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Purpose: Multiple studies have suggested that comorbidities pose negative impacts on the

survival of patients with chronic obstructive pulmonary disease (COPD); few have applied

comorbidity measures driven from health insurance claims databases to predict various

health outcomes. We aimed to examine the performance of commonly used comorbidity

measures based on diagnosis and pharmacy dispensing claims information in predicting

future death and hospitalization in COPD patients.

Methods: We identified COPD patients in a population-based Taiwanese database. We built

logistic regression models with age, sex, and baseline comorbidities measured by either

diagnosis or pharmacy claims information as predictors of subsequent-year death or hospi-

talization in a random 50% sample and validated the discrimination in the other 50%. The

diagnosis-based comorbidity measures included the Charlson Index and the Elixhauser

comorbidity measure; the pharmacy-based comorbidity measures included the updated

Chronic Disease Score (CDS) and the Pharmacy-Based Comorbidity Index (PBDI).

Results: We identified 428,251 eligible patients. For overall death, the Elixhauser comor-

bidity measure showed the best predictive performance (c-statistic=0.832), followed by the

PBDI (c-statistic=0.822), the Charlson Index (c-statistic=0.815), and the updated CDS

(c-statistic=0.808). For overall hospitalization, the PBDI (c-statistics=0.730) and the

Elixhauser comorbidity measure (c-statistics=0.724) outperformed the updated CDS (c-sta-

tistics=0.714) and the Charlson Index (c-statistics=0.710). For hospitalization due to cardi-

ovascular, cerebrovascular, or respiratory diseases, the comorbidity models showed similar

predictive ranks and demonstrated c-statistics higher than 0.75. However, none of the models

could adequately predict hospitalization due to other reasons (c-statistics < 0.60).

Conclusion: Our study comprehensively compared the predictive performance of comor-

bidity measures. The Elixhauser comorbidity measure and the PBDI are useful tools for

describing comorbid conditions and predicting health outcomes in COPD patients.

Keywords: chronic obstructive pulmonary disease, diagnosis-based comorbidity measures,

pharmacy-based comorbidity measures, health outcomes, health insurance claims database

Introduction
Chronic obstructive pulmonary disease (COPD) has tremendous health impacts

worldwide.1–3 It is symbolized by chronic respiratory symptoms and persistent

airflow limitation.4 Because of the link between COPD and systemic inflammation,

several comorbidities, such as cardiovascular and cerebrovascular diseases, usually
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coexist with COPD and are significantly associated with

poor prognoses.4–8 Research has indicated that ischemic

heart disease, heart failure, stroke, and the number of

comorbidities are associated with a 1.2 to 3.4-fold

increased risk of mortality.5–8 Therefore, if we could mea-

sure comorbidities using a tool with predefined disease

categories and corresponding weights, it will be helpful

to predict patients’ future health status, stratify patients’

risk in advance, and develop potential care management

plans.

With the increasing use of health insurance claims

databases in health service research, several comorbidity

measures based on claims information have emerged in the

past several decades. Most of these measures are based on

diagnoses assigned to patients in real practice settings,

including different versions of the Charlson Index9,10 and

the Elixhauser comorbidity measure.11 Given the limited

number of diagnosis codes allowed in each database,

diverse diagnosis coding practices among healthcare pro-

fessionals, and potential coding errors, researchers have

attempted to develop pharmacy-based comorbidity mea-

sures that use drug dispensing information from health

insurance claims databases to measure comorbidity status.

The Chronic Disease Score (CDS) is the first reported

pharmacy-based comorbidity measure in the U.S.12,13

The updated CDS was subsequently developed with

expanded disease categories.14 Instead of using disease

categories to classify comorbidities, Dong et al used drug

categories to describe comorbidities, developed the

Pharmacy-Based Disease Index (PBDI), and demonstrated

its ability to predict future hospitalization in a Taiwanese

adult population.15 Multiple studies have applied these

measures in different populations and examined their per-

formance in predicting mortality, morbidity, and a variety

of health utilization.16–22

Although studies have demonstrated that comorbidities

pose negative impacts on the survival of patients with

COPD, few studies have applied comorbidity measures

driven from health insurance claims database to predict

subsequent health outcomes in this population.23,24 This

study aimed to examine the performance of commonly

used diagnosis-based and pharmacy-based comorbidity

measures to predict future death and hospitalization in

patients with COPD. Specifically, we also aimed to

explore if the PBDI, which was developed in

a Taiwanese adult population, could perform well in

a specific disease subgroup.

Methods
Data Sources and Study Population
A single-payer National Health Insurance program was

initiated in Taiwan in 1995 and reached an enrollment rate

of 99% by 2014.25 The Taiwan National Health Insurance

Database comprises comprehensive data of demographic

and enrollment records, hospital admissions and outpatient

visits, and pharmacy dispensing claims from hospitals, out-

patient clinics, and community pharmacies for 99% of the

total Taiwanese population (approximately 23 million),

which could be linked to the National Death Registry to

ascertain death information. All patient and healthcare pro-

vider identification codes are de-identified.26 The study

protocol was approved by the National Yang-Ming

University Research Ethics Committee.

We identified patients with COPD as our study popula-

tion and defined these patients as those who had at least

one inpatient or outpatient COPD diagnosis (International

Classification of Diseases, 9th Revision, Clinical

Modification [ICD-9-CM] codes 491, 492, or 496) during

2013. The algorithm has been found to have a sensitivity

of 85.0% and a specificity of 78.4%.27 We excluded

patients with an age less than 40 years or more than 100

years in 2013, patients with ambiguous sex information,

and patients who died during years of 2013 or 2014.

Ascertainment of Comorbidity Measures
Among the diagnosis-based comorbidity measures, the

Charlson Index includes 17 disease categories that character-

ize cardiovascular or cerebrovascular, endocrine, respiratory,

gastric and hepatological, renal, neurological, oncological,

rheumatologic, and miscellaneous comorbidities.9,10 The

Elixhauser comorbidity measure includes 30 disease cate-

gories that cover more comprehensive comorbidities of the

above systems.11 For example, cardiac arrhythmia and valv-

ular disease are included in the Elixhauser comorbidity mea-

sure but not in the Charlson Index. Moreover, the Elixhauser

comorbidity measure covers psychological comorbidities

such as depression and psychoses. Among the pharmacy-

based comorbidity measures, the updated CDS includes 29

disease categories,14 and the PBDI includes 37 drug

categories.15 Specifically, the PBDI has a unique strength of

including “drugs for chronic viral hepatitis”, which quantifies

a substantial disease burden in Asia and in Taiwan.

Tables S1-S4 show disease or drug categories, diagnosis or

drug codes, and the corresponding weights for each comor-

bidity measure.
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For each eligible patient, we used hospital and out-

patient diagnoses during the baseline year (i.e., 2014) to

construct disease categories and calculate the Deyo score

according to the Deyo version of the Charlson Index.9,10

We also indicated if patients had any of the Elixhauser

comorbidities in the same year.11 For the pharmacy-based

comorbidity measures, we extracted pharmacy dispensing

claims from hospitals, outpatient clinics, and community

pharmacies during the same one-year period, constructed

each patient’s medication profile, and calculated his or her

updated CDS and PBDI based on disease or drug cate-

gories and the corresponding weights developed in the

original study.14,15

Ascertainment of Outcomes of Interest
Our outcomes of interest were overall death and overall

hospitalization in the subsequent year (i.e., 2015). We also

examined if patients were hospitalized due to specific

causes, including cardiovascular disease, cerebrovascular

disease, or respiratory disease. Table S5 provides detailed

information on causes of hospitalization and the corre-

sponding hospitalization diagnosis codes. Patients were

categorized as hospitalization due to other reasons if they

did not have any of the hospitalization diagnosis codes

defined in Table S5.

Statistical Analyses
To compare the predictive performance of each comorbid-

ity measure for subsequent-year death or hospitalization,

we randomly divided the eligible patients into a training

dataset and a validation dataset of equal size. In the train-

ing dataset, we fit separate logistic regression models for

each comorbidity and for each outcome of interest. Each

comorbidity model included age, sex, plus either the Deyo

score, the 30 indicators representing the presence or

absence of the 30 Elixhauser comorbidities, the updated

CDS, or the PBDI as independent variables and the out-

come of interest as the dependent variable. A model with

predictors of age and sex only served as the reference

model. We calculated the predicted probabilities of out-

comes according to the estimated regression coefficients in

each model. Furthermore, each model created in the train-

ing dataset was applied to the validation dataset. Three

analytic methods were used in the training and validation

datasets to evaluate how well each comorbidity model

could predict subsequent-year outcomes.

First, we computed the c-statistic to evaluate each model’s

ability in discriminating patients who did and patients who did

not experience death or hospitalization in the

subsequent year.28 Second, we computed the net reclassifica-

tion improvement (NRI) to evaluate if the individual comor-

bidity models could reclassify more patients experiencing

outcomes into a higher risk stratum and more patients not

experiencing outcomes into a lower risk stratum than the

reference model. Specifically, we classified patients into dif-

ferent risk strata (i.e., very low, low, intermediate, and high)

based on their predicted probabilities of experiencing out-

comes derived by each model. Among patients with and

without subsequent-year outcomes, we constructed reclassifi-

cation tables by comparing the number of patients in each risk

stratum of each comorbidity model with the reference model,

respectively. Based on the reclassification tables, we estimated

the NRI as [P(up|D=1)-P(down|D=1)] + [P(down|D=0)-P(up|

D=0)], where D=1 if an individual experiences any outcome

of interest in the subsequent year and D=0 otherwise; the

upward movement (up) indicates an individual was reclassi-

fied into a higher risk stratum by the comorbidity model

versus the reference model, and the downward movement

(down) indicates reclassification in the opposite direction.

Therefore, the NRI represented the proportion of individuals

that were correctly reclassified, with a positive value suggest-

ing that the comorbidity model can classify more individuals

into the correct risk stratum than the reference model.29 Third,

to evaluate the calibration of each model, we grouped patients

into deciles according to the predicted probabilities of experi-

encing outcomes in each model. We compared the predicted

probability and the observed incidence of subsequent-year

outcomes within each decile.28

We conducted additional analyses to examine the robust-

ness of model performance. First, we restricted the study

population to those who had at least one inpatient or three

outpatient COPD diagnoses during 2013 to minimize poten-

tial misclassification of the COPD population. In addition, we

excluded those who died in 2015 in the model that predicted

subsequent-year hospitalization to reduce the misclassifica-

tion of patients who died as alive and without hospitalization.

All statistical analyses were performed using SAS ver-

sion 9.4 (SAS Institute, Cary, NC).

Results
Eligible Patients
We identified a total of 428,251 eligible patients

(Figure S1). The mean (standard deviation [SD]) age of

the cohort was 67 (13) years, and 60% of the patients

were male. The mean (SD) number of disease or drug
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categories ranged from 1.7 (1.4) to 5.9 (3.6) for different

comorbidity measures (Table 1). The most commonly iden-

tified comorbidities included hypertension, anxiety and ten-

sion, gastric acid disorder, and pain and inflammation. The

most commonly used non-respiratory medications included

angiotensin converting enzyme inhibitors or angiotensin II

receptor blockers, calcium channel blockers, glucocorticos-

teroids, anxiolytics, drugs for peptic ulcer or gastroesopha-

geal reflux disease, and nonsteroidal anti-inflammatory

drugs.

During the subsequent year, approximately 6% and 27%

of study patients died and were hospitalized, respectively.

Most of the patients were hospitalized due to respiratory

disease (15%), followed by cardiovascular disease (7%).

Patients in the training dataset and patients in the validation

dataset showed similar demographic characteristics, distri-

bution of comorbidity measures, and probabilities of death

or hospitalization during the subsequent year (Table 1).

Predictive Performance of Different

Comorbidity Models
The c-statistics for subsequent-year health outcomes with

different comorbidity models are listed in Table 2. For

overall death in the validation dataset, the reference

model with predictors of age and sex only yielded

a c-statistic of 0.768; however, all the models additionally

including different comorbidity measures reached c-statis-

tics greater than 0.8. The Elixhauser comorbidity measure

performed best (c-statistic=0.832), followed by the PBDI

(c-statistic=0.822), the Deyo version of the Charlson Index

(c-statistic=0.815), and the updated CDS (c-statis-

tic=0.808). For overall hospitalization, the model discri-

mination tended to be lower but still showed c-statistics

greater than 0.7. The PBDI and the Elixhauser comorbidity

measure performed best (c-statistics of 0.730 and 0.724,

respectively), followed by the updated CDS and the Deyo

version of the Charlson Index (c-statistics of 0.714 and

0.710, respectively). In terms of cause-specific hospitaliza-

tion, the Elixhauser comorbidity measure and the PBDI

still had greater discrimination than the updated CDS and

the Deyo version of the Charlson Index. Of interest, each

comorbidity measure predicted hospitalization due to car-

diovascular disease, respiratory disease, or cerebrovascular

disease better than overall hospitalization. For example,

for hospitalization due to cardiovascular disease and

respiratory disease, the Elixhauser comorbidity measure

had c-statistics of 0.792 and 0.787, and the PBDI had

c-statistics of 0.776 and 0.769. However, none of the

models optimally predicted hospitalization due to other

reasons, with c-statistics lower than 0.6.

All the NRI values in Table 3 are positive, which

indicates the improved reclassification ability of each

comorbidity model versus the reference model for the

subsequent-year outcomes. In general, the reclassification

abilities of the Elixhauser comorbidity measure and the

PBDI remained better than the Deyo version of the

Charlson Index and the updated CDS for different out-

comes. For example, for overall death and in the validation

dataset, approximately 26%, 24%, 21%, and 15% of indi-

viduals were correctly reclassified by the Elixhauser

comorbidity measure, the PBDI, the Deyo version of the

Charlson Index, and the updated CDS, respectively. The

cut-off points of probabilities of each outcome for differ-

ent risk strata are shown in Table S6.

Figure 1 presents the observed and predicted probabilities

of each outcome in each decile defined by the predicted

probabilities of outcomes of interest derived by the PBDI.

The observed probabilities of overall death, overall hospita-

lization, and cause-specific hospitalization increased from

the lowest risk decile to the highest risk decile and closely

matched the corresponding predicted probabilities. However,

the observed and predicted probabilities of hospitalization

due to other reasons did not greatly vary among risk deciles,

which suggested poor calibration abilities. The findings

derived by other comorbidity models show similar patterns

(data not shown).

Results of Additional Analyses
When we restricted the study population to those who had

at least one inpatient or three outpatient COPD diagnoses

during 2013 or those who did not die in 2015, the model

discrimination of the Elixhauser comorbidity measure and

the PBDI were better than that of the Deyo version of the

Charlson Index and the updated CDS for different out-

comes, although the c-statistics tended to be lower than

that in the main analysis (Table S7 and Table S8).

Discussion
This population-based study examined the predictive per-

formance of a variety of comorbidity measures derived

from health insurance claims for health outcomes in patients

with COPD. The Elixhauser comorbidity measure per-

formed best, followed by the PBDI, and in general, the

Deyo version of the Charlson Index and the updated CDS

showed similar predictive abilities for health outcomes. In
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Table 1 Patient Characteristics of the Study Cohort

Characteristics Eligible Patients

(n=428,251)

Training Dataset

(n=214,126)

Validation Dataset

(n=214,125)

Age, mean (SD), years 67.1 (13.2) 67.1 (13.2) 67.0 (13.2)

Male, % 256,337 (59.9) 128,034 (59.8) 128,303 (59.9)

Deyo disease categories (0–17), mean(SD) 1.7 (1.4) 1.7 (1.4) 1.7 (1.4)

Deyo score, mean(SD) 2.0 (1.9) 2.0 (1.9) 2.0 (1.9)

Elixhauser disease categories (0–30), mean(SD) 2.5 (1.8) 2.5 (1.8) 2.5 (1.8)

Elixhauser score, mean(SD) 5.4 (6.1) 5.4 (6.1) 5.4 (6.1)

Updated CDS, disease categories (0–29), mean(SD) 5.5 (3.2) 5.5 (3.2) 5.5 (3.2)

Updated CDS, score mean(SD) 4,213.0 (4,248.3) 4,215.0 (4,244.5) 4,210.9 (4,252.2)

PBDI, disease categories (0–37), mean(SD) 5.9 (3.6) 5.9 (3.6) 5.9 (3.6)

PBDI score, mean(SD) 1.1 (0.9) 1.1 (0.9) 1.1 (0.9)

Subsequent-year overall death, % 24,933 (5.8) 12,554 (5.9) 12,379 (5.8)

Subsequent-year overall hospitalization, % 116,062 (27.1) 58,172 (27.2) 57,890 (27.0)

Subsequent-year hospitalization due to CV diseasea, % 31,794 (7.4) 16,071 (7.5) 15,723 (7.3)

Subsequent-year hospitalization due to

cerebrovascular diseasea, %

14,643 (3.4) 7,337 (3.4) 7,306 (3.4)

Subsequent-year hospitalization due to respiratory

diseasea, %

63,416 (14.8) 31,742 (14.8) 31,674 (14.8)

Subsequent-year hospitalization due to other reasons, % 37,705 (8.8) 18,932 (8.8) 18,773 (8.8)

Note: aPatients may be counted for hospitalization due to multiple reasons.

Abbreviation: CV, cardiovascular.

Table 2 C-Statistics of Different Comorbidity Measures in Relation to Subsequent-Year Health Outcomes

Comorbidity

Measure

Training Dataset (n=214,126)

Hospitalization Due to

Overall Death Overall

Hospitalization

CV Disease Cerebro –

Vascular Disease

Respiratory

Disease

Other Reasons

Referencea 0.771 (0.767,0.775) 0.662 (0.660,0.665) 0.709 (0.706,0.713) 0.702 (0.697,0.708) 0.722 (0.719,0.725) 0.521 (0.516,0.525)

Deyo version of

Charlson Index

0.815 (0.811,0.818) 0.712 (0.709,0.714) 0.746 (0.742,0.750) 0.740 (0.735,0.745) 0.755 (0.752,0.758) 0.574 (0.570,0.579)

Elixhauser

comorbidity

measure

0.834 (0.831,0.838) 0.727 (0.725,0.730) 0.793 (0.790,0.797) 0.765 (0.760,0.770) 0.789 (0.786,0.791) 0.623 (0.618,0.627)

Updated CDS 0.808 (0.805,0.812) 0.717 (0.714,0.719) 0.762 (0.759,0.766) 0.728 (0.723,0.734) 0.757 (0.754,0.760) 0.577 (0.573,0.581)

PBDI 0.822 (0.819,0.826) 0.733 (0.731,0.735) 0.780 (0.777,0.783) 0.734 (0.729,0.739) 0.768 (0.765,0.771) 0.600 (0.596,0.605)

Comorbidity

Measure

Validation Dataset (n=214,125)

Hospitalization Due to

Overall Death Overall

Hospitalization

CV Disease Cerebro –

Vascular Disease

Respiratory

Disease

Other Reasons

Referencea 0.768 (0.764,0.772) 0.660 (0.658,0.663) 0.707 (0.703,0.711) 0.697 (0.691,0.703) 0.723 (0.720,0.726) 0.520 (0.515,0.524)

Deyo version of

Charlson Index

0.815 (0.811,0.818) 0.710 (0.707,0.712) 0.745 (0.741,0.749) 0.738 (0.733,0.744) 0.756 (0.753,0.758) 0.573 (0.568,0.577)

Elixhauser

comorbidity

measure

0.832 (0.829,0.836) 0.724 (0.722,0.726) 0.792 (0.789,0.796) 0.760 (0.755,0.765) 0.787 (0.785,0.790) 0.621 (0.617,0.625)

Updated CDS 0.808 (0.805,0.812) 0.714 (0.712,0.717) 0.758 (0.754,0.762) 0.723 (0.718,0.729) 0.757 (0.754,0.759) 0.576 (0.572,0.580)

PBDI 0.822 (0.819,0.826) 0.730 (0.728,0.733) 0.776 (0.773,0.780) 0.731 (0.726,0.736) 0.769 (0.766,0.771) 0.598 (0.593,0.602)

Note: aA model including age and sex only as predictors.

Abbreviations: CDS, chronic disease score; CV, cardiovascular; PBDI, pharmacy-based disease indicator.
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terms of individual outcomes, all comorbidity measures had

excellent discrimination in predicting overall death (c-sta-

tistics > 0.8) and acceptable discrimination in predicting

overall hospitalization (c-statistics > 0.7). Moreover, each

comorbidity measure predicted hospitalization due to cardi-

ovascular disease, respiratory disease, or cerebrovascular

disease better than overall hospitalization but did not ade-

quately predict hospitalization due to other reasons. The

performance ranks did not greatly differ for different pre-

dictive statistics or definitions of COPD or when we

restricted the study population to those who did not die in

the subsequent year.

Comparison of Different Comorbidity

Measures
As the use of health insurance claims databases in health-

care settings is increasing, our results provide important

implications in terms of describing the health status of

patients with COPD using health insurance claims infor-

mation. Our study indicated that the Elixhauser comorbid-

ity measure performed best in predicting any outcome of

interest in the subsequent year. Chu et al found the

Elixhauser comorbidity measure yielded a higher c-statis-

tic (0.701) than that of the Charlson Index (0.681) in

predicting subsequent-year death among patients with

COPD,23 although the difference for measures was mini-

mal in another study conducted by Austin et al (c-statis-

tics: 0.822 for the Elixhauser comorbidity measure and

0.819 for the Charlson Index).24 Quail et al also found

that the Elixhauser comorbidity measure had superior per-

formance in predicting overall death and overall hospita-

lization in a general population, an elderly population,

patients with diabetes, and patients with osteoporosis.18

Compared to other tested comorbidity measures, the

Elixhauser comorbidity measure includes more comprehen-

sive disease categories across organ systems of the human

body. The weights were derived specifically for individual

health outcomes in the current cohort. For example, for over-

all death and overall hospitalization, the categories of meta-

static cancer and alcohol abuse had the highest weights. For

cause-specific hospitalization, cardiovascular comorbidities

(congestive heart failure and cardiac arrhythmias),

Table 3 Net Reclassification Improvement of Different Comorbidity Measures in Relation to Subsequent-Year Health Outcomes

Comorbidity Measure Training Dataset (n=214,126)

Hospitalization Due to

Overall

Death

Overall

Hospitalization

CV

Disease

Cerebro – Vascular

Disease

Respiratory

Disease

Other

Reasons

Referencea Ref Ref Ref Ref Ref Ref

Deyo version of Charlson

Index

20.6 18.6 16.6 14.7 15.9 10.4

Elixhauser comorbidity

measure

25.7 23.8 29.0 18.4 24.8 19.9

Updated CDS 14.4 18.7 19.6 7.9 14.8 7.7

PBDI 24.1 27.0 28.2 10.9 20.8 17.5

Comorbidity Measure Validation Dataset (n=214,125)

Hospitalization Due to

Overall

Death

Overall

Hospitalization

CV

Disease

Cerebro – Vascular

Disease

Respiratory

Disease

Other

Reasons

Referencea Ref Ref Ref Ref Ref Ref

Deyo version of Charlson

Index

20.7 18.9 16.8 17.0 15.5 10.2

Elixhauser comorbidity

measure

25.6 23.4 29.0 18.8 24.5 19.6

Updated CDS 14.7 18.4 19.3 8.9 14.4 8.0

PBDI 24.5 26.9 28.2 12.9 20.8 16.8

Note: aA model including age and sex only as predictors.

Abbreviations: CDS, chronic disease score; CV, cardiovascular; PBDI, pharmacy-based disease indicator.
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cerebrovascular comorbidities (paralysis and other neurolo-

gical disorders), and respiratory comorbidities (chronic pul-

monary disease) played the most influential roles (Table S9).

Therefore, it is not surprising that he Elixhauser comorbidity

measure showed the best performance. However, it requires

a sufficient sample size, and it may be tedious to re-derive

weights for the 30 Elixhauser comorbidity categories for the

outcome of interest and population each time it is used.

Therefore, researchers need to consider the available sample

size and to what extent they would like to achieve the pre-

dictive performance when selecting candidate comorbidity

measures for their target population.

Our study showed the PBDI performed right next to the

Elixhauser comorbidity measure but better than the Deyo

version of the Charlson Index and the updated CDS.

Several reasons may explain these findings. First, compared

to the updated CDS, the PBDI includes more drug cate-

gories. In addition, the PBDI applies the weights derived

from a general Taiwanese population. Third, unlike many

health insurance claims databases which do not have infor-

mation on drug use during hospitalization,30 data on inpa-

tient drug use are available in Taiwan’s NHIRD.26 These

factors all facilitate the PBDI to reveal more comprehensive

comorbidities and to better predict health outcomes.

Dong et al indicated that the PBDI performs numerically

better than the Deyo version of the Charlson Index in pre-

dicting the subsequent-year overall hospitalization in

a general Taiwanese population (c-statistics of 0.715 and

0.691, respectively).15 The current study further demon-

strated satisfactory performance of the PBDI in predicting

various health outcomes in patients with COPD. If we treat

37 PBDI drug categories, rather than a single PBDI score, as

independent variables and apply the weights derived for each

drug category, the PBDI can perform even better than the

Elixhauser comorbidity measure (Table S10). Compared to

Chu and Austin’s studies, which only examined the
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Figure 1 Observed and predicted probabilities of subsequent-year outcomes among individuals in deciles defined by the predicted probability of the outcome defined by the

PBDI in the validation dataset (n=214,125).

Abbreviations: CV, cardiovascular; PBDI, pharmacy-based disease indicator.
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predictive performance of diagnosis-based comorbidity mea-

sures in patients with COPD,23,24 our study provides a more

complete comparison across diagnosis-based and pharmacy-

based comorbidity measures. Our findings suggest that the

PBDI, which is based on drug dispensing information, is

useful to stratify patient risk and may facilitate the develop-

ment of care management plans in real practice. Further

research can be conducted to examine its predictive ability

in other disease populations or in other countries.

Comparison of Different Health Outcomes
Our study showed each comorbidity model better predicted

overall death than overall hospitalization, which is consistent

with what has been observed in other studies.16–19,21

Compared to previous findings, our study further demon-

strated that each comorbidity model can still achieve satisfac-

tory discrimination when we focused on hospitalization due to

cardiovascular disease, cerebrovascular disease, or respiratory

disease, which are the leading causes of hospitalization in the

COPD population.31–33 This observation may be because

compared to overall death and the leading causes of hospita-

lization, patients hospitalized due tomiscellaneous reasons are

susceptible to non-disease factors that could not be captured

by the comorbidity measures. These results also suggest that

researchers target disease-specific outcomes when applying

these comorbidity measures in COPD management.

Limitations
Our study has several limitations. First, we focused on

comorbidity measures that use diagnosis and pharmacy dis-

pensing claims data. Similar to most claims databases, the

Taiwan health insurance claims database does not contain

information on clinical parameters, such as the forced expira-

tory volume in one second. Therefore, we could not compare

the predictive performance of the claims-based comorbidity

measures with that of available multi-dimensional indexes

(such as the BODE and CODEX indexes) that are highly

associated with COPD prognosis and require information on

many clinical parameters.34,35 In addition, we did not exam-

ine the predictive abilities of the well-known Johns Hopkins

Adjusted Clinical Group System because it requires compu-

tation with complex and commercial algorithms.36

Conclusion
In conclusion, our study comprehensively compared the

predictive performance of various comorbidity measures

and various health outcomes in the setting of a population-

based health insurance claims database. The Elixhauser

comorbidity measure and the PBDI are useful tools for

describing comorbid conditions and predicting health out-

comes in patients with COPD.

Abbreviations
CDS, Chronic Disease Score; COPD, chronic obstructive

pulmonary disease; CV, cardiovascular; ICD-9-CM,

International Classification of Diseases, 9th Revision,

Clinical Modification; NRI, net reclassification improve-

ment; PBDI, Pharmacy-Based Disease Index.
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