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Objective: Hepatic stellate cells (HSCs) are the important players in liver cirrhosis and liver

cancer. They also act as critical mediators of immunosuppression in hepatocellular carcinoma

(HCC). In this study, we hypothesized that HSCs promote HCC progression via C3.

Methods: C3 in HSCs was knocked down using a shRNA retroviral plasmid. The condi-

tioned medium from HSCs or shC3 HSCs (knockdown of C3 by shRNA in HSCs) was

collected to detect their effects on bone marrow (BM) and T cells (including expansion and

apoptosis) in vitro, and in an HCC in situ model in mice.

Results: We found that HSCs promoted T-cell apoptosis and decreased their proliferation,

inhibited dendritic cell (DC) maturation, and induced myeloid-derived suppressor cell

(MDSC) expansion through the C3 pathway in vitro. In addition, the knockdown of C3

suppressed HSC-promoted HCC development in the orthotopic transplantation tumor model

of HCC in mice.

Conclusion: These findings provide more insights into the immunomodulatory roles of

HSCs in HCC progression and indicate that modulation of the C3 pathway might be a novel

therapeutic approach for liver cancer.

Keywords: hepatocellular carcinoma, hepatic stellate cells, complement C3, myeloid-

derived suppressor cells, T cells

Introduction
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related

death worldwide.1,2 Due to drug resistance by immune evasion in HCC, there is

currently no comprehensive treatment for this disease. The tumor microenviron-

ment, which consists of hepatic stellate cells (HSCs), myeloid-derived suppressor

cells (MDSCs), regulatory T cells (Tregs), and tumor-associated macrophages

(TAMs), plays an important role in immune evasion in HCC.3,4 Reciprocal com-

munication between tumor cells and stromal cells in the tumor microenvironment is

fundamental to the initiation and progression of HCC.5,6

HSCs are the important non-parenchymal cells in the liver, and the co-

transplantation of HSCs with allogeneic islets exerts immunomodulatory effects.4

HSCs are also the critical stromal cells that accelerate hepatocarcinogenesis and

potentiate the metastasis of HCC by increasing the expression of N-methyltransferase.7

Moreover, HSCs secrete high levels of interleukin-6 (IL-6) and tumor necrosis factor-

alpha (TNF-α), the key regulators of Th17 cell differentiation, leading to a poor

prognosis.8,9 MDSCs are another key regulator of immune responses.10 MDSCs are
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a heterogeneous population of immature myeloid cells

(IMCs), including myeloid progenitors and precursors of

macrophages, granulocytes, and dendritic cells (DCs). In

pathological conditions such as infections and cancer, the

differentiation of IMCs into mature myeloid cells is partially

blocked, resulting in the expansion of MDSCs.11 Active

HSCs play a key role in HCC by producing abundant cyto-

kines, such as activated third component of complement

(C3), prostaglandin E2 (PGE2), stem cell factor (SCF),

macrophage colony-stimulating factor (M-CSF), IL-6, gran-

ulocyte-macrophage colony-stimulating factor (GM-CSF),

and vascular endothelial growth factor (VEGF), which

induce MDSC expansion.11–16 We previously found that

HSCs increased Tregs and MDSC levels in the HCC micro-

environment, which lead to the growth of HCC.17 Although

HSCs play an important role in immunosuppression in HCC,

it is still unclear how HSCs modulate the MDSCs and form

a negative network that leads to HCC immune escape.

The complement system is the major component of both

innate immunity and the acquired immune system. C3 is the

central component of the complement system and promotes

growth, proliferation, migration, and stemness of cutaneous

squamous cell carcinoma.18,19 Activation of C3 triggers

resistance of tumor cells to programmed death-ligand 1

(PD-L1) antibody by modulating TAMs.20 In C3-deficient

mice, the growth and metastasis of primary tumors were

strongly inhibited in lung cancer, which was ascribed to the

increased numbers of CD4+ and CD8+ T cells.21 C3 has

varied functions in HCC progression, and the role of C3 in

HSC-mediated HCC immune escape is not fully known.

HSCs promote the development of MDSCs in the DC

culture through C3.12 Moreover, in a mouse model of

HCC, HSCs induced expansion of MDSCs and granulocy-

tic-MDSCs (G-MDSCs) via a COX2/PEG2-dependent

pathway, but affect monocytic-MDSCs (Mo-MDSCs)

expansion through COX2/PEG2-independent signaling.

The mechanisms that HSCs trigger in Mo-MDSC expan-

sion are still unclear.22,23

We hypothesized that HSCs promote HCC progression

via C3. Thus, the conditioned medium from HSCs or shC3

HSCs (knockdown of C3 by shRNA in HSCs) was col-

lected to detect their effects on bone marrow (BM) and

T cells, and both in vitro and in vivo results demonstrated

that HSCs promoted T-cell apoptosis and inhibited their

proliferation through a C3 pathway. Current studies pro-

vide more insights into the immunomodulatory roles of

HSCs in HCC progression, indicating that the modulation

of the C3 pathway might be a novel therapeutic approach

for liver cancer.

Materials and Methods
Animals
Eight-week-old male BALB/c (H-2d, haplotype) mice

were purchased from the National Rodent Laboratory

Animal Resources (Shanghai, China). They were housed

under pathogen-free conditions in the animal center of

Xiamen University. The mice were randomly assigned to

three groups as follows: (1) the control group received an

intrahepatic injection of 1 × 106 H22 cells; (2) the HSC

group received an intrahepatic injection of 1 × 106 H22

cells plus 2 × 105 activated HSCs; and (3) the shC3 HSC

group received an intrahepatic injection of 1 × 106 H22

cells plus 2 × 105 shC3 HSC. Each group had at least six

mice. All animal experimental protocols were performed

in compliance with the Guidelines for the Institutional

Animal Care and Use Committee of Xiamen University.

Cell Culture
The H22 cells were purchased from Shanghai Cell Bank

(Chinese Academy of Sciences) and grown in Roswell

Park Memorial Institute (RPMI) 1640 medium (HyClone,

Logan, UT, USA), supplemented with 10% fetal bovine

serum (FBS), 100 U/mL penicillin, and 100 U/mL strep-

tomycin at 37°C and 5% CO2. The HSCs were isolated

from the livers of BALB/c mice as previously described.22

The conditional medium from HSCs (HSC-CM) or shC3

HSCs (shC3-CM) was obtained as follows: The cells were

grown in 10-cm plates, whereas the HSCs or shC3 HSCs

were grown to 100% confluence, and then the media were

replaced with 10 mL fresh FBS-free medium. After 24 hrs

of culture, the media were collected to culture with bone

marrow or T cells.

Knockdown of C3 in HSCs
Knockdown of C3 in HSCs was performed using a shRNA

retroviral plasmid containing a puromycin resistance gene,

which was purchased from Clontech (Mountain View, CA,

USA). Lentiviral pLKO.1 vector was used to express short

hairpin RNA (shRNA) directed against C3. Turbofect trans-

fection reagent (Thermo Scientific, Waltham, MA, USA)

was used for the transfection. The stable cells were selected

by 1 μL/mL puromycin for 1 week. The transfection effi-

ciency was assessed by Western blot assay and real-time

quantitative polymerase chain reaction (RT-qPCR). The
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primers for C3 were 5ʹ-GTGGTCACTCAGGGATCTAATG

-3ʹ (forward) and 5ʹ- TCTGGGAGAGTGTCCTTCTT-3ʹ

(reverse). Western blot assay and RT-qPCR were performed

as descriptions.24,25

Cell Apoptosis Assay
T cells were isolated from BALB/c mice spleens by nylon

wool-elution, as described previously.23 T cells were cul-

tured with RPMI 1640 medium, HSC-CM, or shC3 HSC-

CM in 12-well plates, respectively, and then stimulated with

1 μg/mL of anti-CD3 mAb and CD28 (R&D Systems,

Minneapolis, MN, USA). After 24 hrs, cells were harvested

and subjected to flow cytometry (CytoFLEX LX, Beckman

Coulter, Boulevard Brea, CA, USA) for cell apoptosis assay

by incubation with Annexin-V-FITC and PI (BD

PharMingen, San Diego, CA, USA).

T-Cell Proliferation Assay
Proliferation of T cells was analyzed by carboxyfluores-

cein succinimidyl ester (CFSE) dilution assay. T-cell pro-

liferation assay was performed in 12-well plates (Corning,

Corning, NY, USA). The T cells were stimulated with

1 μg/mL of anti-CD3 mAb and CD28. After 72 hrs of

culture, cells were harvested and divided into two groups

to be stained with APC-CD4 and APC-CD8 antibodies,

respectively. Flow cytometry was performed to test T-cell

proliferation.

Flow Cytometry Analysis
APC-CD11b, PE Gr-1, FITC-Ly-6G, PE-Ly-6C, APC-CD4,

and APC-CD8 were purchased from Biosciences (San Jose,

CA, USA). CD40, CD86, CD80, CD274, and MHCII were

purchased from eBioscience (San Diego, CA, USA). Tumor

cells were prepared for flow cytometry analysis as pre-

viously described.23 Fluorescent-labeled cells were ana-

lyzed with CytoFLEX LX.

Statistical Analysis
Randomization was used to assign mice to different

experimental groups and to collect and process data. All

of the histology samples were scored blindly and indepen-

dently by at least two investigators. The data and statistical

analysis comply with the recommendations on experimen-

tal design and analysis in pharmacology. Data were ana-

lyzed using Prism6.0 (GraphPad Software, USA), and they

are presented as the mean ± standard deviation (SD). Each

experiment was performed at least three times. Group

comparisons were performed using one-way analysis of

variance (ANOVA). For all ANOVA, post hoc tests were

run only if F achieved p < 0.05 and there was no signifi-

cant variance inhomogeneity. P < 0.05 was considered

statistically significant.

Results
Downregulation of C3 Expression by

shRNA in HSCs
In our previous study, we reported that the conditioned

medium from HSCs (HSC-CM) induced MDSC expansion

(especially G-MDSCs) through COX2-PEG2.23 However,

the mechanism by which HSCs induced Mo-MDSC

expansion was unclear. To explore the putative mechan-

ism, we tested three shRNA (sh1, sh2, sh3) in the context

of a lentiviral vector for their activity to downregulate C3

expression in HSCs. The results showed that all three

shRNA but not their vector significantly decreased the

protein levels and mRNA expression of C3 (Figure 1A

and B). The sh3 was chosen for further studies.

HSCs Inhibit Bone Marrow (BM)-Derived

DCDifferentiation Through theC3 Pathway
Encouraged by the knockdown efficiency of sh3 on C3 in

HSCs, we further tested the role of C3 in BM-derived DC

differentiation in HSCs. The conditional media from HSCs

and shC3 HSCs (shC3-CM) were collected to culture with

BM, and the biomarker of BM-derived DC differentiation

was measured by flow cytometry analysis. Consistent with

previous findings,23 the expressions of CD11c, CD80,

CD86, and MHC II were decreased and CD274 expression

was slightly increased in BM co-cultured with HSC-CM

(Figure 2A). However, shC3-CM increased the expression

of CD11c, CD86, and MHC II in BM when compared with

the HSC-CM group (Figure 2A), suggesting that HSCs

inhibited BM cell differentiation into immature DCs and

macrophages through C3.

MDSCs are critical mediators of tumor-induced immune

dysfunction and cancer progression.26 To detect the effect of

HSCs on MDSC accumulation in the liver cancer micro-

environment, the expression of MDSCs and their subsets

were then detected. Murine MDSCs co-express CD11b and

Gr-1, and their subsets consist of granulocytic-MDSCs

(G-MDSCs, CD11b+Ly6G+Ly6Cint/low) and monocytic-

MDSCs (Mo-MDSCs, CD11b+ Ly6G−Ly6Chigh).11 Thus,

in our study, the gating strategy of these cells was per-

formed as shown in Figure 2B. MDSC expression was

significantly increased in BM co-cultured with HSC-CM,
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whereas C3 knockdown significantly suppressed the incre-

ment of MDSC expression. We also investigated the

influence of C3 on the subsets of MDSCs, G-MDSCs, and

Mo-MDSCs. HSC-CM induced both G-MDSC and

Mo-MDSC expansion, whereas C3 knockdown effectively

decreased the Mo-MDSCs expansion but not the increased

G-MDSCs expression (Figure 2D). When combined, these

results suggest that HSCs induce MDSC and Mo-MDSC

expansion via the C3 pathway.

HSCs Induce T-Cell Apoptosis and

Suppress T-Cell Proliferation Through the

C3 Pathway
HSCs also exhibit immunomodulatory activities;4 there-

fore, we further explored the role of C3 in the immuno-

suppressive effects of HSCs on T cells. HSC-CM and

shC3-CM were collected to culture with T cells for

24 hrs and 72 hrs, and the apoptosis and cell proliferation

of T cells were analyzed by flow cytometry, respectively.

Data showed that HSC-CM induced T-cell apoptosis,

whereas the knockdown of C3 in HSCs markedly

decreased the increment of the apoptosis ratio of T cells

(Figure 3A). In addition, the proliferation of CD4+ and

CD8+ T cells was measured by CFSE label. As shown in

Figure 3B and C, cell proliferation of CD4+ and CD8+

T cells was inhibited by HSCs, whereas this inhibitory

trend was weakened by C3 knockdown. In addition, we

had added the recombinant C3a into the proliferation and

apoptosis of T cells. The data showed that HSC knock-

down C3 lost the ability to inhibit T-cell proliferation and

promoted T-cell apoptosis, and when supplemented with

C3a, the T cell ability was partly recovered (Supplement

Figure 1).

Knockdown of C3 Suppressed

HSC-Promoted HCC Development
HSCs have been reported to enhance HCCdevelopment,27–29

and C3 contributed to the growth of HCC (Supplement

Figure 2); thus, we further studied the role of C3 in HSCs in

the mouse model of HCC. The intra-hepatic injection of H22

cells into male BALB/c mice induced significant HCC symp-

toms on day 10 after the operation, whereas the administra-

tion of H22 cells together with HSCs further enhanced tumor

growth (Figure 4A). However, co-injection of H22 cells with

C3 knockdown shC3 HSCs effectively suppressed the HSC-

promoted HCC development (Figure 4A). We also analyzed

the MDSCs and the subsets of the cell population in the

tumor. The expressions of MDSCs and their subsets,

G-MDSCs and Mo-MDSCs, were increased in tumor tissues

fromHSC-treated mice, but were decreased in the shC3HSC

group (Figure 4B and C). These results showed that C3

contributed to the immunosuppressive effects of HSCs

in vivo.

Discussion
The tumor environment plays a critical role in tumor devel-

opment. In the HCC environment, different players, such as

HSCs, MDSCs, and Tregs, contribute to HCC progression

by building a negative network that leads to immune

escape.3 In the last decade, many researchers have focused

on understanding the modulation of the tumor microenvir-

onment to reveal the mechanism of liver cancer.30,31 The

tumor microenvironment that consists of liver-resident cells

(e.g., liver sinusoidal endothelial cells and HSCs) and infil-

trating immune cells (e.g., DCs, T cells, MDSCs, NK cells,

Treg, and macrophages) is known to play an important role

in HCC development in the liver. These cells promote HCC

Figure 1 Expression of C3 was down-regulated in HSCs via shC3 transfection. (A) Representative western blot bands and quantification of C3a abundances in HSCs (HSC)

or treatment with vehicle (shCon) or shRNA after cells generated with puromycin for 1 week. The relative intensity was normalized to actin and relative to the HSC. (B)
The C3 mRNA level of HSCs, shCon HSCs, or shC3 HSCs was measured by real-time qPCR cells generated with puromycin for 1 week. The statistical significance was

labeled as ***p < 0.001, ns, p > 0.05, n = 3.
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growth by the formation of negative immune responses.3

T cells (namely cytotoxic T cells), NK cells, and macro-

phages have the ability to kill tumor cells and eradicate

established tumors.32–34 DCs as antigen-presenting cells

stimulated T-cell activation. However, in the tumor micro-

environment, their abilities were generally suppressed by

MDSCs and Tregs. HSCs exist in the space of Disse for the

storage of vitamin A and play a central role in liver fibrosis

and HCC development. In the liver cancer microenviron-

ment, activated HSCs are capable of shaping an immuno-

suppressive environment through inducing an accumulation

of MDSCs and inhibiting T-cell proliferation and function.

However, the underlying mechanism was not entirely clear.

In this study, we found that C3 plays an important role in

Figure 2 HSCs inhibit bone marrow (BM)-derived DC differentiation through the C3 pathway. (A) Flow cytometry analysis of cell surface marker expression in DC

differentiation in Ctrl medium (1640 medium), HSC-CM (conditional medium from HSCs), or shC3-CM (conditional medium from shC3 HSCs). (B) The gating strategy of

MDSC subsets. (C) The MDSC expression in Ctrl, HSC-CM, or shC3-CM media. Number is percent of the cell population represented by MDSCs. (D) The G-MDSC and

Mo-MDSC expression in Ctrl, HSC-CM, or shC3-CM media. Percent G-MDSCs was calculated as follows: corrected G-MDSC percent = 100% × CD11b+ percent ×

Ly6G+Ly6Clow percent. Corrected Mo-MDSC percent = 100% × CD11b+ percent × Ly6G−Ly6Chigh percent. The statistical significance was labeled as ***p < 0.001;

**p < 0.01; ns, p > 0.05, n = 3.
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HSC-mediated HCC progression. We demonstrated the cap-

ability of C3 to suppress BM-derived DC differentiation,

enhance MDSCs and their subset expansion, promote T-cell

apoptosis, and inhibit the proliferation of CD4+ and CD8+

T cells in vitro. We also investigated the role of C3 in HSCs

in the mouse model of HCC (Figure 5). In a previous study,

HSCs were found to induce G-MDSC expansion but not

Mo-MDSC expansion through the COX2-PGE2 pathway.23

However, there was no study on the effects of C3 in HSC-

mediated HCC progression before our study, and for the

first time, we reported the immunomodulatory roles of C3

produced by HSCs in liver cancer.

MDSCs are one of the most important regulators of

immune responses in liver cancer.10 MDSCs expand in

pathological conditions, such as cancer, infections, sepsis,

trauma, transplantation, and some autoimmune disorders.11

MDSCs could be induced from mature human monocytes

through HSCs dose-dependently.35 Furthermore, activated

human hepatic stellate cells induce myeloid-derived sup-

pressor cells from peripheral blood monocytes in a CD44-

dependent fashion.36 Bone marrow cells cultured with

HSC-CM express lower levels of CD11c, CD80, CD86,

and MHCII (Figure 2B), suggesting that HSCs inhibit the

differentiation of IMCs into mature myeloid cells and

increase the expansion of MDSCs. These results were

consistent with our previous results and those of other

researchers.23,37 However, knockdown of C3 in HSCs

reverses this effect. Notably, knockdown of C3 in HSCs

Figure 3 HSCs induce T-cell apoptosis and suppress T-cell proliferation through the C3 pathway. T cells were co-cultured with Ctrl (1640 medium), HSC-CM (conditional

medium from HSCs), or shC3-CM (conditional medium from shC3 HSCs), followed by measurement of (A) apoptosis using Annexin V/PI assay after co-culturing for

24 h and (B, C) proliferation of CD4+ and CD8+ T cells after co-culturing for 72 h using CFSE staining assay. T cells were simulated with CD3 and CD28 antibody. The

statistical significance was labeled as ***p < 0.001; **p < 0.01; n = 3.
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decreased the expansion of Mo-MDSCs but had no effect

on G-MDSCs. Previous results showed that HSCs induced

MDSCs and G-MDSCs via a COX2/PEG2-dependent

pathway,23 which seemed to suggest that HSCs induced

expansion of G-MDSCs via a COX2/PEG2-dependent

pathway, but increased the expression of Mo-MDSCs

through C3 signaling.

HSCs also influence immune suppression by promoting

T-cell apoptosis via the C3 pathway.15 The effect of C3 on

the immune response is dual. Local C3 secretion by macro-

phages leads to IL-17A-mediated inflammatory cell Th17

cell infiltration into the kidney.38 However, macrophages

from C3−/- mice showed a reduced capability to stimulate

an alloreactive T-cell response.39 Human plasma C3 is not

essential for the development of T cells.40 However, our

results demonstrated that C3 derived from HSCs had

a suppressive effect on T-cell proliferation. The inconsistent

effect of C3 on immune response may be due to other cell

populations or coexisting factors in the local inflammatory

environment, which could directly or indirectly modulate

C3 signaling on immune cells. In this study, the role of C3

was in accordance with that reported in islet

transplantation.12 In addition, C3 is produced by hepato-

cytes and is abundant in the liver;41 thus, why C3-deficient

HSCs lose their immunosuppressive abilities in vivo is of

special interest. In theory, the C3 expression of HCC cells

would affect the DCs and T cells. Interestingly, the local

environment theory showed, in many circumstances, such

as the regulation of T-cell response42,43 and osteoclast

differentiation,44 that the effector complement components

are locally produced by related cells, not by systemic com-

plement components produced by hepatocytes. Another

possibility is that HSCs produce a C3 isoform that is dif-

ferent from that produced by hepatocytes in structure and

function. A more thorough investigation of the isoform of

C3 is needed to support this hypothesis.

Figure 4 Knockdown of C3 suppressed HSCs promoted HCC development. (A) Representative images of typical tumors 10 days after intra-hepatic injection of H22 cells

(Ctrl), together with vehicle HSC or shC3 HSC into male BALB/c mice. (B) MDSC accumulation in tumors was counted. Number is percent of the cell population

represented by MDSCs (right panels). (C) G-MDSCs and Mo-MDSCs in tumors were measured with flow cytometry. Number is percent of the cell population represented

by G-MDSCs and Mo-MDSCs. Percent G-MDSCs was calculated as follows: corrected G-MDSC percent = 100% × CD11b+ percent × Ly6G+Ly6Clow percent. Corrected

Mo-MDSC percent = 100% × CD11b+ percent × Ly6G−Ly6Chigh percent. The statistical significance was labeled as ***p < 0.001, **p < 0.01, and *p < 0.05.
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Conclusion
Our data showed that HSCs promoted HCC progression,

which suggests that the cellular and molecular mechanisms

mediating the immunomodulatory activity of HSCs are

required to provide more insight into the progression of

HCC and boost the development of therapeutic strategies

for HCC.
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