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Background: Metformin has been shown to inhibit the proliferation and migration of

vascular wall cells. However, the mechanism through which metformin acts on atherosclero-

sis (AS) via the long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is still

unknown. Thus, this research investigated the effect of metformin and lncRNA TUG1 on AS.

Methods: First, qRT-PCR was used to detect the expression of lncRNA TUG1 in patients

with coronary heart disease (CHD). Then, the correlation between metformin and TUG1

expression in vitro and their effects on proliferation, migration, and autophagy in vascular

wall cells were examined. Furthermore, in vivo experiments were performed to verify the

anti-AS effect of metformin and TUG1 to provide a new strategy for the prevention and

treatment of AS.

Results: qRT-PCR results suggested that lncRNA TUG1 expression was robustly upregu-

lated in patients with CHD. In vitro experiments indicated that after metformin administra-

tion, the expression of lncRNA TUG1 decreased in a time-dependent manner. Metformin and

TUG1 knockdown via small interfering RNA both inhibited proliferation and migration

while promoted autophagy via the AMPK/mTOR pathway in vascular wall cells. In vivo

experiments with a rat AS model further demonstrated that metformin and sh-TUG1 could

inhibit the progression of AS.

Conclusion: Taken together, our data demonstrate that metformin might function to prevent

AS by activating the AMPK/mTOR pathway via lncRNA TUG1.
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Introduction
Atherosclerosis (AS) is a chronic disease that can be caused by multiple factors.

Autophagy has become a new research interest with the increased understanding of

the pathogenesis of AS. Studies have shown that autophagy is closely related to

cancer, neurodegenerative diseases, and cardiovascular diseases.1–3 The activation

of autophagy in vascular wall cells can protect endothelial cells and smooth muscle

cells from damage caused by risk factors and contribute to the stability of plaques,

whereas the inhibition of autophagy can accelerate apoptosis, necrosis, and aging,

thus making plaques more vulnerable.4

Long non-coding RNAs (lncRNAs) are a class of RNA molecules with a length

of more than 200 nt that do not encode proteins.5,6 Recent studies have suggested

that lncRNAs can participate in the onset and development of various types of

cardiovascular diseases7,8 including heart failure, myocardial hypertrophy, heart
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metabolic disease, myocardial infarction, and AS. For

example, the lncRNA NEXN-AS1 has been shown to miti-

gate AS by regulating activity of the actin-binding protein

NEXN.9 The lncRNA taurine up-regulated gene 1 (TUG1)

is located on chromosome 22q12.2 and has a length of 7.1

kb; it was originally identified in taurine-treated mouse

retinal cells.10 Increasing evidence indicates that the dys-

regulation of TUG1 is involved in the development of

a variety of diseases including cancer, ischemic stroke,

and diabetes.11–14 However, there is limited knowledge

on the function of TUG1 at the molecular level, as well

as its exact role in AS.

AMP kinase (AMPK) is a key energy sensor that

recognizes ATP in cells; it is activated by hepatic protein

kinase B1 under conditions of starvation or energy con-

sumption and is a negative regulator of mammalian target

of rapamycin (mTOR). The inhibition of mTOR phosphor-

ylation mediated by AMPK phosphorylation can induce

autophagy in many different cell types.15,16 Metformin is

a widely used antidiabetic drug used to treat patients with

type 2 diabetes mellitus. Studies have shown that it can

exert protective effects against cardiovascular diseases;

specifically, metformin can activate autophagy and provide

cardioprotective effects in δ-sarcoglycan-deficient hearts.17

Further, metformin represses cardiac apoptosis through

inhibition of the Forkhead box O1 (FoxO1) pathway.18

In addition, clinical trials have shown that metformin has

anti-AS properties,19–21 providing data for its potential use

for the primary prevention of AS. However, the exact

mechanism through which metformin inhibits AS via

TUG1, and the mechanism associated with the TUG1-

modulated activation of autophagy is currently unknown.

Accordingly, the present study aimed to observe the cor-

relation between metformin and TUG1 expression in vitro,

as well as their effects on proliferation, migration, and

autophagy in vascular wall cells. Then, in vivo experi-

ments were performed to verify the anti-AS effect of

metformin and TUG1 to provide a new strategy for the

prevention and treatment of AS.

Materials and Methods
Cell Culture
Human umbilical vein endothelial cells (HUVECs) were pur-

chased from the Xiangya Cell Bank of Central South

University (Changsha, China). Cells were cultivated in

RPMI1640 medium (Hyclone, UT, USA) supplemented with

10% fetal bovine serum (Biological Industries, Beit-Haemek,

Israel) and 1% penicillin/streptomycin (Solarbio, Beijing,

China) at 37 °C in an atmosphere containing 5% CO2.

Plasmid Construction and Transfection
TUG1 small interfering RNA (si-TUG1 #1, #2), siRNA nega-

tive control (si-NC), adeno-associated virus carrying TUG1

shRNA (sh-TUG1), and empty vector (sh-NC) were pur-

chased from GenePharma (Shanghai, China). CRISPR/cas9

single guide RNA with TUG1 overexpression (sg-TUG1 #1,

#2, #3) and the corresponding control (sg-NC) were purchased

from Syngentech (Beijing, China). The sequences of siRNA/

shRNA/sgRNA are listed in Table S1. Transfection was car-

ried out using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,

USA) following the manufacturer’s protocol.

Clinical Blood Samples
Thirty-eight individuals (male, 22 cases; female, 16 cases;

age, 50–75 years) without coronary heart disease (CHD)

were enrolled as healthy controls. In addition, 35 cases

(male, 24 cases; female, 11 cases; age, 50–75 years) of

patients with CHD diagnosed by coronary angiography in

Guizhou Provincial People’s Hospital (Guiyang, China)

were enrolled from June 2018 to August 2018. The inclu-

sion criterium was at least one major coronary artery

showing more than 80% stenosis for patients with stable

angina pectoris. The exclusion criteria were as follows: (1)

unstable angina or myocardial infarction; (2) complicated

with other organic heart diseases; (3) combined with

severe liver disease, kidney diseases, familial hypercholes-

terolemia, malignant tumors, or inflammatory diseases.

The study protocol was approved by the Human Ethics

Committee Review Board at the Guizhou Provincial

People’s Hospital. Oral informed consent was obtained

from each patient (Ethics approval No (2019)068).

Cell Counting Kit-8 Assay
HUVECs were plated in 96-well culture plates (3 × 103

cells/well) either immediately or 24 h after transfection.

After treatment with different concentrations of metformin

(Solarbio) for 24, 48, or 72 h, 10 μL of cell counting kit-8

(CCK-8) solution (Dojindo, Kumamoto, Japan) was added

to each well and cells were incubated for 2 h at 37 °C. The

absorbance at 450 nm was measured using a microplate

reader (Bio-Tek, Winooski, VT, USA).

5-Ethynyl-2′-Deoxyuridine Assay
Cells were seeded in 96-well culture plates (3 × 103 cells/

well) and exposed to media with metformin or transfected
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with si-TUG1 for 48 h. Thereafter, cells were treated with

5-ethynyl-2′-deoxyuridine (EdU; Ribobio, Guangzhou,

China) for 2 h at 37 °C. Then, cells were fixed and

exposed to 1× Apollo reaction for 30 min and stained

with Hoechst 33,342 for 30 min. Cells were visualized

with a fluorescent microscope (100×; Olympus, Tokyo,

Japan). The proliferation rate of cells was evaluated

based on the proportion of EdU-positive nuclei (red) to

blue nuclei.

Wound Healing Assay
Cells with or without transfection were cultured in 6-well

culture plates. After reaching 90% confluence, the cells were

scratched with a 200-µL pipette tip, washed with PBS, and

cultured in low-serum 1640medium.Wounds were observed

under an inverted microscope (40×, Olympus) and photo-

graphed at different time points. ImageJ software

(NIH, Bethesda, MD, USA) was used to measure the

wound areas.

mRFP-GFP-LC3 Staining
Cells were cultured on confocal culture dishes and trans-

fected with control vector or the mRFP-GFP-LC3 lentiviral

vector (2.65 × 108 PFU/mL, SyngenTech) for 48 h. Then,

the cells were incubated with metformin or transfected with

si-TUG1 for 24 h and fixed with 4% paraformaldehyde. The

expression of monomeric red fluorescence protein (mRFP)

and green fluorescence protein (GFP) was viewed under

a laser scanning confocal microscope (630×, Carl Zeiss,

Oberkochen, Germany).

Quantitative Real-Time Reverse

Transcriptase PCR
RNA from peripheral blood according to the instructions of

the kit (Bioteke, Beijing, China). Total RNA from cells/tissues

was isolatedwith TRIzol reagent (Invitrogen), For quantitative

reverse transcriptase PCR (qRT-PCR), 1000 ng total RNAwas

reverse-transcribed into first-strand cDNA using a PrimeScript

RT Reagent Kit (Takara Bio, Shiga, Japan). RNA expression

was examined by qRT-PCR using a Two Step SYBR

PrimeScript RT-PCR Kit (Takara) with the Illumina P05775

system (Illumina, San Diego, CA, USA). The primer

sequences used are listed as follows: lncRNA TUG1

(human): forward 5′-CCACTTTGTCACAAGAGA

AGGC-3′, reverse 5′-CACAAATTCCCATCATTCCC-3′;

lncRNA TUG1 (rat): forward 5′-TGCTGAAGTTGTT

TGCCTGC-3′, reverse 5′-TCCTTGGTGGAATTGGGCAC

-3′; GAPDH (human): forward 5′-TCACCATCTTCCCA

GGAGCGAG-3′, reverse 5′-TGTCGCTGTTGAAGTCAG

AG-3′; GAPDH (rat): forward 5′-GGTGAAGGTCGGTG

TGAACG-3′ and reverse 5′-CCACTTTGTCACAAGAGA

AGGC-3′. Relative gene expression was calculated using the

2−ΔΔCt method with GAPDH used as a normalization

control.22

Western Blotting
Cells were lysed with RIPA buffer (Solarbio) supplemented

with a complete protease inhibitor cocktail (KangChen,

Shanghai, China) for 30 min on ice. Then, the cell debris

was collected and centrifuged at 12,000 g for 15 min. The

protein concentration was detected using the bicinchoninic

acid (BCA) Protein assay kit (Beyotime, Beijing, China).

Equal concentrations of protein extracts were separated by

8–12% SDS-PAGE and transferred to PVDF membranes.

The membranes were then blocked with 5% nonfat milk for

2 h and incubated with primary antibodies against LC3II, P62,

AMPK, mTOR, and ATG3 (1:1000, Abcam, Cambridge,

UK), p-AMPK (Thr172) and p-mTOR (Ser2448) (1:1000,

Cell Signal Technology, Danvers, MA, USA), and GAPDH

(1:1000, Goodhere, Inc., Hangzhou, China) at 4 °C overnight.

Subsequently, the membranes were incubated with HRP-

conjugated secondary antibodies (1:5000; Cell Signaling

Technology, Danvers, MA, USA) for 1.5 h at room tempera-

ture. An enhanced chemiluminescence kit (Millipore,

Billerica, MA, USA) was used to visualize the blots, and

protein bands were quantified using ImageJ software.

Laboratory Animals and Grouping
A total of 70 male Wistar rats weighing 170 ± 10 g were

purchased from Changsha Tianqin Biotechnology Co., Ltd

(License number: SCXK (Xiang) 2014–0011, Changsha,

China). All animal experiments were approved by the

Experimental Animal Ethics Committee of Guizhou

Provincial People’s Hospital.

The rats were randomly divided into seven groups with 10

rats in each group as follows: control group (no AS), AS

model group, sh-NC group, sh-TUG1 group, metformin

group, metformin + sh-TUG1 group, and atorvastatin positive

control group. Rats in the control groupwere fed a normal diet,

whereas all other rats were fed a high-fat diet and vitamin D3

to induce AS (the composition of the rat diet is listed in Table

S1) and was in accordance with the literature.23,24,25 Food was

provided adlibitum. After allowing the rats to acclimatize for

30 days, 40 μL sh-TUG1 (1.1 × 1013 vector genomes/mL) or

empty vector was injected through the sublingual vein of rats

Dovepress You et al

Drug Design, Development and Therapy 2020:14 submit your manuscript | www.dovepress.com

DovePress
459

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=233932.doc
https://www.dovepress.com/get_supplementary_file.php?f=233932.doc
http://www.dovepress.com
http://www.dovepress.com


in the corresponding group. Furthermore, in the metformin

group, rats were given 100mg/kg/day metformin (Bristol-

Myers Squibb, New York, USA) via intragastrical administra-

tion for 30 days. Rats in the atorvastatin positive control group

were given 2.1mg/kg/day atorvastatin (Jialin Pharmaceutical,

Beijing, China) via intragastrical administration for 30 days.

Except those of the control group, the other rats were main-

tained on a high-fat diet, and all rats were then sacrificed for

further data analysis. All animal studies were approved by the

Ethics Committee of Guizhou Provincial of People’s Hospital,

and conformed to the Guide for Care and Use of Laboratory

Animals by the National Institutes of Health (NIH).

Hematoxylin and Eosin Staining
To observe the changes in the aortic root tissue morphology,

hematoxylin and eosin staining (H&E) was performed as

follows. Tissues fixed in 4% paraformaldehyde were placed

in decreasing concentrations of alcohol, cleared with xylene,

dipped in wax, embedded in wax blocks, and sliced into

5-μm sections. Briefly, the sections were dewaxed, stained

with hematoxylin followed by 1% hydrochloric acid alcohol,

stained with eosin solution, dehydrated with a gradient alco-

hol series, and cleared with xylene. The slides were then

observed using a microscope (40×, Olympus) to identify

pathological changes.

Immunohistochemistry
Paraffin-embedded artery tissue sections were deparaffinized

in xylene and rehydrated through a graded series of ethanol

solutions (100–70%). Sections were heated in EDTA (Zsgb-

bio, Beijing, China) for 15min and incubated for 10min in

3% H2O2. Thereafter, sections were blocked with 10% goat

serum (Bioss, Beijing, China) for 30 min at 37 °C. The slides

were then incubated separately with primary antibodies

against LC3 or p62 (1:100, Proteintech, Wuhan, China) at

4 °C overnight. The next day, the IgG-HRP conjugated

secondary antibody (Bioss) was added and samples were

incubated for 1 h at room temperature, followed by the

addition of 3, 3′-diaminobenzidine (DAB, Zsgb-bio) and

hematoxylin counterstain. Tissues were then microscopically

observed and photographed (200×, Olympus). DAB staining

was analyzed by two pathologists as previously described.26

Statistical Analysis
Data were calculated as the mean from at least three

independent experiments. Numerical data are presented

as the mean ± SD. All statistical analyses were performed

using GraphPad 7.0 software (GraphPad Software, Inc., La

Jolla, CA, USA). When data obeyed normal distribution,

Student’s t test was used to analyze difference between

two groups, analysis of variance (ANOVA) was performed

for three or more groups. When data did not obey normal

distribution, Mann–Whitney was used to analyze differ-

ence between two groups. Kruskal–Wallis was used in

animal experiment. A value of P < 0.05 was considered

statistically significant.

Results
Expression Levels of TUG1 in Patients

with CHD and in Cells Incubated with

Metformin
To investigate the correlation between lncRNA TUG1 and

AS, qRT-PCR was used to detect TUG1 expression in the

peripheral blood of healthy controls and patients with

CHD. The results suggested that TUG1 expression was

robustly upregulated in patients with CHD, compared

with that in healthy controls (Figure 1A). Then, cells

were incubated with metformin (10 mmol/L) for 24, 48,

or 72 h. As shown in Figure 1B, the expression of TUG1

was downregulated in a time-dependent manner.

Metformin Suppresses Proliferation and

Migration while Induces Autophagy in

HUVECs
First, HUVECs were incubated with metformin at different

concentrations (0, 2, 5, 10, 15, or 20 mmol/L) for 24, 48, or

72 h. The CCK-8 assay results indicated that metformin had

a concentration-and time-dependent inhibitory effect on cell

growth in HUVECs (Figure 2A). A concentration of

10 mmol/L metformin effectively inhibited cell proliferation

without causing changes in cell morphology; thus, 10 mmol/L

was the drug concentration used for subsequent experiments.

Furthermore, the EdU assay showed that cells incubated with

metformin for 48 h showed significantly supressed

proliferation ability compared with that of the control group

(Figure 2B). Then, we performed a wound healing assay, the

results showed that metformin could reduce HUVEC migra-

tion in a time-dependent manner (Figure 2C). To validate the

autophagy-inducing effects of metformin on HUVECs, we

transfected the cells with mRFP-GFP-LC3 lentivirus to

observe LC3 dots. As shown in Figure 2D, the numbers of

both yellow and red dots were markedly increased in metfor-

min-treated HUVECs compared with those in the control

group. Lastly, the cells were treated with metformin at
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different time points (0, 3, 6, 12, 24, 36 h), we found that it

could downregulate the expression of p62 and increase the

ratio of LC3II/LC3I (Figure 2E). Moreover, the changes in

p62 expression and the LC3II/LC3I ratio weremost prominent

at 24 h; thus, we chose 24 h as the incubation time for

subsequent Western blotting experiments.

si-TUG1 Suppresses Proliferation and

Migration while Induces Autophagy in

HUVECs
Next, HUVECs were transfected with si-TUG1(#1, #2)

to knock down the expression of TUG1. Following

transfection, TUG1 expression decreased sharply in the

si-TUG1 groups compared with that in the si-NC group

(Figure 3A). Similar to the results of metformin treat-

ment, we found that knockdown of TUG1 expression by

siRNA inhibited proliferation (Figure 3B, C and F) and

migration (Figure 3D and G), while promoted autophagy

(Figure 3E, H and I) in HUVECs.

Metformin Activates the AMPK/mTOR

Pathway in HUVECs via lncRNA TUG1
First, the transfection efficiency of TUG1 overexpression

(OE #1, #2, #3) was measured by qRT-PCR (Figure 4A).

OE #1 resulted in the greatest overexpression efficiency and

was thus selected for subsequent experiments. Second, we

found that metformin could increase the expression of

p-AMPK/AMPK, ATG3, and LC3II/LC3I and decrease the

expression of p-mTOR/mTOR and p62 (Figure 4B–G). In

addition, the effects of metformin on the AMPK/mTOR

pathway were partially reversed by OE #1 transfection.

Third, CCK-8 and wound healing assays were conducted

(Figure 4H and I); here, OE #1 obviously reversed the

metformin-induced effects on proliferation and migration.

si-TUG1 Induces Autophagy in HUVECs

via the AMPK/mTOR Pathway
Western blotting was then used to detect the protein levels of

AMPK, p-AMPK, mTOR, p-mTOR, ATG3, p62, and LC3

after cells were transfected with si-TUG1 (#2, 50 nm). si-

TUG1 (#2) resulted in better knockdown efficiency and was

thus selected for subsequent experiments. As expected, the

expression of p-AMPK/AMPK, ATG3, and LC3II/LC3I was

upregulated, whereas that of p-mTOR/mTOR and p62 was

downregulated by si-TUG1 (Figure 5A–F). However, the

effect of si-TUG1 on the AMPK/mTOR pathway was

reversed by treatment with Compound C (C.C, 50 μmol/L,

an AMPK inhibitor), which suggested that TUG1 knock-

down could activate the AMPK/mTOR pathway in

HUVECs. In addition, as shown in Figure 5G and H, C.C

reversed the effects on proliferation and migration induced

by si-TUG1. Figure 5I shows the technical rote of metformin

and lncRNA TUG1 in AS.

Anti-AS Effects of Metformin and lncRNA

TUG1 in vivo
Finally, we assessed the effects of metformin and lncRNA

TUG1 in the AS rat model. Histopathological changes were

observed through H&E staining, and aortic root lesion sizes

were significantly decreased in the metformin and sh-TUG1

groups compared with those in the AS model or empty vector

group, demonstrating that metformin and sh-TUG1 have pro-

tective effects on high-fat diet-induced AS injury (Figure 6A
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and C). Immunohistochemistry was then used to detect the

expression of autophagy-related proteins. Compared with that

in the control group, the expression of p62 increased, whereas

that of LC3 decreased, in the model and sh-NC groups.

Furthermore, compared with levels in the model or sh-NC

group, p62was downregulated, whereas LC3was upregulated,

in the metformin, sh-TUG1, metformin + sh-TUG1, and ator-

vastatin groups (Figure 6B and D). Through qRT-PCR, we

demonstrated that compared with that in the control group, the

expression of TUG1 was increased in the model group and

sh-NC group. Additionally, compared with those in the model

or sh-NC group, the levels of TUG1 were decreased in the

metformin, sh-TUG1, and metformin + sh-TUG1 groups

(Figure 6E). Western blotting indicated that compared with

that in the control group, the ratio of p-mTOR/mTOR was

increased in the model or sh-NC group. Further, compared

with that in the model or sh-NC group, the ratio of p-AMPK/

AMPK was increased, whereas that of p-mTOR/mTOR was
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Notes: (A) The CCK-8 and (B) EdU assays were performed to measure the proliferation of HUVECs treated with or without Met. (C) A wound healing assay was
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Abbreviations: Met, Metformin; HUVECs, human umbilical vein endothelial cells; CCK-8, cell counting kit-8; EdU, 5-ethynyl-2′-deoxyuridine; SD, standard deviation.
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decreased, in themetformin, sh-TUG1, metformin + sh-TUG1,

and atorvastatin groups (Figure 6F).

Discussion
Atherosclerotic diseases such as CHD remain the leading

cause of death worldwide; the lifetime risk of CHD is 67%

in humans over 55 years of age.27–29 Studies have shown

that lncRNAs are vital regulatory factors in the progres-

sion of AS.30–32 Thus, defining their functions might help

to identify novel diagnostic and therapeutic targets for AS.

In this study, we found that lncRNA TUG1 was signifi-

cantly upregulated in the peripheral blood of patients with
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Figure 3 si-TUG1 suppresses proliferation and migration while induces autophagy in HUVECs.

Notes: (A) Transfection efficiency of si-TUG1 (#1, #2). (B) The CCK-8 and (C and F) EdU assays were performed to determine the proliferation of HUVECs treated with

or without si-TUG1. (D and G) A wound healing assay was performed to detect the effect of si-TUG1 on the migration ability of HUVECs. (E and H) mRFP-GFP-LC3 staining

was used to observe the induction of autophagosomes and autolysosomes by si-TUG1. (I) Western blotting was used to analyze the levels of p62 and LC3 induced by si-

TUG1. Data are presented as the mean ± SD. *p < 0.05, **p < 0.01 vs the si-NC group.

Abbreviations: siRNA, small interfering RNA; TUG1, taurine up-regulated gene 1; HUVECs, human umbilical vein endothelial cells; CCK-8, cell counting kit-8; EdU,

5-ethynyl-2′-deoxyuridine; SD, standard deviation; NC, normal control.
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CHD compared with healthy individuals. This indicates

that lncRNA TUG1 may promote CHD progression.

Autophagy is the process through which cytoplasmic com-

ponents such as proteins and organelles that need to be

degraded are encapsulated and eventually transported to the

lysosomes for degradation. Studies have shown that autophagy

inhibits the progression of AS, whereas defective autophagy in

vascular wall cells enhances its progression.33,34 In this study,

we found that metformin and si-TUG1 reduced the prolifera-

tion and migration of HUVECs. There is a strong connection

between autophagy and vascular wall cell proliferation/migra-

tion in AS. Research has suggested that autophagy defects in

vascular smooth muscle cells might induce cell proliferation

andmigration, leading to the acceleration of AS progression.35

However, the upregulation of autophagy in vascular wall cells

is known to reduce proliferation and inhibit fibrosis.36

A B C

D E

F G H

I

Figure 4 Metformin (Met) activates the AMPK/mTOR pathway in HUVECs via lncRNA TUG1.
Notes: (A) Transfection efficiency of sg-TUG1 (OE #1,#2,#3). (C) Western blotting was used to detect (B) p-AMPK/AMPK, (D) p-mTOR/mTOR, (E) ATG3, (F) p62, and
(G) LC3II/LC3I protein levels after cells were incubated with Met or transfected with OE#1. (H) CCK-8 and (I) wound healing assays were performed to determine the cell

viability and migration ability, respectively, after cells were incubated with Met or transfected with OE #1. Data are presented as the mean ± SD. *p < 0.05, **p < 0.01 vs the

control group.

Abbreviations: Met, metformin; HUVECs, human umbilical vein endothelial cells; lncRNA, long non-coding RNA; TUG1, taurine up-regulated gene 1; sg-TUG1, single guide

taurine up-regulated gene 1; OE, overexpression; CCK-8, cell counting kit-8; SD, standard deviation.
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Markers involved in autophagy are classified as autop-

hagy-related genes (ATGs), and approximately 30 ATGs

are known to participate in different stages of

autophagy,37–39 including Beclin-1, ATG3, ATG5, ATG7,

ATG8, and ATG12.40 During autophagy, LC3I is

converted to LC3II and p62 enters the autophagosome to

be degraded; thus, the LC3II/I ratio and p62 are commonly

used as indicators of autophagy.41,42 To explore the effect

of TUG1 on autophagy, we measured the levels of autop-

hagy-related proteins and several major signaling

BA C

D E

F G

H

I

Figure 5 si-TUG1 induces autophagy in HUVECs via the AMPK/mTOR pathway.

Notes: (A) Western blotting was used to detect (B) p-AMPK/AMPK, (C) p-mTOR/mTOR, (D) ATG3, (E) p62, and (F) LC3II/LC3I protein levels after cells were transfected

with si-TUG1 or incubated with Compound C (C,C). (G) CCK-8 and (H) wound healing assay were performed to measure the cell viability and migration ability, respectively,

after cells were transfected with si-TUG1 or incubated with C,C. (I) The technical rote of metformin and lncRNA TUG1 in atherosclerosis (AS). Data are presented as the

mean ± SD. *p < 0.05, **p < 0.01 vs the control group.

Abbreviations: siRNA, small interfering RNA; TUG1, taurine up-regulated gene 1; HUVECs, human umbilical vein endothelial cells; CCK-8, cell counting kit-8; lncRNA,

long non-coding RNA; SD, standard deviation.
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pathways. We found that the expression of p-mTOR/

mTOR and p62 was reduced when TUG1 was knocked

down, whereas that of p-AMPK/AMPK and LC3II/LC3I

was elevated, which was accompanied by an increase in

ATG3 expression. C.C, which acts through the specific

inhibition of p-AMPK in the AMPK/mTOR pathway, is

recognized as an autophagy inhibitor. We found that the

changes in protein expression induced by si-TUG1 could

be reversed by C.C; at the same time, C.C successfully

reversed the changes in proliferation and migration

mediated by si-TUG1. These data suggest that si-TUG1

activates autophagy via the AMPK/mTOR pathway to

suppress proliferation and migration.

It has been reported that metformin can be used to treat

diseases through the regulation of lncRNA expression.43,44

Because metformin was found to attenuate TUG1 expres-

sion in a time-dependent manner in the present study, we

further investigated its correlation with TUG1 expression.

A

B

C

F

ED

Figure 6 Anti-atherosclerosis (AS) effects of metformin and lncRNA TUG1 in vivo.

Notes: (A and C) The histopathological changes in the aortic root of rats in each group were observed by H&E staining. (B and D) Immunohistochemistry was performed

to detect the expression of autophagy-related proteins p62 and LC3. (E) The expression of TUG1 in each group was measured by qRT-PCR. (F)The expression levels of

proteins related to the AMPK/mTOR pathway in each group were measured by Western blotting. Data are presented as the mean ± SD. *p < 0.05, **p < 0.01 vs the control

group. #p < 0.05, ##p < 0.01 vs the model group. &p < 0.05, &&p < 0.01 vs the sh-NC group.

Abbreviations: lncRNA, long non-coding RNA; TUG1, taurine up-regulated gene 1; H&E staining, hematoxylin and eosin staining; qRT-PCR, quantitative reverse

transcription PCR; SD, standard deviation; NC, normal control.
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The results indicated that metformin activates autophagy

via lncRNA TUG1 in HUVECs.

Finally, we established an AS rat model. As expected,

immunohistochemistry and Western blotting in the metfor-

min and sh-TUG1 groups were consistent with the results of

our in vitro experiments. Interestingly, immunohistochemis-

try showed an increase in the expression of p62 and

a decrease in that of LC3 in the AS model group compared

with levels in the control group, indicating that autophagy

was somewhat disrupted in rats of the AS model group.

Furthermore, we found that atorvastatin treatment activated

the AMPK/mTOR pathway; however, to the best of our

knowledge, the role of atorvastatin in preventing AS via the

AMPK/mTOR pathway has not yet been reported.

Conclusion
In summary, we provide clear evidence that metformin

attenuates the progression of AS via lncRNA TUG1.

This study not only expands our understanding of the

role of metformin in preventing AS, but also provides

new perspectives into its molecular mechanisms. TUG1

is also suggested to be potential a therapeutic target for the

prevention of AS.
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