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Abstract: Many patients with chronic obstructive pulmonary disease (COPD) suffer from 

exercise intolerance. In about 40% of the patients exercise capacity is limited by alterations 

in skeletal muscle rather than pulmonary problems. Indeed, COPD is often associated with 

muscle wasting and a slow-to-fast shift in fi ber type composition resulting in weakness and 

an earlier onset of muscle fatigue, respectively. Clearly, limiting muscle wasting during 

COPD benefi ts the patient by improving the quality of life and also the chance of survival. 

To successfully combat muscle wasting and remodeling during COPD a clear understanding 

of the causes and mechanisms is needed. Disuse, hypoxemia, malnutrition, oxidative stress 

and systemic infl ammation may all cause muscle atrophy. Particularly when systemic infl am-

mation is elevated muscle wasting becomes a serious complication. The muscle wasting 

may at least partly be due to an increased activity of the ubiquitin proteasome pathway and 

apoptosis. However, it might well be that an impaired regenerative potential of the muscle 

rather than the increased protein degradation is the crucial factor in the loss of muscle mass 

during COPD with a high degree of systemic infl ammation. Finally, we briefl y discuss the 

various treatments and rehabilitation strategies available to control muscle wasting and fatigue 

in patients with COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death 

throughout the world. The disease is mainly caused by smoking, but environmental 

pollution and α
1
–antritrypsin defi ciency may also cause the development of COPD 

(Petty 2006). In 2000 about 16 million people suffered from COPD in the USA alone 

(Mannino et al 2002) with the number of women suffering from this disorder increas-

ing (Casaburi 2001). The disease is progressive, but the severity and progress can be 

moderated by actions such as smoking cessation, careful management of infections 

and appropriate rehabilitation (ATS/ERS 1999; Faulkner et al 2006).

One of the major problems of patients with COPD is exercise intolerance (Gosker 

et al 2000; Aliverti and Macklem 2001; Casaburi 2001). Although the disease is 

characterized by reduced maximal expiratory fl ow (ATS/ERS 1999; Faulkner et al 

2006), FEV
1
 in COPD correlates poorly with exercise capacity (Killian et al 1992; 

Gosselink et al 1996; Engelen et al 2000; Gosker, Lencer et al 2003). Likewise, in 

single and double lung transplants, exercise capacity did improve after surgery, but 

was still lower than normal (Ambrosino et al 1996) indicating that factors other than 

lung function alone limited exercise capacity (Evans et al 1997). Also in patients 

with COPD who did not undergo a lung-transplantation, evidence that the exercise 

intolerance is not only related to a reduced lung function, but also to skeletal muscle 

dysfunction is growing (Schols et al 1991; Gosselink et al 1996; Gosker, Lencer 

et al 2003). The importance of skeletal muscle dysfunction may increase over time 
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as the deterioration in exercise capacity is uncoupled from 

the progression of airfl ow limitation (Oga et al 2005). 

It is important, therefore, to know how muscle function 

is affected, to identify the factors that contribute to the 

muscle dysfunction and the mechanism of muscle wasting 

in COPD so as to improve the management of the disease. 

Such knowledge may also have wider implications since 

COPD is one of a number of common disorders, includ-

ing chronic heart failure (Gosker et al 2000) and cancer 

(Tisdale 2005), where muscle dysfunction and wasting 

are serious complications and may be brought about by 

similar underlying mechanisms. This review will focus on 

the changes in peripheral skeletal muscle structure, func-

tion and metabolism in COPD and discuss some of the 

potential underlying factors and mechanisms contributing 

to the observed muscle wasting and dysfunction.

The relation between muscle 
structure and function in COPD
Muscle weakness and loss of muscle mass
A loss of skeletal muscle mass is a common observation 

in patients with COPD and may not only lead to muscle 

weakness (Schols et al 1993; Gosselink et al 1996; Bernard 

et al 1998; Engelen et al 2000), but is also associated with 

an increased mortality of patients with COPD. Marquis and 

colleagues (Marquis et al 2002) reported that 50% of their 

patients with a FEV
1
 predicted �25% and a mid-thigh cross-

sectional area (CSA) �70 cm2 died within 3 years, compared 

to only 12% of patients with a mid-thigh CSA �70 cm2. 

Schols and colleagues (Schols et al 1993) found that about 

half of the patients with mild to severe COPD had a reduced 

body weight, which could be related to both a loss of muscle 

and adipose tissue. Since lean tissue depletion could even 

occur in overweight patients the prevalence of muscle wast-

ing might be even higher (De Benedetto et al 2000).

Muscle atrophy occurs when the balance of protein 

synthesis and degradation shifts to net protein breakdown. 

Most of the research on muscle wasting in chronic diseases 

has focused on protein degradation pathways. For an exten-

sive discussion of the molecular and cellular mechanisms 

involved in protein degradation, such as the ubiquitin-

proteosome pathway, we refer the reader to several excellent 

reviews on this subject (Jagoe and Engelen 2003; Kandarian 

and Jackman 2006; Saini et al 2006).

Besides an increased rate of protein degradation, also a 

decreased rate of protein synthesis contributes to the muscle 

wasting in many chronic diseases (Rennie et al 1983). This 

may be a consequence of systemic infl ammation that often 

occurs in patients with COPD (Gan et al 2004). Indeed, 

recent studies indicate that the regenerative capacity of 

skeletal muscle is impaired in mice with elevated circulat-

ing tumor necrosis factor-α (TNF-α) levels (Guttridge et al 

2000; Langen et al 2004, 2006). Furthermore, testosterone, 

an anabolic hormone, levels were lower in COPD patients 

(Casaburi 1998; Casaburi et al 2004; Van Vliet et al 2005). 

The lower testosterone levels were associated with muscle 

weakness (Van Vliet et al 2005). It has been speculated 

that chronic hypoxia (Aasebo et al 1993) and corticosteroid 

therapy (Kamischke et al 1998) contribute to low testosterone 

levels. It is equivocal whether insulin-like growth factor-I 

(IGF-1), which mediates muscle growth, is elevated or 

reduced in COPD patients (Creutzberg and Casaburi 2003). 

Also, human studies of myostatin, a hormone that is produced 

in the muscle and suppresses muscle growth by inhibiting 

satellite cell activity, are scarce and its role in muscle wasting 

in COPD is unknown (Jespersen et al 2006). Clearly, more 

studies are necessary to assess whether protein synthesis rates 

are affected during COPD.

Besides muscle wasting also other factors, such as a 

decrease in maximal neural drive to the working muscles 

(Rutherford et al 1986) may contribute to muscle weakness 

during COPD. Indeed, a reduced neural drive may well 

explain the decline in force generating capacity per muscle 

cross-sectional area (specifi c tension) in vivo without a 

change in in-vitro specifi c tension of isolated bundles from 

the same muscle (Debigare et al 2003). However, COPD 

patients who were matched for fat free mass index with 

control subjects did not show signs of muscle weakness or 

atrophy (Heijdra et al 2003; Degens et al 2005) indicating 

that the neural drive is maintained as long as fat free mass 

index is maintained.

Contractile properties and fi ber
type composition
During daily life most activities involve shortening contrac-

tions which require a suffi cient power output from the muscle. 

Therefore, power output, which is the product of force and 

velocity, is more important during daily life than the ability 

of the muscle to generate isometric force. The loss of power 

in patients with COPD (Yquel et al 2006) as a result of a 

loss in muscle strength may be compensated for, to some 

extent, by the slow-to-fast transition in fi ber type composition 

(Jobin et al 1998; Gosker, van Mameren et al 2002) and an 

increased proportion of hybrid fi bers expressing more than 

one myosin heavy chain isoform (Gosker, van Mameren et al 

Powered by TCPDF (www.tcpdf.org)



International Journal of COPD 2007:2(3) 291

Muscle dysfunction in COPD patients

2002). The slow-to-fast transition appears to be more marked 

during emphysema than in chronic bronchitis (Gosker, van 

Mameren et al 2002) and to be related to the severity of the 

disease in terms of FEV
1
 (Satta et al 1997). Apart from a 

marked type IIX fi ber atrophy and a slight increase in fi brosis 

and fat-cell replacement, which is not uncommon for skeletal 

muscle in the elderly, there are no myopathologic features 

in non-cachetic COPD patients (Gosker, Kubat et al 2003). 

Nevertheless, it is unlikely that the changes in fi ber type 

composition during COPD, a disease that mostly becomes 

manifest after the age of 50, are just a refl ection of the age-

ing process as normal ageing is, if anything, accompanied 

by a fast-to-slow rather than a slow-to-fast transition (Narici 

et al 1991; Degens and Alway 2006; Korhonen et al 2006). 

Although the changes in fi ber type composition during COPD 

may be too small to affect the rates of contraction and relax-

ation during electrically evoked isometric tetani (Degens et al 

2005), it remains to be established whether the fi ber type 

transition is suffi cient to cause a change in the shortening 

velocity during dynamic contractions. Nonetheless, as type 

II fi bers are less effi cient than type I fi bers for force genera-

tion (Stienen et al 1996), the slow-to-fast-transition in fi ber 

type composition may at least partly explain the reduced 

mechanical effi ciency of COPD patients during one leg knee 

extensor exercise (Franssen, Wouters, Baarends et al 2002; 

Richardson et al 2004).

Metabolism and capillarization
Several studies have addressed the metabolic characteristics 

of muscles from COPD patients (Jakobsson et al 1990, 1995; 

Jobin et al 1998; Whittom et al 1998; Gosker, van Mameren 

et al 2002). The results of these studies are equivocal. Part of 

the discrepancies in the literature can be ascribed to differ-

ences in disease severity, medication (see section medication) 

and whether locomotor or other muscles have been studied. 

While the oxidative capacity of the vastus lateralis muscle 

of patients with moderate-to-severe COPD was signifi cantly 

reduced (Jakobsson et al 1995; Gosker, van Mameren et al 

2002), the oxidative capacity in the musculature of the upper 

extremity was not affected (Gea, Pasto et al 2001). Also, 

the mechanical effi ciency was lower in leg muscles, while 

arm mechanical effi ciency was not signifi cantly affected 

(Franssen, Wouters, Baarends et al 2002). The different 

effect that COPD has on upper body and leg muscles was 

so marked that it is referred to as ‘the compartment theory’ 

(Gea, Orozco-Levi et al 2001). A simple explanation put 

forward for the differences between the two ‘compartments’ 

is the different degree of disuse they experience during 

COPD (Gosselink et al 2000; Gea, Orozco-Levi et al 2001). 

Nevertheless, the glycolytic capacity was elevated in both 

the muscles of the leg (Jakobsson et al 1995) and the upper 

body (Gea, Pasto et al 2001). In advanced stages of the 

disease, however, energy metabolism becomes increasingly 

compromised as refl ected by lower levels of glycogen, ATP 

and PCr in the quadriceps femoris muscle of patients with 

respiratory failure, but not in those without respiratory failure 

(Jakobsson et al 1990).

Little work has yet been done on the capillarization of 

skeletal muscle in COPD (Jobin et al 1998; Whittom et al 

1998; Richardson et al 2004). Although the number of cap-

illaries per fi ber might be reduced during COPD (Whittom 

et al 1998), the capillary supply per fi ber CSA and total 

numerical capillary density was maintained (Whittom et al 

1998). It seems that, at least anatomically, the microcircula-

tion is intact in COPD patients (Richardson et al 2004). This 

is not an unequivocal fi nding, however, as Jobin et al (1998) 

found an almost 50% decrease in capillary to fi ber ratio and 

capillary density, suggesting that a disproportionate loss of 

capillaries may occur during COPD.

Skeletal muscle fatigue
Muscle fatigue can be defi ned as the inability of a muscle to 

maintain a certain force or power output. As has been 

mentioned above exercise intolerance, as refl ected by a 

low peak oxygen uptake, is a major symptom in patients 

with COPD (Oga et al 2007). It is likely that the increased 

load and oxygen need of the respiratory muscles during 

COPD and reduced venous return compete with an impaired 

delivery of oxygen to the limb muscles (Aliverti and 

Macklem 2001). However, under circumstances where the 

cardio-respiratory system is unlikely to be the limiting fac-

tor, such as during one-leg exercise, or exercise of a single 

muscle or muscle group, the capillarization and oxidative 

capacity of a muscle are important determinants of muscle 

fatigue resistance (Degens and Veerkamp 1994). Therefore, 

it is no surprise in light of these changes in the muscle as 

described above that an increased susceptibility to skeletal 

muscle fatigue has often been reported in COPD patients 

(Serres et al 1998; Allaire et al 2004; Coronell et al 2004; 

Van’t Hul et al 2004; Saey et al 2005; Janaudis-Ferreira 

et al 2006). Other studies, however, do report an unaltered 

fatigue resistance (Gosker, Lencer et al 2003; Degens et al 

2005; Franssen et al 2005).

Besides changes in the muscle itself that may cause an 

earlier onset of muscle fatigue, changes in fatigue resistance 

could also be caused by an altered central drive (central 
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fatigue) (Bigland-Ritchie et al 1978). To date, the central 

component in the development of muscle fatigue in COPD 

patients is poorly understood. However, it may play a role 

in the development of fatigue as systemic infl ammation has 

been shown to cause feelings of tiredness (Spath-Schwalbe 

et al 1998). However, muscle fatigability has been determined 

largely with series of voluntary contractions (Serres et al 

1998; Coronell et al 2004; Van’t Hul et al 2004; Janaudis-

Ferreira et al 2006), which makes it diffi cult to differentiate 

between central and peripheral factors. Using electrical 

or magnetic stimulation, however, one can exclude the 

contribution of central factors to the development of fatigue. 

As far as we know, only one study (Degens et al 2005) has 

assessed peripheral muscle fatigue using electrical stimula-

tion in patients with COPD. In that study, neither differences 

in contractile properties nor fatigability were found. This 

indicates that there were no apparent differences in moti-

vation between patients and controls matched for fat free 

mass index and physical activity level (Degens et al 2005). 

Although it is thus possible that the alterations in fatigue 

resistance observed in other studies may be related to a lower 

fat free mass index in patients with COPD and controls, the 

observation that muscle endurance was similar in wasted and 

non-wasted patients (Gosker, Lencer et al 2003; Franssen 

et al 2005) argues against this. However, in several studies 

it has been explicitly stated that the COPD patients were 

signifi cantly less active than the controls (Serres et al 1998; 

Coronell et al 2004). Clearly, at least part of the decline in 

fatigue resistance often observed during COPD is attributable 

to a reduced physical activity level, but also smoking itself 

may reduce muscle fatigue resistance (Wüst et al 2006).

Factors underlying muscle 
dysfunction and wasting
Many factors have been suggested to induce changes in skeletal 

muscle structure and function in COPD. Here we will summa-

rize the possible role of airfl ow obstruction, disuse, hypoxemia, 

malnutrition, oxidative stress and systemic infl ammation in the 

adaptations of skeletal muscle of patients with COPD. Figure 

1 summarizes how disuse, hypoxia and systemic infl ammation 

may affect muscle wasting and dysfunction in COPD.

Airfl ow obstruction
In the GOLD classifi cation the severity of COPD is deter-

mined as the degree of airfl ow obstruction as indicated by 

the percentage of the predicted FEV
1
. Despite the fact that a 

low FEV
1
 indicates a severe case of COPD no correlations 

between FEV
1
 and skeletal muscle strength or fatigue have 

been observed (Gosker, Kubat et al 2003; Gosker, Lencer 

et al 2003; Degens et al 2005). In terms of muscle fatigability, 

this is not surprising, as during muscle fatigue tests a rela-

tively small muscle mass is recruited of which the oxygen 

requirement is well within the limits that can be provided by 

the affected lung. Although, the increased cost of breathing 

as a result of the obstructive airfl ow may well be a cause of 

exercise intolerance during COPD (Aliverti and Macklem 

2001) and may cause structural changes in the respiratory 

muscles due to the continuous overload (Orozco-Levi et al 

2001), it seems unlikely that the airfl ow obstruction per se 

will affect peripheral skeletal muscle structure or function.

Disuse
The physical activity level of patients with COPD is lower 

than that of the average population (Pitta et al 2005, 2006b) 

and during and after a period of exacerbations patients 

become even less active (Pitta et al 2006a). This is thought 

to be a consequence of the so-called dyspnea spiral: patients 

do not exert themselves too much in order to avoid the occur-

rence of dyspnea, which in turn causes a decline in fi tness 

and an earlier occurrence of dyspnea and so on (Serres et al 

1998). It is therefore not surprising that disuse contributes 

signifi cantly to the alterations in skeletal muscle structure and 

function during COPD (Degens and Alway 2006). In fact, 

in a patient group compared with a physical activity level 

matched control group, no differences in muscle strength, 

fatigue resistance and contractile properties were detected 

(Degens et al 2005). However, disuse alone is inadequate to 

explain all the changes occurring in skeletal muscle structure 

and function. For instance, Gosker et al (Gosker, Engelen 

et al 2002) showed that atrophy mainly occurred in type IIX 

fi bers, whereas disuse would cause atrophy of each fi ber type, 

with type I fi bers being affected the most (Degens and Alway 

2006). Also, a 12-weeks physical-rehabilitation program did 

not entirely reverse the effects of COPD in terms of capil-

larization and fi ber type distribution (Whittom et al 1998).

Hypoxemia
Due to the diffi culties with breathing and impaired oxygen 

uptake, patients with severe COPD may have a decreased 

hemoglobin oxygen saturation level (hypoxemia), which 

may result in local tissue hypoxia. The abundance of the 

transcription factor hypoxia-inducible factor-1α (HIF-1α) 

increases during hypoxia (Raguso et al 2004) and may induce 

a down-regulation of oxidative enzymes and an upregulation 

of glycolytic enzymes (Hoppeler et al 2003). In addition, it 

has been shown in cardiomyocytes that hypoxia inactivates 
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the transcription factor peroxisome proliferator-activated 

receptor α (PPARα) and thereby decreases the expression 

of genes involved in fatty acid oxidation (Huss et al 2001). 

These changes in transcriptional regulation of the expression 

of metabolic genes during hypoxia may result in an increased 

glycolytic and a reduced oxidative capacity similar to what 

is observed during COPD (Hoppeler et al 2003; Raguso 

et al 2004).

Chronic hypoxia may be linked with muscle wasting 

and weakness. Just 8 weeks at altitudes greater than 5000 

m has been shown to cause as much as a 10% reduction in 

muscle mass and peak power (Ferretti et al 1990; Hoppeler 

et al 1990). Although a decrease in fi ber CSA is associated 

with exposure to hypoxia (Hoppeler et al 1990; MacDougall 

et al 1991), other confounding factors such as a decreased 

food intake, due to an hypoxia-induced expression of leptin, 

together with detraining may contribute to muscle wasting 

during hypoxia (Westerterp and Kayser 2006).

Hypoxia has been shown to impair the mTOR pathway, 

which is involved in transcription of DNA and translation 

of mRNA into protein (Proud 2004b) and may, as a conse-

quence, contribute to muscle wasting during COPD. In addi-

tion, it has been reported in cell culture studies that hypoxia 

inhibits myoblast differentiation by degradation of MyoD, 

a myogenic transcription factor, via the ubiquitin proteasome 

pathway (Di Carlo et al 2004). Clearly, such an effect in vivo 

will have a negative impact on the regenerative potential of 

skeletal muscle. Moreover, hypoxia may also induce infl am-

mation (Orth et al 2005), causing muscle atrophy through 

infl ammatory pathways (see below and Figure 1).

In addition to these relatively long-term effects, there is 

evidence that hypoxia might acutely affect the contractile 

apparatus. Indeed, single fi bers isolated from bundles exposed 

to hypoxia for 30 min exhibited a marked force loss which 

was attributable to a reduced fraction of strongly attached 

cross bridges, while reoxygenation completely reversed 

the contractile dysfunction (Ottenheijm, Heunks, Geraedts 

et al 2006). In addition to muscle weakening, hypoxia has 

also been shown to reduce the maximum shortening veloc-

ity, power output, force frequency relation and endurance 

in muscle bundles (Machiels et al 2001; Zhu et al 2005), 

possibly through nitrotyrosylation of proteins (Ottenheijm, 

Hypoxia

ROS

HIF-1α

TNF-α

TNF-α

Skeletal muscle dysfunction and wasting

Glycolysis

Disuse

NF-κB

Ubiquitin proteasomeApoptosis Id proteins

Low MRFs

Impaired differentiation / regeneration

mTOR impaired

Impaired protein
synthesis

Figure 1 Pathways by which hypoxia, disuse and systemic infl ammation contribute to muscle dysfunction and wasting during Chronic Obstructive Pulmonary Disease. Grey 
shaded boxes indicate impaired regeneration or protein synthesis; black shaded box represents the end result of the pathways in terms of muscle dysfunction and muscle 
wasting. Solid lines indicate observed relations; dotted lines indicate possible relations. TNF-α: tumor necrosis factor - α; mTOR: mammalian target of rapamycin; ROS: 
reactive oxygen species; HIF-1α: hypoxia-inducible factor - 1α; NF-κB: nuclear factor - κB; Id proteins: inhibitor of differentiation proteins; MRFs: myogenic regulatory factors 
(such as MyoD).
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Heunks, Geraedts et al 2006) and the presence of reactive 

oxygen species (ROS). Although in vitro there seems to be 

a clear effect of acute hypoxia on skeletal muscle function 

this is not necessarily the case in vivo. In the electrically 

stimulated human quadriceps muscle no change in contractile 

properties, strength or fatigue resistance could be detected 

during acute exposure to hypoxia (Degens et al 2006). The 

discrepancy between in vitro and in vivo observations might 

be caused by absence of oxidative stress in vivo (Dousset 

et al 2002). It is possible that hemoglobin and myoglobin, 

absent in the in vitro situation, scavenge nitric oxygen (NO) 

and ROS, so that the detrimental effects of these substances 

are attenuated, at least for a limited period (Ordway and 

Garry 2004). Indeed, in chronic hypoxemic COPD patients 

oxidative stress is enhanced (Koechlin et al 2005).

Hypoxia itself, however, can not fully account for all the 

observed changes in skeletal muscle as many patients with 

COPD suffering from muscle wasting and dysfunction do 

not exhibit hypoxemia. In addition, hypoxia may even pro-

tect the nucleus from apoptosis (Riva et al 2001), whereas 

an elevated occurrence of apoptosis in skeletal muscle has 

been observed in depleted patients with COPD (Agusti et al 

2002; Degens et al submitted).

Malnutrition
Many patients with COPD suffer from semi-starvation, 

possibly caused by elevated levels of circulating leptin, 

which negatively affects dietary intake and consequently 

muscle mass and function (Engelen et al 1994; Casaburi 

2001; Franssen, Wouters, Schols 2002; Schols 2003a). 

Moreover, the basal metabolism in COPD is increased as 

a consequence of extra work required for breathing and/or 

the presence of systemic infl ammation. Hypermetabolism 

in combination with a decreased appetite often leads to 

a negative nutrition balance and ultimately weight loss 

(Schols 2003b).

Oxidative stress
Reative Oxygen Species (ROS) and free radicals are 

elevated in patients with COPD both during rest and exercise 

(Couillard et al 2002, 2003; Gosker, Bast et al 2005; van Hel-

voort, Heijdra, Thijs 2006). The mitochondrial electron trans-

port chain and neutrophils are an important source of ROS 

(Zhang et al 1990). Also hypoxia, cigarette smoke, sepsis and 

an increased cost of breathing (Heunks and Dekhuijzen 2000) 

cause an increased generation of ROS and reactive nitrogen 

species in the lungs and respiratory muscles, spilling into 

the circulation. There is evidence that an abnormal oxidative 

stress response to submaximal and maximal exercise may 

be more severe in muscle-wasted than non-muscle-wasted 

patients with COPD (van Helvoort, Heijdra, Thijs 2006). 

Oxidative stress may acutely affect skeletal muscle func-

tion via inhibition of the activity of the sodium/potassium 

pump (Comellas et al 2006), sarcoplasmic reticulum function, 

myosin ATPase and mitochondrial respiration (Zhang et al 

1990), and in the long run may also cause muscle wasting 

and dysfunction in both respiratory and peripheral muscle 

(Langen et al 2003; Koechlin et al 2004, 2005 Ottenheijm, 

Heunks, Geraedts et al 2006).

Systemic infl ammation
A common feature in many chronic diseases including 

COPD is the presence of systemic and/or local infl amma-

tion (Gan et al 2004). In patients with COPD the lung is 

thought to be the main source of infl ammatory cytokines. 

It has been shown that resistive breathing may cause the 

respiratory muscles also to produce infl ammatory cytokines 

and thereby to contribute to the development of cachexia 

in patients with COPD (Vassilakopoulos et al 2004). The 

negative correlation between muscle strength and a marker 

of systemic infl ammation during an exacerbation (Spruit 

et al 2003) suggests that infl ammation is indeed an impor-

tant factor in muscle adaptations during COPD (Degens 

and Alway 2006).

Infl ammatory cytokines may also have central actions 

leading to “sickness behavior”, a loss of motivation and thus 

contribute to tiredness and the downward spiral of inactivity 

(Spath-Schwalbe et al 1998). For instance, acute administra-

tion of IL-6 to otherwise healthy trained runners seriously 

impaired exercise performance (Robson-Ansley et al 2004), 

but the effect may be mediated by an altered (serotonergic) 

activity in the brain increasing the sensation of generalized 

fatigue (the central fatigue hypothesis), rather than peripheral 

factors (Polkey 2003).

In the remainder of this section we will concentrate 

mainly on the effects of TNF-α on skeletal muscle tissue, 

as most research has focused on this cytokine. Cachectin, 

or TNF-α, has long been known to induce muscle wasting 

(Beutler and Cerami 1986). In a transgenic mouse model 

that over-expresses TNF-α in the lung, not only circulating 

TNF-α levels, but also the expression of TNF-α in the muscle 

were increased; the latter was thought to be the result of 

TNF-α inducing its own expression via a positive feed back 

loop (Langen et al 2006). One can imagine, that in particular 

during exacerbations, when the infl ammation is aggravated 

(Papi et al 2006), this is a serious complication.
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TNF-α may also have acute effects on skeletal muscle 

function. For instance, systemic administration of TNF-α 

to dogs caused diaphragm weakness after only three hours 

(Wilcox et al 1994). Since then, it has been shown in vitro 

that exposure of single muscle fi bers to TNF-α decreased the 

force generating capacity (Li et al 2000; Reid et al 2002), 

possibly through the generation of ROS or reactive nitrogen 

species. It should be noted, however, that in these studies 

supraphysiological doses of TNF-α were applied and it 

remains to be determined whether physiological levels of 

TNF-α have similar effects.

Chronically elevated systemic infl ammation increases the 

activity of the ubiquitin proteasome pathway via activation 

of nuclear factor – κB (NF-κB), a factor that plays an impor-

tant role in muscle atrophy (Debigare et al 2001; Kandarian 

and Jackman 2006). The ubiquitin proteasome pathway 

is an ATP-dependent protein degradation pathway where 

proteins are labeled by ubiquitin for subsequent degradation 

in the proteasome. Although the activation of the ubiqui-

tin-proteasome pathway is apparent in many other chronic 

diseases, including cancer (Khal et al 2005), it is not known 

whether activation of the ubiquitin-proteasome pathway also 

plays a role in peripheral skeletal muscle wasting during 

COPD. Only recently it has been shown that the ubiquitin-

proteasome pathway is activated in the diaphragm in patients 

with mild-to-moderate COPD (Ottenheijm, Heunks, Li et al 

2006) leading to a loss of myosin, and thereby force generat-

ing capacity (Ottenheijm et al 2005).

Besides activating the ubiquitin proteaseome pathway 

TNF-α induces apoptosis, or programmed cell death, in 

skeletal muscle cells and myoblasts (Bazzoni and Beutler 

1996; Stewart et al 2004). The loss of myonuclei may 

cause an increase of the myonuclear domain, the volume 

of cytoplasm associated with a single myonucleus, beyond 

a sustainable size and consequently be followed by muscle 

fi ber atrophy (Allen et al 1999). Apoptosis may indeed 

play a role in muscle wasting during COPD in particular 

in patients with a low body mass index (Agusti et al 2002; 

Plataki et al 2006). In addition, TNF-α induces expression 

of Id proteins in astrocytes (Tzeng et al 1999) and Id proteins 

in turn can induce apoptosis both via alteration of gene 

transcription and binding to regulators of apoptosis (Florio 

et al 1998). Although a link between TNF-α and Id protein 

expression has not been investigated in other cell types, Id 

proteins themselves have been shown to induce apoptosis 

in many cell types, including neonatal cardiomyocytes and 

myoblasts (Yokota and Mori 2002). It is therefore tempting 

to speculate that altered Id expression also plays a role in 

the development of apoptosis during COPD and impaired 

regenerative capacity. This has not yet been investigated in 

patients with COPD, but both the elevated expression of Id2 

protein and apoptotic factors in the diaphragm and soleus 

of the emphysematous hamster (Alway et al 2004) hint to 

this possibility.

As mentioned above, it is possible that the primary 

problem of muscle atrophy during COPD is a decreased 

regenerative capacity. Myogenic regulatory factors, such as 

MyoD, play an important role in satellite cell differentiation 

and hence regenerative capacity of the muscle (Charge et al 

2004). Both in transgenic mice overexpressing TNF-α in the 

lung (Langen et al 2006) and in mice treated with TNF-α 

(Guttridge et al 2000; Langen et al 2004), the regeneration of 

skeletal muscle from disuse atrophy is delayed. This decline 

in regenerating capacity was possibly related to an acceler-

ated breakdown of MyoD by the ubiquitin proteasome path-

way (Langen et al 2004). Interestingly, MyoD becomes more 

prone to degradation by the ubiquitin proteasome pathway 

when it forms dimers with inhibitors of differentiation (Id) 

proteins (Reid 2005). Elevation of these proteins may thus 

contribute to the reduced abundance of MyoD protein but 

not mRNA in the soleus and diaphragm of emphysematous 

hamsters (Degens et al 2004), indicating MyoD breakdown 

rather than reduced transcription. No studies have so far 

investigated whether alterations in MyoD and Id expression 

also occur in skeletal muscle from patients with COPD and 

whether they also suffer from an impaired skeletal muscle 

regenerative capacity.

Rehabilitation and medication
Here we only briefl y discuss several of the more common 

potential treatments that target skeletal muscle wasting during 

COPD. For a more extensive discussion we refer the reader 

to other reviews that specifi cally address this issue (Spruit 

et al 2004; Hansen et al 2006).

Exercise training
As disuse is considered an important factor contributing to 

muscle wasting and dysfunction it is not surprising that many 

studies have addressed the effi cacy of exercise training on 

skeletal muscle structure and function in patients with COPD 

(Serres et al 1998; Franssen et al 2005; Gosker, Schrauwen 

et al 2005).

Endurance training improves exercise tolerance in 

patients with moderate and severe COPD, with the effect 

being largely infl uenced by the intensity of the training; a 

low intensity produces less of an effect than high intensity 
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training sessions (Casaburi 2001). This improvement in 

exercise tolerance is accompanied by at least a reduction of 

the percentage of type II fi bers, muscle hypertrophy and an 

increase in oxidative capacity (Whittom et al 1998; Casaburi 

2001; Vogiatzis et al 2005).

Strength training is effective in increasing muscle mass 

and strength and is associated with an improved quality 

of life in patients with COPD (Casaburi 2001). Combined 

strength/endurance training results in the benefi ts that each 

of the programs separately would achieve, ie, not only an 

increase in submaximal exercise capacity, but also improve-

ments in lean body mass and strength (Ortega et al 2002). 

Moreover, interval training might also be preferred above 

constant-load exercise as it minimizes leg discomfort and 

ratings of dyspnea, without compromising the benefi ts of the 

endurance training program (Vogiatzis et al 2005).

This response to training represents a normal response of 

the muscle to increased use (Salmons and Henriksson 1981). 

The benefi cial effects of exercise may, at least partly, be 

brought about by an increase in the expression of myogenin 

(Siu, Donley et al 2004), a reduction of the occurrence of 

apoptosis (Siu, Bryner et al 2004), and suppression of the 

muscle specifi c ubiquitin ligase atrogin (Leger et al 2006). 

Furthermore, endurance training may attenuate systemic 

infl ammation (Garrod et al 2007) and it is thus possible that 

the benefi cial effects of training are partly mediated via a 

reduction in infl ammation. So far, it is not clear whether all 

patients would benefi t from exercise programs as for instance 

in some elderly people the hypertrophic response is attenu-

ated, indicating a reduced plasticity at old age (Welle et al 

1996; Degens and Alway 2006). This attenuated response has 

been shown to be related to elevated baseline levels of soluble 

TNF-receptors in the elderly (Bruunsgaard et al 2004). This 

would imply that chronic patients with a signifi cantly elevated 

systemic infl ammation may have reduced improvements in 

response to exercise training, particularly when one consid-

ers that the infl ammatory and oxidative stress response is 

augmented in muscle-wasted patients (van Helvoort, Heijdra, 

Dekhuijzen 2006). Supporting the notion that exercise may 

loose its effectiveness when systemic infl ammation is pres-

ent, is the observation that the cellular protein breakdown 

in patients with a low fat free mass does not decline after an 

exercise training regime (Bolton et al 2006).

Nutrition
Nutritional support has been shown to result in functional 

improvements and decreased mortality in depleted patients 

(Schols 2003b). One of the benefi ts of nutritional support is 

an increase in muscle strength (Efthimiou et al 1988), which 

will inevitably improve the quality of life of the patient. 

Combination of nutritional support and exercise training may 

be the best approach to obtain functional improvements in 

patients with COPD (Schols 2003a). For detailed informa-

tion about the effects of nutrition of muscle performance in 

patients with COPD and other chronic diseases, the reader 

is referred to some excellent reviews on this subject (Schols 

2003b; Engelen et al 2005).

Oxygen therapy
Oxygen supplementation is often used to reduce dyspnea 

experienced by severe hypoxemic COPD patients. Oxygen 

supplementation may not only increase the exercise capacity 

(Aliverti and Macklem 2001), but also reduce the normal 

exercise-induced elevation in systemic infl ammation and 

oxidative stress in muscle-wasted patients with COPD (van 

Helvoort, Heijdra, Heunks 2006). An additional benefi t of 

supplemental oxygen during exercise is that patients can 

exercise at higher work loads (Emtner et al 2003) and thereby 

augment the improvement in exercise tolerance.

Long-term oxygen supplementation only benefi ts hypox-

emic, but not normoxemic patients with COPD by increas-

ing survival and attenuating the progression of pulmonary 

hypertension (Zielinski 1999). However, to our knowledge 

no studies have addressed the direct or long-term effects of 

oxygen therapy on skeletal muscle adaptations in COPD 

patients.

Medication
Anabolic hormone, such as testosterone, supplementation 

has been suggested to treat muscle wasting and dysfunction 

during COPD (Casaburi et al 2004; Hansen et al 2006). 

Combination of strength training and testosterone supple-

mentation appeared to give additive effects on lean body 

mass and strength in patients with COPD (Casaburi et al 

2004). However, the long-term (side and benefi cial) effects 

of hormone replacement remain to be established. The 

observation that IGF-I is only positively related to muscle 

strength when IL-6 levels are low but not when IL-6 levels 

are high (Barbieri et al 2003) suggests that the effectiveness 

of testosterone replacement (which probably acts in part 

through an effect on IGF-1) may be attenuated in patients 

with high levels of systemic infl ammation.

Since systemic infl ammation plays an important role 

in the progression of the disease anti-infl ammatory drugs 

have been used to attenuate the disease progression and 

the concomitant observed muscle wasting (Hansen et al 
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2006). Corticosteroids are often prescribed to minimize the 

infl ammatory reaction, in particular following exacerbations. 

Unfortunately, corticosteroids also induce the activity of the 

ubiquitin proteasome pathway (Tisdale 2005) and prolonged 

treatment with corticosteroids results in a ‘steroid myopa-

thy’, characterized by a preferential type II fi ber atrophy 

(Decramer et al 1996). The vitamin D analogue α-calcidol, 

already widely used for the treatment of osteoporosis, has 

proved successful in reducing circulating TNF-α levels and 

the release of cytokines by macrophages and improving 

muscle power in patients with rheumatoid arthritis (Scharla 

et al 2005). No studies have so far addressed the effi cacy 

of α-calcidol in the treatment of muscle weakness (and/or 

osteoporosis) in COPD.

One could also consider to provide supplementation with 

IGF-I, or inhibitors of TNF-α, but IGF-I may increase the 

chance of getting cancer and TNF-α inhibitors increase the 

risk of sepsis and infection (Hansen et al 2006). Therefore, 

factors downstream, such as the ubiquitin proteasome path-

way, or factors involved in satellite cell differentiation, may 

be better targets. In this context it is worthwhile to note that 

Id proteins may be an interesting target as they play a role in 

muscle wasting and their inhibition is also a potential target 

in the treatment of cancer (Benezra et al 2001).

Drugs that inhibit NF-κB, which is downstream of the 

TNF-receptor and an upstream regulator of MuRF1, a ubiq-

uitin ligase, appear to be effective in attenuating muscle 

wasting during cachexia (Tisdale 2005). Indeed, there are 

clear indications for further drug developments such as 

with inhibitors of the ubiquitin-proteasome pathway and 

apoptosis (Libera and Vescovo 2004; Tisdale 2005; Hansen 

et al 2006). As suggested by Tisdale (2005), it is advisable 

to combine inhibitors of protein degradation with stimula-

tors of protein synthesis by, for instance, an increased intake 

of amino acids, such as leucine, that stimulate the mTOR 

pathway (Proud 2004a).

In clinical settings, it seems that a combination of mul-

tiple strategies results in the best functional improvements. 

Clearly, however, more studies are needed to determine the 

best combination of therapies in terms of cost-effectiveness, 

benefi t and patient compliance (Schols 2003a).

Summary and conclusion
In this article, we present an overview of the changes in 

muscle structure and function in COPD and the factors 

contributing to these changes are discussed. Muscle wasting 

should be considered as a serious complication in COPD and 

has important implications for survival. One notable feature 

of the literature is the great diversity of muscle symptoms 

in patients with apparently similar degrees of lung disease. 

Whether this indicates a difference in the nature of the 

disease or of the genetic susceptibility to muscle compli-

cations remains an important question. There is no doubt, 

however, that continued research into the question of muscle 

wasting and decreased skeletal muscle fatigue resistance in 

COPD will eventually lead to the development of specifi c 

treatments for cachexia, such as targeting the ubiquitin 

proteasome pathway, cytokine inhibition, administration 

of anabolic factors as well as life style changes, such as 

exercise and nutrition. The clinical approach to cachexia in 

COPD and other chronic diseases should change dramati-

cally in the near future.
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