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Background: This study was conducted to explore whether the effect of edaravone

(5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol3-one, EDR) can ameliorate renal warm ische-

mia-reperfusion injury (IRI) by modulating endoplasmic reticulum stress (ERS) and its

downstream effector after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) in

a rat model.

Methods: The rats (n=10) experienced anaesthesia and intubation followed by no CA

inducement were defined as the Sham group. Transoesophageal alternating current stimula-

tion was employed to establish 8 min of CA followed by conventional CPR for

a resuscitation model. The rats with successful restoration of spontaneous circulation

(ROSC) randomly received EDR (3 mg/kg, EDR group, n=10) or equal volume normal

saline solution (the NS group, n=10). At 24 hr after ROSC, serum creatinine (SCR), blood

urea nitrogen (BUN) levels, and cystatin-C (Cys-C) levels were determined and the protein

level of glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), extracel-

lular signal-regulated kinase (ERK), phosphorylated extracellular signal-regulated kinase 1/2

(p-ERK1/2), Bax/Bcl-2, and caspase-3 were detected by Western blot method.

Results: At 24 hrs after ROSC, SCR, BUN and Cys-C were obviously increased and the

proteins expression, including GRP78, CHOP and p-ERK1/2, cleaved-caspase 3 Bax/Bcl-2

ratio, were significantly upregulated in the NS group compared with the Sham group

(p<0.05). The remarkable improvement of these adverse outcomes was observed in the

EDR group (p<0.05).

Conclusion: In conclusion, we found that EDR ameliorates renal warm IRI by down-

regulating ERS and its downstream effectors in a rat AKI model evoked by CA/CPR.

These data may provide evidence for future therapeutic benefits of EDR against AKI induced

by CA/CPR.

Keywords: renal warm ischemia-reperfusion injury, edaravone, endoplasmic reticulum

stress, cardiac arrest, cardiopulmonary resuscitation

Introduction
During ischemia, multiple signalling pathways, which are closely relative with inflam-

matory and metabolic, play pro-apoptosis roles in cells.1 However, the subsequent

blood perfusion restoration may course more severe injury known as ischemia-

reperfusion injury (IRI). Renal ischaemia-reperfusion injury (IRI) is known as one of

themost common causes of acute kidney injury (AKI) and secondary to various clinical

conditions, such as kidney grafting and resuscitation.2,3 Reactive oxygen species

(ROS) play an important role in the development of IRI. It has been reported that
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ROS burst induces endoplasmic reticulum stress (ERS),

mitogen-activated protein kinases (MAPK) and cell death.4,5

ER is an intracellular organelle that plays a pivotal role in

protein synthesis and folding, Ca2+ storage and signalling.6

As ER is stimulated by Ca2+ overload, ischaemia or hypoxia,

its homeostasis changes followed by ERS.7 Growing evi-

dences showed that when the stimuli is excessive or persis-

tent, ERS of renal tubule epithelial cells is an initial response

and plays a major pathogenic role in renal IRI.8–10 Thus, ERS

inhibition may be a novel treatment for renal IRI.

Extracellular signal-regulated kinase 1/2 (ERK1/2) is

a MAPK that is phosphorylated rapidly following renal

injury.11 As a downstream effector mechanism of ERS, acti-

vation of ERK1/2 has been suggested to be a regulator of

renal IRI.12–15 For example, ERS may course cell death at

least by a classical BAX/BAK-dependent apoptotic response

that can be inhibited by the ERK1/2 signalling pathway.16

However, it is unclear whether the ERS could modulate the

ERK signalling pathways to ameliorate renal warm IRI

evoked by the process of cardiac arrest/cardiopulmonary

resuscitation (CA/CPR).

Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-

pyrazol3-one, EDR) is a novel free-radical scavenger that

has been shown to prevent ERS induced by hypoxia and

ischaemia.17,18 Although EDR is identified most recently

as a protective factor for the development of renal IRI

caused by renal arterial or hilar clamping,19–21 poor evi-

dence can answer that whether EDR has the same protec-

tive effect in renal warm IRI evoked by CA/CPR.

Experimental evidence suggests that GRP78 and CHOP

activation is correlated with apoptosis as an ERS down-

stream event in renal IRI, and ERK activation is an impor-

tant downstream mechanism of ERS. Therefore, we aimed

to verify the hypothesis that EDR play a protective role on

renal IRI by downregulated GRP78/CHOP/ERK pathway

in a rat CA/CPR model.

Materials and Methods
Preparation of Experimental Rats
This animal study was approved by the Animal Ethics

Committee of Guangxi Medical University (Animal

Experimental Ethical Inspection no. 201811030). All ani-

mals received treatment in strict adherence to the National

Research Council’s 1996 Guidelines for the Care and Use of

Laboratory Animals. Anaesthetics were titrated in all surgi-

cal procedures to avoid unnecessary pain. Male Sprague-

Dawley rats weighing 200–230 g were purchased from the

Experimental Animal Center of Guangxi Medical

University (China, Nanning). Animals were maintained at

constant temperature (23 ± 2°C) with a 12 h light-dark cycle

and free access to water and food.

Experimental Cardiac Arrest Rat Model
Animal Preparation

All rats fasted for 12 h but had free access to water before the

operation. Experimental rats were intraperitoneally injected

with sodium pentobarbital (45 µg/g) for anaesthesia, and an

additional dose of 10 µg/g was supplemented at hourly

intervals. Standard Lead II Electrocardiograph was used to

monitor heart rhythm. A twenty-gauge catheter containing 5

IU/mL of sodium heparin saline was inserted into the right

femoral vein for drug delivery, and another identical catheter

was inserted into the right femoral artery for haemodynamic

monitoring. Pressure transducers were connected to a four-

channel physiological recorder (BL-420 E Biosystems,

Chengdu Technology & Market Co. Ltd., China). After the

5mins baseline electrocardiograph and physiologic measure-

ments, temperature probes were placed into the rectum.

During the experiment, the rectal temperature was adjusted

to approximately 37°C using a heat lamp or ice pack.

Renal Warm Ischemia-Reperfusion Injury Induced by

the Cardiac Arrest/Cardiopulmonary Resuscitation

Model

The rat cardiac arrest (CA) model was established according

to our previously reportedmethod.22 Briefly, CAwas induced

by alternating current (12 V) from a stimulator through

a pacing electrode placed in the oesophagus, as confirmed

by a decrease in mean arterial pulse pressure (<10 mmHg)

and by the appearance of asystole on the electrocardiograph

(ECG). Cardiopulmonary resuscitation was initiated 8 min

after the induction of CA with mechanical chest compres-

sions (180 per minute) and effective ventilation (TV 8 mL/

kg, respiration rate 40/min, and positive end-expiratory pres-

sure 0 cm H2O, oxygen concentration 100%) using a small

animal ventilator with capacity control mode. After 1 min of

CPR, one dose of epinephrine (0.4 µg/g) was given through

the left femoral vein catheter. When ROSC was clarified by

ECG activity with visible systole23 and mean arterial pres-

sure (MAP) ≥ 50 mmHg for ≥1 min, chest compressions

were stopped. If ROSC is not achieved within 3 min of the

onset of cardiopulmonary resuscitation, it is defined as

a failure, and the animal is excluded from the study. After

achieving ROSC, rats randomly received edaravone (3 mg/

kg, n=10, EDR group) or equal volume normal saline

Fu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2020:14176

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


solution (n=10, NS group). The sham-operated rats only

received the same experimental preparation without CA

induction (n=10). The rats were individually fed in cages

with dry litter and placed in a quiet room with air condition-

ing-adjusted temperature (room temperature 26°C).

Renal Function Analysis
The serum of the experimental rats was taken from the

carotid artery at 24 h after ROSC. The values of serum

creatinine (SCR), blood urea nitrogen (BUN), and cysta-

tin-C (Cys-C) were monitored in the Department of

Laboratory, the Second Affiliated Hospital of Guangxi

Medical University.

Western Blot Analysis
Rats from each experimental group were anaesthetized and

then sacrificed to take kidneys for Western blot detection

at 24 hrs after ROSC. The expression levels of GRP 78,

p-PERK, and CHOP in renal tissues were assessed by

Western blot analysis. The prepared kidney tissues were

weighed and homogenized in a glass homogenizer con-

taining 1:10 (w/v) ice-cold whole cell lysis buffer

(Beyotime Biotechnology, China, P0013B). The lysed pro-

tein was collected and centrifuged at 14,000 × g for 15

mins at 4°C. The BCA Protein Assay Kit (Beyotime

Biotechnology, China, P0010) was used to determine

total tissue protein concentration. The tissue total protein

(10–20 µL) of protein lysates was separated by 10–15%

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) and then transferred to PVDF membranes

(Millipore, USA, 0.22-μm pore diameter). The membranes

were blocked with PBST containing 5% bovine serum

albumin for 1 h and then incubated with primary antibody

overnight at 4°C. β-Actin was used for normalization. The

primary antibodies were as follows: primary antibodies

ERK 1/2 (ab184699) and p-ERK1/2 (ab76299) were pur-

chased from Abcam Plc, Cambridge, UK, and MFN2

(11925). β-Actin (CST, 4970S), GRP 78 (CST, 3183S),

CHOP (CST, 2895S), Bax (CST, 14796S), Bcl-2 (Abcam,

182858), and GAPDH (Abcam, 181602). The membrane

was washed three times with PBST and then incubated

with secondary antibody (Cell Signalling Technology,

USA, #5151, 1:15,000). Membranes were quantified by

using a Western blot detection system with a Li-cor

Odyssey Scanner imaging densitometer, and the results

of the bands detected were quantified using ImageJ soft-

ware (v1.33, NIH, Bethesda, MD, USA).

Statistical Analysis
All data are expressed as the mean ± standard deviations.

Statistical analysis software is SPSS 17.0 (SPSS, Inc.,

Chicago, IL, USA). Continuous variables between groups

were compared using the Student’s t-test. Groups were

compared using one-way ANOVA followed by the

Student–Newman–Keul test for post hoc comparisons.

p < 0.05 was considered statistically significant.

Results
Edaravone Improves Renal Function After

CA/CRP
To examine the kidney function, we compared Cys-C, SCR,

BUN and Cys-C in all groups. The values of Cys-C, SCR and

BUN were significantly increased in NS group compared

with the Sham group (p < 0.05), suggesting an adverse out-

come of renal function. Treatment of edaravone obviously

decreased the level of Cys-C, SCR and BUN (p < 0.05),

suggesting a protective effect on renal function (Figure 1).

EDR Reduced Endoplasmic Reticulum

Stress Induced by CA/CPR
We perform the Western blot detection to determine the

effect of EDR on the endoplasmic reticulum stress (ERS)

induced by CA/CPR. The result showed that the expres-

sion of glucose-regulated protein (GRP78) and C/EBP

homologous protein (CHOP) presented remarkable upre-

gulation in the NS group (p < 0.05), while treatment of

EDR significantly reduced the level of GRP78 and CHOP

(p < 0.05). (Figure 2).

EDR Inhibits Phosphorylation of

Extracellular Signal-Regulated Kinase 1/2
As shown in Figure 3, compared with the sham group,

p-ERK1/2 was significantly elevated in the NS group

(p < 0.05), while the expression of p-ERK1/2 was reduced in

EDR group (p < 0.05).

EDR Decreases Caspase-3 and the Bax/

Bcl-2 Ratio
Compared with the Sham group, cleaved caspase-3 and the

Bax/Bcl-2 ratio were significantly upregulated in the NS

group (p < 0.05); by the contrast, the expression of cleaved

caspase-3 and the Bax/Bcl-2 ratio were significantly

decreased in the EDR group. (p < 0.05). (Figure 4).
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Discussion
In this study, we found that renal warm ischaemia/reperfu-

sion injury (IRI) induced by cardiac arrest/cardio-pulmonary

resuscitation (CA/CPR) substantially upregulated the expres-

sion of Glucose Regulated Protein 78 (GRP78) and C/EBP-

homologous protein (CHOP) at 24 hrs post-ROSC. EDR

treatment ameliorated renal dysfunction and protected

against renal damage, including a significant reduction in

SCR, BUN, and Cys-C. Compared to the NS group,

GRP78, CHOP, p-ERK1/2, caspase-3 expression and Bax/

Bcl-2 ratio were significantly decreased in the EDR group,

suggesting protective effect of EDR against endoplasmic

reticulum stress (ERS) and apoptosis.

In our previous study, rats subjected to CA/CPR presented

with excessive ROS production in the brain tissue.5 Overdose

of ROS-induced ERS, which plays an important role in the

development of several organ IRI in rats.24–26 while EDR can

be used to reduce or block ROS-induced ERS to reduce organ

IRI.27 Hence, the purpose of our current study is to investigate

the renal protective potential of EDR, a potent free-radical

scavenger against renal warm IRI induced by CA/CPR.

The current data are consistent with previous results

demonstrating that EDR pre-treatment protects against warm

IRI in a variety of tissues and organs, including the heart and

brain.28,29 In addition, a recent clinical study suggests that

EDR may be a useful medication to protect kidney function

Figure 1 Comparison of SCR (A), BUN (B), and Cys-C (C) among the 3 groups. Data are expressed as the mean ± SD (n = 10 for each group). *P<0.05 Vs the Sham group,
#P<0.05 Vs the NS group.

Abbreviations: SCR, serum creatinine; BUN, blood urea nitrogen; Cyst-C, Cystatin-C; NS, normal saline; EDR, edaravone.

Fu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2020:14178

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


in patients with acute ischaemic stroke.21 Overall, our findings

are consistent with recently published data demonstrating that

EDR exerts beneficial effects against organ ischaemic damage,

including renal IRI.30 As mentioned in the previous study, the

animal model of the protective effect of EDR on renal IRI is

mostly due to clamping of the renal artery or renal pedicle.

However, there may be high incidence of vascular injury,

infection, hilar injury, venous congestion, cold renal ischaemia

during animal operation, and the observation period is only at

the early phase of reperfusion.31–33 Importantly, these models

did not fully mimic the most common clinical features of AKI

after ROSC. Hence, we used the methods of transoesophageal

alternating current stimulation to establish 8 min of CA in a rat

model followed by conventional CPR to avoid the adverse

effects and create a model of renal warm IRI that is close to

clinical characteristics.

As an ERS downstream event, activation of GRP78/

CHOP pathway is the key cellular response of ERS-

induced apoptosis.9,34,35 Downregulation of GRP78/

CHOP by intermedin significantly decreased apoptosis.10

In addition, a previous study revealed that EDR amelio-

rated early renal dysfunction and injury evoked by ischae-

mia/reperfusion in mice subjected to 45 min of bilateral

renal IRI.33 However, it is unclear whether EDR

exerts protection against ERS in renal warm IRI evoked

by CA/CPR. Our current research showed that EDR can

ameliorate renal warm IRI by down-regulating GRP78 and

CHOP expression, which was similar with previous stu-

dies regarding with EDR protection on dilated cardiomyo-

pathy, spatial memory,28,29 cerebral ischaemia36 and

autoimmune myocarditis.37

Studies have suggested that EDR can alleviate oxida-

tive damage by inhibiting ERK1/2 activation.38,39 ERK1/2

is a member of the MAPK family, which plays an impor-

tant role in cell survival and death.40 Inhibition of ERK by

EDR can alleviate oxidative damage. What is more, the

ERK1/2 signalling pathway has also been shown to be

Sham NS EDR

27KD 

78KD 

45KD 

CHOP

GRP78

ß-actin

Sham NS EDR

Sham NS EDR

Figure 2 Western blot detection of CHOP and GRP78 among the 3 groups. Data

are expressed as the mean ± SD. *p < 0.05 versus the Sham. #p < 0.05 versus the

NS group.

Abbreviations: GRP78, glucose-regulated protein; C/EBP, homologous protein;

NS, normal saline; EDR, edaravone.

T-ERK1/2

p-ERK1/2

Sham NS EDR

42KD

44KD

42KD

44KD

Sham NS EDR

Figure 3 Western blot of total and phosphorylated ERK1/2 among the 3 groups.

Data are expressed as the mean ± SD. ∗p < 0.05 versus Sham. #p < 0.05 versus NS

group.

Abbreviations: ERK, extracellular signal-regulated kinase; NS, normal saline; EDR,

edaravone.
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involved in ERS-mediated apoptosis.41,42 Studies have

demonstrated that IR dramatically increases phosphory-

lated ERK1/2 levels in the kidney.43,44 In addition, multi-

ple studies proved that ERK activation was commonly

protective in renal IRI.44,45 By the contrast, IRI dramati-

cally increased phosphorylated ERK1/2 expression and

promoted apoptosis have also been reported.46 In our pre-

sent work, we found that the expression of phosphorylated

ERK1/2 was significantly elevated which accompanied

with renal function decrease at 24 h after ROSC in NS

group. This result was consistent with our previous

research, in which we found that inhibiting the expression

of phosphorylated ERK1/2 can protect the brain from IRI

in rat experienced CA/CPR.47

Apoptosis is widely considered to be the main mechan-

ism that induces cell death in renal IRI.48,49 Bax and caspase-

3 are the most important downstream effectors for the ERK

pathway50,51 that have also been demonstrated to involve in

ERS-induced apoptosis.52–54 In renal cells, ischaemia acti-

vates Bax55 and inhibits Bcl-2,56 resulting in an increased

Bax/Bcl-2 ratio.57 On the other hand, caspases are well-

known drivers of apoptotic cell death, cleaving cellular pro-

teins that provide critical links in cell regulatory networks

controlling dying cells.58 Active caspase-3 leads to DNA

fragmentation and formation of apoptotic bodies.59

Caspase-3 and Bax have been demonstrated to mediate ERS-

induced apoptosis.52–54 Our previous study demonstrated

that inhibition of ischaemia-induced ERK1/2 kinase activity

can reduce Bax and caspase-3 expression and improve organ

function.47 In the present study, we showed that EDR treat-

ment decreased phosphorylation of ERK1/2 and apoptotic

parameters including caspase-3 and the Bax/Bcl-2 ratio.

These results suggested a reno-protective effect of EDR on

a CA/CPR model. As mentioned previously, ERK activation

is an important downstream mechanism of ERS.12 We hold

the opinion that EDR acts as an anti-apoptotic agent by

downregulating GRP78/CHOP/ERK signal pathway.

Graphene was discovered in 2004 and its application in

nanomaterials has been developing rapidly for drug delivery.60

Graphene nanomaterials can enhance the efficacy in che-

motherapy applications,61 increase drug loading capacity,62

and presents no toxicity to cells.63 In addition, some improved

graphene nanomaterials are able to cross the cell membrane

and then accumulated more in the cell cytoplasm compared

with the traditional ones. The capacity of transmembrane

makes it possible to delivery drug to the targeted organ or

cells more effectively.64 Furthermore, a series of triggered

drug delivery systems consist of graphene have been reported.

The systems realize controlling drug delivery remotely and

adjusting dosing regimens on demand.65,66 Therefore, it is

worth to determine whether delivery of EDR targeting renal

with graphene nanomaterials could obtain a better outcome in

renal warm ischemia-reperfusion injury post CA/CPR.

In conclusion, we found that EDR ameliorates renal

warm IRI by downregulating ERS and its downstream

effectors in a rat AKI model evoked by CA/CPR. These

data may provide evidence for future therapeutic benefits

of EDR against AKI induced by CA/CPR.

Bax 

Bcl-2 

Sham NS EDR 

20KD 

26KD 

ERD NS Sham 

-Actin 

Cleaved Caspase3 

17KD 

45KD 

19KD 

A 

Figure 4 Western blot of caspase-3 (A) and the Bax/Bcl-2 (B) among the 3 groups.

Data are expressed as the mean ± SD. ∗p < 0.05 versus Sham. #p < 0.05 versus NS

group.

Abbreviations: NS, normal saline; EDR, edaravone.
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