoptosis.12

However, the correlation between NMMHC IIA and the

caspase-3/ROCK1/MLC positive feedback loop in

ischemic stroke remains unknown. Moreover, it is also

not clear whether breaking the positive feedback loop by

interfering with NMMHC IIA can improve cerebral

ischemic injury.

In order to further study the above problems, we specific

knockdown NMMHC IIA by intravenous injection of adeno-

associated virus (AAV) vector (AAV-shMyh9). Among the

many virus vector systems, AAVis nowwidely used to deliver

genes to the central nervous system (CNS) due to its safety and

efficacy, both as research tools and in clinical studies.17–20

AAV-mediated gene delivery before the ischemic attack has

also been used to assess the neuroprotective effect of vector-

encoded proteins in cerebral ischemia.21,22

In the present study, we established a mice transient

middle cerebral artery occlusion (MCAO/R) model to inves-

tigate the role of NMMHC IIA inhibition mediated by RNAi

in apoptosis and underlying regulatory mechanism. We

found that AAV-shMyh9 could attenuate neuronal apoptosis,

which is related to inhibiting NMMHC IIA-actin interaction

and caspase-3/ROCK1/MLC signaling pathway. It provides

the correlation between NMMHC IIA and the caspase-3/

ROCK1/MLC positive feedback loop in ischemic stroke

and provides empirical evidence for targeting it in the clinical

treatment of cerebral ischemia.

Materials and Methods
Animals and Treatment
Male specified-pathogen-free (SPF) C57BL/6J mice weighing

18–22 g were obtained from the Reference Animal Research

Centre of Yangzhou University (Yangzhou, China; certificate

no SCXK 2017–0001). All experimental protocols were per-

formed according to the National Institutes of Health (NIH)

guidelines, and the research was approved by the Institutional

Animal Care and Use Committee of the Animal Ethics

Committee of the School of Chinese Materia Medica, China

Pharmaceutical University. In our experiment, the 60 mice

were divided randomly into four groups (n=15 in each

group): sham operated (Sham), Sham+AAV9-shMyh9-GFP,

I/R, and the I/R+AAV9-shMyh9-GFP groups. The Sham

group and I/R group were administered AAV9-control-GFP.

rAAV Vectors and Infection
To knockdown NMMHC IIA expression, three chains of

mouse rAAV-shMyh9-GFP were generated by Vigene

Bioscience (Rockville, MD, USA). The one that resulted

in the most significant down-regulation of endogenous

NMMHC IIA expression was selected for further experi-

ments. rAAV vectors were diluted in phosphate-buffered

saline (PBS) to 3×1011 genome copies/100 µL before

administration. rAAV vectors were injected intravenously

into male C57BL/6J mice via the mouse tail vein with an

AAV9-control-GFP or AAV9-shMyh9-GFP (1.5×1011

genome copies/mouse). After four weeks of injection,

cerebral ischemia/reperfusion (I/R) can be performed,

and then other experiments could be carried out.

MCAO/R Procedures
The MCAO/R model was prepared in mice as described

previously.23 Cerebral ischemia was induced by intraluminal

occlusion of the right middle cerebral artery using a silicone

rubber-coated 6–0 nylon monofilament. To confirm the cere-

bral artery blood flow, a laser Doppler flow meter (LDF;

FLPI2, Moor, UK) was used. Approximately 1 h after occlu-

sion, the suture was withdrawn to allow reperfusion for 24

h. Neurological deficit was examined using Longa’s

method.23 Briefly, the measurement of neurological deficit

scores was tested as follows: 0: no deficit; 1: forelimb weak-

ness and torso turning to the ipsilateral side when held by the

tail; 2: circling to the affected side when held by the tail on

the bench; 3: unable to bear weight on the affected side or

spontaneous circling to the affected side; 4: no spontaneous

locomotor activity or barrel rolling.
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Immunofluorescence
After perfusion with PBS and 4% paraformaldehyde for 3

min, brain tissues were removed and placed into 4% parafor-

maldehyde at 4°C. After 24 h, brain tissue was dehydrated

using 40% sucrose for 5 days, embedded in OTC, and frozen

at −70°C. Brain tissues were sectioned into slices of 10 µm

thickness with a cryotome (Leica, Mannheim, Germany) and

then placed on adhesion microscope slides (Citoglas, China).

Brain sections were fixed in 4% paraformaldehyde, permea-

bilized with 0.3% Triton X-100 in PBS, blocked with 5%

normal donkey serum, and incubated overnight at 4°C with

specific primary antibodies against cleaved-caspase-3,

ROCK1, p-MLC, NenN, F-actin and NMMHC IIA (diluted

at 1:100, Abcam, UK). Then, sections were incubated with

corresponding secondary antibodies or Alexa Fluor® 568

phalloidin (diluted at 1:100, Thermo Fisher Scientific, USA)

at room temperature. Fluorescent images were observed under

confocal laser scanning microscopy. Quantitative co-

localization of NMMHC IIA with F-actin was performed

using the ImageJ software which can provide the Manders’

coefficients for the overlap of the images.

Haematoxylin and Eosin (HE) Staining
Histomorphological analysis was performed by HE stain-

ing. Briefly, brain slices were put into haematoxylin and

eosin solution, redehydrated in gradient ethanol solution

again, treated with dimethylbenzene and covered with

coverslips. A digital pathological section scanner

(Hamamatsu, Japan) was used to screen pathological

images and NDPView2 software analysed these images.

Western Blot Analysis
The tissues corresponding to the peri-ischemic cortex were

taken out and then homogenized in the RIPA lysis buffer

containing 1 mMPMSF. After centrifuging at 12,000 rpm for

10 min at 4°C, a bicinchoninic acid (BCA) protein assay kit

(Bi yuntian Biotech. Co., Ltd., China) was used to determine

the protein concentration of the supernatant. The supernatant

was diluted by loading buffer to 1 μg/μL and then heated at

100°C for 5 min. Proteins (20 μg/well) were separated by

SDA-PAGE and transferred to a PVDF membrane. The

membranes were blocked for 2 h at room temperature in

TBST containing 5% BSA, and then, it was incubated with

specific primary antibodies overnight at 4°C: anti-bax, anti-

bcl-2, anti-caspase 3, anti-ROCK1, anti-MLC, anti-p-MLC,

anti-F-actin and anti-NMMHC IIA (diluted at 1:1000,

Abcam, UK). After the membrane was washed with TBST,

it was incubated for 2 h with a secondary antibody (goat anti-

rabbit 1:10,000 Biomorld Technology, USA). Images were

detected with ECL and imaged using the Gel Imaging

System (BioRad, Hercules, CA, USA). Each experiment

was performed with three independent replicates.

Co-Immunoprecipitation (Co-IP)
Briefly, 30 µL Protein A/G PLUS-Agarose was washed with

RIPA buffer three times, and 2 µg antibodies were added to the

agarose solution and incubated at 4°C overnight on a rotator.

The prepared antibody-agarose complex was added to 1mL of

whole cell lysate (1 µg/µL) and incubated for 6 h at 4°C,

followed by washing three times with RIPA buffer, adding

2×SDS gel loading buffer and boiling for 5 min. Proteins were

detected by Western blot analysis.

Statistical Analysis
All data are expressed as the means±SD from at least three

independent experiments. Data were analysed by Student’s

t test for two group comparisons or one-way analysis of

variance (ANOVA), followed by Dunnett’s post hoc test

for multiple comparisons, using Graph Pad Prism 6.0

(Graph Pad Software, La Jolla, CA, USA). Differences

were considered significant with a P-value less than 0.05.

Results
AAV-shMyh9 Delivered the Transgene

Widely in the Brain
To deliver an AAV vector from circulating blood to the brain,

we employed tail vein injection, because this provides a direct

route to the brain. The transfection of AAV-GFP vehicle four

weeks after the injection was observed under the fluorescence

microscope by detecting the GFP-positive cells. The observa-

tion showed that the AAV vehicle was successfully transferred

into nerve cells in the brain cortex (Figure 1).

AAV Mediates NMMHC IIA Inhibition in

the Ischemic Area After the MCAO/R
To ensure the interference efficiency of AAV-shMyh9, we

analyzed the expression of NMMHC IIA by Western blot

and immunofluorescence four weeks after the injection. As

expected, NMMHC IIA positive neurons (NMMHC IIA/

NeuN positive cells) decreased on the NMMHC IIA shRNA-

injected brain compared with the control shRNA-injected

brain (Figure 2A and B). Western blot analysis revealed the

similar results in NMMHC IIA expression (Figure 2C).
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Because AAV-shMyh9-GFP (＃3) showed the strongest inter-

ference efficiency, it was used for subsequent experiments.

NMMHC IIA Inhibition via the AAV Vector

Improves Cerebral Ischemia-Reperfusion

Injury After MCAO/R
To evaluate the neuroprotective effect of NMMHC IIA inhibi-

tion, AAV-shMyh9 or AAV-shcontrol was injected four weeks

before MCAO/R attack. Twenty-four hours after reperfusion,

neurological deficit scores were measured, and then the mice

were killed for HE staining. The results showed that pretreat-

ment with AAV9-shMyh9 significantly improved the neurolo-

gical deficit compared with I/R group (Figure 3A). In I/R

group, HE staining showed a large number of shrunken neu-

rons with pyknotic nuclei (yellow arrow), which indicated

dead neurons (Figure 3C). Notably, the abundance of dead

neurons decreased and there were many intact neurons (blue

arrow) in the AAV-shMyh9 group (Figure 3C). Statistical

results showed that the intact neurons were 48.58±7.48% in

I/R group. By contrast, AAV-shMyh9 treatment increased the

intact neurons to 76.89±4.09% (Figure 3B).

NMMHC IIA Inhibition Reduced Apoptosis

in the Ischemic Cortex Tissues After

MCAO/R
Next, we examined whether the protective effect of NMMHC

IIA inhibition is associatedwith inhibition of neuronal apoptosis

induced by I/R. Four weeks after the injection of AAV, the mice

were treated with I/R, and apoptosis-related proteins Bcl-2 and

Bax in ischemic brain tissue were assessed. Compared with the

shamgroup,Baxprotein levels in the I/Rgroupwas significantly

higher, while Bcl-2 protein expression was significantly lower

comparedwith shamgroup values. In contrast, comparedwith I/

R group, AAV-shMyh9 pretreatment significantly decreased

Bax protein amounts (Figure 4A), and increased Bcl-2 protein

expression (Figure 4B). We also detected neuronal apoptosis in

the ischemic penumbra areas using TUNEL analysis. As shown

in Figure 4C and D, there were more apoptotic neurons

(TUNEL/NeuN-positive cells) in I/R group compared with

sham group. However, AAV-shMyh9 treatment significantly

decreased I/R-induced neuronal apoptosis.

NMMHCIIA InhibitionAttenuates I/R-Induced

NMMHC IIA-Actin Interaction in Mice
It has been reported that NMMHC IIA-actin interaction is

required to initiate actomyosin contractility, which further facil-

itates cellular apoptosis.12We next investigated if AAV-shMyh9

attenuated NMMHC IIA-actin interaction induced by I/R.

According to an immunofluorescence assay, we identified an

increased interaction between NMMHC IIA and F-actin under

ischemic attack when compared with that of the sham group.

However, NMMHC IIA-actin interaction was inhibited by

AAV-shMyh9 (Figure 5A).We next applied theManders’ over-

lap coefficients to statistically quantify the colocalization of

NMMHC IIA and F-actin. Quantitative results revealed that

the colocalization of the two proteins was more striking in I/R

group (Manders’ coefficient: 0.895±0.03) than that in sham

group (Manders’ coefficient: 0.575±0.104), while AAV-

Figure 1 Confocal photomicrographs of GFP expression 4 weeks following injection of AAV-shMyh9. Brain sections from C57BL/6J mice 4 weeks after intravenous injection

of AAV9-control-GFP or AAV9-sh NMMHC IIA-GFP (1.5×1011 genome copies/mouse). Bar: 50 µm. The red arrows indicate GFP-positive cells.
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Figure 2 Efficacy of AAV-shMyh9 adenovirus transduction in vivo. 4 weeks after tail intravenous injection of AAV9-sh control-GFP or AAV9-shMyh9-GFP (#1, #2, #3),

efficacy of AAV-shMyh9 adenovirus transduction were detected by immunofluorescence (A, B) and Western blot (C). Bar: 50 µm. The data are represented as means±SD

of 3 individual experiments. #P<0.05 and ##P<0.01 vs the AAV9-sh control group.
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Figure 3 NMMHC IIA inhibition via the AAV vector improves cerebral ischemia-reperfusion injury after MCAO/R. (A) Neurological deficit scores in different groups.

Results are expressed as the mean±SD, n=6. ###P<0.001 vs sham group; ***P<0.001 vs model group. (B) Statistical analysis of intact neurons in the ischemic region. Results

are expressed as the mean±SD, n=3. ##P<0.01 vs sham group; **P<0.01 vs model group. (C) HE staining showing the morphological characteristics of mouse brains upon

MCAO/R. Shrunken neurons with pyknotic nuclei are indicated with yellow arrows while intact neurons are indicated with blue arrows. Bar: 50 µm.
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shMyh9 significantly decreased the interaction of NMMHC IIA

and F-actin (Manders’ coefficient: 0.665±0.039) (Figure 5B).

We further confirmed the interaction of NMMHC IIA and

F-actin by Co-IP analysis. The results of immunoblotting analy-

sis using anti-NMMHC IIA antibody demonstrated that I/R

treatment enhanced the association of NMMHC IIA with

F-actin, which was attenuated by AAV-shMyh9 pretreatment

(Figure 5C). The statistical analysis also revealed that anti-

F-actin antibody precipitated lessNMMHC IIA protein inAAV-

shMyh9-treated group, compared with I/R group (Figure 5D).

NMMHCIIA InhibitionAttenuates I/R-Induced

Caspase 3/ROCK/MLC Pathway Activation
Studies have also shown that Caspase 3/ROCK/MLC

pathway may be necessary for cytoskeletal reorganization

and cell apoptosis. We consequently investigated the

effect of AAV-shMyh9 on cytoskeleton-related caspases-

3/ROCK1/MLC pathway. I/R caused a modest decrease

in ROCK1 (Figure 6B) expression compared to the con-

trol, with increased levels of MLC phosphorylation

Figure 4 NMMHC IIA inhibition reduced apoptosis in the ischemic cortex tissues after MCAO/R. Immunoblots of Bax (A) and Bcl-2 (B) from total cell lysates of cortical

tissue harvested 24 hrs after I/R. GAPDH was used as a control. (C) TUNEL analysis showing the apoptotic cells in penumbra of mouse brain upon MCAO. NeuN was

stained to show neurons. Bar: 50 µm. (D) Quantitative assessment of TUNEL/NeuN-positive cells. All data are presented as the mean±SD of 3 independent experiments.
##P<0.01 vs sham group; *P<0.05 and **P<0.01 vs I/R group.
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Figure 5 NMMHCIIA inhibition attenuates I/R-inducedNMMHCIIA-actin interaction inmice. (A) Representative imagesof each groupwere shown.Mice in each groupwere sacrificed24

hrs after theMCAO/R.Confocalmicroscopywas used to detect the expression ofNMMHC IIA (blue) and F-actin (red). Bar: 50 µm. (B) The quantitative colocalization ofNMMHC IIAwith

F-actinwas evaluatedon the basis ofManders’overlap coefficients. (C)Co-IPofNMMHCIIA and F-actinwas detected byWestern blotswith indicated antibodies. The bands of left panel are

fromwhole-cell lysates (WCL) and the bands of right panel are the same as shownon the left but immunoprecipitatedwith indicated antibodies. AfterMCAO/R, ischemic brain tissue lysates

were subjected to immunoprecipitation with anti-F-actin antibody, and then the precipitates were analyzed by immunoblotting with anti-myosin IIA and anti-F-actin antibodies. Normal IgG

was loaded as positive and negative controls. (D) Quantification of NMMHC IIA co-immunoprecipitated with F-actin in mice. Results were expressed asmean±SD from three independent

experiments. ##P< 0.01 versus sham group, **P< 0.01 versus I/R group.

Abbreviations: IB, immunoblotting; IP, immunoprecipitation; IgG, immunoglobulin G.
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(Figure 6C) and cleaved caspase-3 (Figure 6A). However,

compared with I/R group, pretreatment with AAV-

shMyh9 elevated ROCK1 expression (Figure 6B), while

it blocked caspase-3 cleavage (Figure 6A) and reduced

levels of phosphor-MLC (Figure 6C). The expressions of

activated caspase-3, ROCK1 and p-MLC in neurons were

further investigated by double immunostaining in

ischemic brain after I/R. Antibody against neuronal

nuclei (NeuN) was used to identify neurons.

Immunofluorescence analysis demonstrated that I/R

caused an increased cleaved caspase-3 and p-MLC immu-

noreactivity in neurons compared to the sham group.

AAV-shMyh9 pretreatment inhibited the up-regulated

cleaved caspase-3 (Figure 7A and D), MLC phosphoryla-

tion (Figure 7C and D) and down-regulated ROCK1

(Figure 7B and D) in neurons induced by I/R.

Figure 6 NMMHC IIA inhibition attenuates I/R-induced Caspase 3/ROCK/MLC pathway activation. Mice in each group were sacrificed 24 hrs after the MCAO/R. Tissue

lysates were then subjected to Western blotting assay. Protein expression of cleaved-caspase 3 (A), ROCK1 (B) and phosphorylated MLC/MLC (C) were measured using

relevant antibodies. All data are presented as the mean±SD of 3 independent experiments. ##P<0.01 vs sham group; *P<0.01 and **P<0.01 vs I/R group.
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Discussion
RNA interference is an evolutionarily conserved process

that can silence specific genes through double-stranded

RNA.24 In mammalian cells, viral vectors have been

widely used to effectively transfer siRNA and

shRNA.25,26 Recombinant AAV (rAAV) system is one of

the most reliable carriers for gene delivery to the CNS.

Many reasons make AAV system an ideal gene delivery

tool for the CNS. For example, AAV showed a strong

preference for neuronal infection, no pathogenicity, and

a single delivery could achieve lasting expression.20

Among more than one hundred AAVs, we finally choose

AAV9 as a virus vector to infect mice. Because AAV9

could easily cross the BBB, and has a high gene transduc-

tion efficiency in neurons after intravenous injection in

neonatal mice.27 Herein, we observed widespread expres-

sion of GFP in the brain 4 weeks following AAV admin-

istration (Figure 1). The results are consistent with

previous studies.28 Western analysis revealed that cortex

from shMyh9 animals exhibited a significant reduction in

NMMHC IIA expression, indicative of specific RNAi

targeting (Figure 2). In the present study, AAV-mediated

gene delivery before the ischemic period has been used to

assess the effect of NMMHC IIA in cerebral ischemia.

Figure 7 NMMHC IIA inhibition attenuates I/R-induced caspase-3/ROCK1/MLC activation in neurons. Mice in each group were sacrificed 24 hrs after the MCAO/R. Tissue

sections were then subjected to immunofluorescence. Then, confocal microscope was used to detect cleaved caspase-3 (A), ROCK1 (B), p-MLC (C, blue) and Neun (red).

Bar: 50 µm. (D) Quantitative assessment of the numbers of cleaved caspase-3, ROCK1 and p-MLC positive neurons in sham and MCAO group. Results are expressed as the

mean±SD, n=3. ##P<0.01 vs sham group; **P<0.01 vs I/R group.
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Actin motor protein NMMHC IIA, as an important regu-

lator of cell morphology, plays an indispensable role in a series

of cell processes, such as cell migration, cell adhesion and so

on.29 In addition to its roles in normal cellular physiological

processes, NMMHC IIA has recently been reported to be

involved in many diseases, including neuronal disorders, can-

cer and cardiovascular diseases.30,31 In addition, increasing

evidences have indicated that NMMHC IIA is involved in

the pathogenic process of ischemia stroke. Clinical reports

showed that a patient with Myh9 gene mutation experienced

ischemic stroke.32 Additionally, NMMHC IIA also has been

identified to participate in BBB dysfunction in ischemia

stroke, and the NMMHC IIA-actin interaction mediates H2

O2-induced neuronal apoptosis.8,12 NMMHC IIA is also an

attractive therapeutic target in ischemic stroke. Zhao et al

found that TRPM7 kinase modulates OGD/R-induced neuro-

nal apoptosis via annexin 1 carried by NMMHC IIA, blocking

NMMHC IIA function by its antagonist blebbistatin was

found to improve learning and memory in rats after MCAO

and could also improve cell viability after OGD/R.33

However, application of blebbistatin requires extra caution

because the compound has some serious side effects, including

structural instability and cytotoxicity, which may mask possi-

ble myosin-specific effects. To overcome these hurdles, AAV

vectors expressing shRNAs targeting the mouse Myh9 gene

was developed. In our study, AAV-shMyh9 significantly

improved neurological scores (Figure 3A) and histological

injury (Figure 3B and C) after MCAO/R.

Previous studies have confirmed that neuronal apoptosis is

one of the pathological mechanisms of ischemic stroke, and

preventing neuronal apoptosis will be an effective treatment

for this terrible disease.34 After ischemic stroke, mitochondrial

apoptotic pathway played a key role in regulating neuronal

apoptosis.35 The release of mitochondrial CytC leads to the

activation of caspase-3, which eventually induce neuronal

apoptosis. Furthermore, Bcl-2 regulates apoptosis by altering

mitochondrial permeability and CytC release. When death

signals are received, pro-apoptotic protein Bax promotes the

release of CytC from mitochondria to cytoplasm, whereas

anti-apoptotic protein Bcl-xl inhibits this process.36

According to our study, AAV-shMyh9 inhibits neuronal apop-

tosis in MCAO/R mice including down-regulating Bax

(Figure 4A), cleaved caspase-3 (Figure 6A) and up-

regulating Bcl-2 levels (Figure 4B), further confirming the

protective effect of AAV-shMyh9 in ischemic stroke.

Studies have shown that the interaction of NMMHC II

with actin filaments in generating forces during the execution

phase of apoptosis.37 When under injury, F-actin is reported

to polymerize at the distal end of injured neuritis and under-

goes reorganization and retrograde flow generated by the

actin-binding motor protein, NMMHC II.38,39 Our previous

studies have confirmed that morphological changes in apop-

totic cells are dependent on actomyosin cytoskeleton remo-

deling in H2O2-treated neurons.12 When neurons are

stimulated by H2O2, the interaction between NMMHC IIA

and F-actin increased, which provided a basis for generating

contractile forces, and ultimately leading to membrane bleb-

bing and neuronal apoptosis. However, little is known about

the specific function of NMMHC IIA in neuronal apoptosis

under ischemic attack. In this study, pretreatment with AAV-

shMyh9 attenuated I/R-induced NMMHC IIA-actin interac-

tion and the subsequent neuronal apoptosis. This result is

consistent with the Co-IP analysis, which reflects the amount

of NMMHC IIA overlapping with actin (Figure 5).

Furthermore, MLC phosphorylation increases contractility

of the actomyosin system, which leads to dynamic membrane

blebbing and subsequent cell apoptosis. The phosphorylation of

MLC is the result of the cleavage of a Rho GTPase effector, the

kinase ROCK1, by caspase-3. This cleavage induces

a constitutive kinase activity by removing the inhibitory

domain.37 Moreover, caspase-3/ROCK1/MLC has also been

proved to be a novel cyclic positive feedback loop for regulat-

ing apoptosis in different cell types, such as cardiac myocyte,

human leukemia cells and neurons.40–42 We have previously

reported the caspase-3/ROCK1/MLC feedback loop in H2O2-

induced PC12 cell injury, and NMMHC IIA is also involved in

a positive feedback loop that links caspase-3/ROCK1/MLC

signaling axis.13,22 Our present findings confirmed that I/

R-induced caspase-3 cleavage led to decrease of ROCK1 and

MLC phosphorylation. Pretreatment with AAV-shMyh9 inhib-

ited the activation of caspase-3, ROCK1 andMLC, reorganized

the subsequent NMMHC IIA-actin cytoskeletal system, and

ultimately protected against I/R-induced neuronal apoptosis

(Figures 6 and 7). These findings provide the first evidence

that Caspase-3/ROCK1/MLC/NMMHC IIA-actin positive

feedback loop is involved in neuronal apoptosis induced by I/R.

In conclusion, we have demonstrated that AAV-based

neuron-specific gene delivery system can perform functional

gene expression in mouse brain. NMMHC IIA inhibition

with AAV-shMyh9 has the potential for amelioration of

ischemic damage via an anti-apoptotic mechanism. The

potential mechanism of NMMHC IIA inhibition is related

to inhibit NMMHC IIA-actin interaction and caspase-3/

ROCK1/MLC signaling pathway (Figure 8). This study is

the first to reveal the correlation between NMMHC IIA and

the caspase-3/ROCK1/MLC positive feedback loop in
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ischemic stroke and also provides further evidence for its

potential value in the cerebral ischemia therapy.
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