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Background: The aim of this study was to compare the distribution characteristics and ocular

pharmacokinetics of norvancomycin (NVCM) in ocular tissues of the anterior segment between

continuous topical ocular instillation and hourly administration of eye drop in rabbits.

Methods: Sixty rabbits were randomly divided into two groups: continuous topical ocular

instillation drug delivery (CTOIDD) group and eye drop (control) group. In the CTOIDD group,

NVCMsolution (50mg/mL)was perfused to the ocular surface using theCTOIDD system at 2mL/

h up to 10 h and the same solution was administered at one drop (50 μL) per hour for 10 h in the

control group. Animals (N=6 per time-point per group) were humanely killed at 2, 4, 6, 10, and 24 h

to analyze their ocular tissues and plasma. The concentrations of NVCM in the conjunctiva, cornea,

aqueous humour, iris, ciliary body and plasma were measured by HPLC with photodiode array

detector. The pharmacokinetic parameters were calculated by Kinetica 5.1.

Results: The highest concentrations of NVCM for the CTOIDD group and control group were

2105.45±919.89 μg/g and 97.18±43.14 μg/g in cornea, 3033.92±1061.95 μg/g and 806.99

±563.02 μg/g in conjunctiva, 1570.19±402.87 μg/g and 46.93±23.46 μg/g in iris, 181.94

±47.11 μg/g and 15.38±4.00 μg/g in ciliary body, 29.78±4.90 μg/mL and 3.20±1.48 μg/mL in

aqueous humour, and 26.89±5.57μg/mL and 1.90±1.87μg/mL in plasma, respectively. Themean

NVCMlevels significantly increased at all time-points in cornea, iris, and ciliary body (p<0.05) in

the CTOIDDgroup. TheAUC0–24 values in the CTOIDDgroupwere 27,543.70μg·h/g in cornea,

32,514.48 μg·h/g in conjunctiva, 8631.05 μg·h/g in iris, 2194.36 μg·h/g in ciliary body and

343.9 μg·h/mL in aqueous humour, which were higher than for the eye drop group in all tissues.

Conclusion: Since continuous instillation of NVCM with CTOIDD could reach significantly

higher concentrations and was sustained for a longer period compared with hourly administration

of eye drop, CTOIDD administered NVCM could be a possible method to treat bacterial keratitis.

Keywords: topical drug delivery, ocular tissue, anterior segment, area under the curve, rabbit eye

Introduction
Topical ocular administration of eye drops is a common method used to treat

anterior segment diseases of the eye, especially chronic ocular diseases. Topical

ocular administered drugs bypass the liver, thus avoiding the need for higher

systemic doses with the oral route.1 However, with diseases such as ulcerative

keratitis and acute conjunctivitis, higher therapeutic drug levels are required, as

regular dose intervals of eye drops (four times per day) cannot meet the require-

ments owing to poor retention on the drug on the ocular surface because of tear
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turnover, and the innate protective mechanisms of the

eye.2–4 Therefore, fortified drops5 and subconjunctival

and intracameral injections are chosen in severe cases.

Administration of drops every 15 min is clinically imprac-

tical and hourly administration can decrease patient com-

pliance and increase health-care expenses.6–8 On the other

hand, injections are invasive and associated with a risk of

injury.9 Various methods, such as punctum plugs, drug-

eluting contact lenses, ocular implants, and nanocarrier

systems, have been explored to prolong the pre-corneal

time and improve the drug concentration in the ocular

tissues for treating anterior ocular segment diseases.10–12

However, limiting factors of these methods are biodegra-

dation, an inability to precisely control drug delivery, and

idiopathic harm to the eyeball.7,13-15 The continuous topi-

cal ocular instillation drug delivery (CTOIDD) system in

our study consists of a cribriform polyvinyl chloride tube

with a ring shape and an attached drug pump (Figure 1A).

This device allows for automatic, controllable, and contin-

uous instillation of drug solution to the ocular surface.

Norvancomycin (NVCM), a glycopeptide antimicro-

bial agent, differs from vancomycin only in that the –

NHCH3 at the peptide amino-terminal of vancomycin is

replaced by –NH2. It has comparable anti-bacterial spec-

trum and antibacterial properties to those of vancomycin,

used for Gram-positive infections (Figure 2A and B). Its

solubility is greater than 100 mg/mL in water solvent,

which is similar to vancomycin. NVCM was indepen-

dently developed by Chinese scientists and is a cheaper

alternative to vancomycin. NVCM is approved by

the China Food and Drug Administration and is widely

used in China to treat bacterial infections of Gram-positive

C 

A 

B 

D 

Figure 1 Illustration of the CTOIDD system model (A); the tube section was fixed on the conjunctiva of a rabbit eye (B, C); the pump section was connected with the tube

and delivered the norvancomycin to the ocular surface. Rabbits were kept in individual cages with food and water provided during drug administration (D).

Abbreviations: NVCM, norvancomycin; CTOIDD, continuous topical ocular drug delivery.
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cocci and bacilli. especially infections of methicillin-resis-

tant Staphylococcus.16–18

To date, there have been no pharmacokinetic studies on

continuous instillation of NVCM to the ocular surface. This

study was designed to compare the distribution character-

istics and pharmacokinetics of NVCM between a continuous

topical ocular instillation and hourly administration of eye

drops (control group) in rabbits.

Materials and Methods
Animals
Adult male and female New Zealand white rabbits weighing

2.0–2.5 kg were obtained from the Department of Laboratory

Animals, Xiangya School of Medicine, Central South

University. All animal experiments were conducted in accor-

dance with the statement of the Association for Research in

Vision and Ophthalmology. The statement for the Use of

Animals in Ophthalmic and Vision Research was approved

by the Animal Ethics Committee of the Central South

University (approval no. 2019sydw0045). All of the healthy

rabbits, with no ocular disease upon full examination, were

assigned randomly to two groups for the drug delivery study.

Drug Administration
Sixty rabbits were randomly divided into the CTOIDD

group (n=30) and the eye drop group (n=30). Males and

females were randomly grouped. The rabbits were

anesthetized with intramuscular injection of xylazine

hydrochloride (2 mL: 0.2 g; Huamu Animal Health

Products Co., Jilin, China; 0.1–0.2 mL/kg). NVCM hydro-

chloride solution (50 mg/mL) was prepared as follows:

400 mg NVCM hydrochloride (Huabei Pharmaceutical

Co., China) dissolved in 8 mL 0.9% saline. NVCM was

freshly prepared and used within 2 days. In the CTOIDD

group, a 0.7 mm diameter polyvinyl chloride tube was cir-

cumflected and the both ends were travelled across a

plastic sleeve. The short end was sealed and the long end

was connected to a pump (Biyang Corp., Changsha,

China) loaded in NVCM hydrochloride solution. The poly-

vinyl chloride tube ring had 10 pores of 0.3 mm diameter

in each hemicircle (Figure 1A). The eyes of each rabbit

were anesthetized topically with oxybuprocaine hydro-

chloride eye drops (20 mL: 80 mg; Santen

Pharmaceutical Co., Japan), three times at 3 min intervals.

The ring around the limbus was sutured in the bulbar

conjunctiva (Figure 1B and C). NVCM solution was

instilled at a rate of 2 mL/h from the pump through the

pores to the eye for 10 h. The NVCM solution was seen to

be distributed and instilled in the ocular surface. All rab-

bits, wearing Elizabethan collars, were kept in individual

cages with food and water provided during drug adminis-

tration (Figure 1D). In the eye drop group, 50 mg/mL

NVCM solution was administered at one drop (50 μL)

per hour for 10 h.

A B 

Figure 2 Structural formula of (A) norvancomycin; (B) vancomycin.
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Obtaining Tissue Samples
The rabbits from both groups (n=6 for CTOIDD group,

n=6 for eye drop group) were killed by administrating

3 mL lidocaine and 3 mL air intravenously at 2, 4, 6, 10,

and 24 h, respectively, after initial administration. Blood

plasma and ocular tissues including conjunctiva, cornea,

aqueous humour, iris, and ciliary body were collected

promptly after death. All the samples were weighed, stored

at −20°C, and processed for analysis.

Drug Analysis Procedures
The concentration of NVCM in the samples was deter-

mined by high-performance liquid chromatography with

a photodiode array detector (HPLC-PDA). The HPLC-

PDA analyses were performed using an Ultimate 3000

system (Thermo Fisher Scientific, San Jose, CA, USA),

including a DAD-3000 detector, a TCC-3000 column

oven, a WPS-3000 sampler, a HPG-3400RS pump,

a Thermo Xcalibur Roadmap, and a Chromeleon Xpress

version 2.4 workstation. Liquid chromatographic separa-

tion was performed on an Elite C18 Hypersil octadecylsi-

lyl silicon column (2.1 mm×150 mm i.d., 5 μm particle

size; Thermo Fisher Scientific), at 40°C. The mobile phase

consisted of a combination of phase 91% solvent A

(20 mmol/L sodium dihydrogen phosphate, pH 3.2) and

phase 9% solvent B (acetonitrile). The isocratic flow rate

was 0.250 mL/min. The total running time was 12.0 min

for each injection. The detection wavelength was 205 nm.

Data were calculated with the Xcalibur 2.0 system.

Frozen rabbit ocular tissue and plasma samples were

thawed at ambient temperature. Each weighted solid ocu-

lar tissue (bulbar conjunctiva, cornea, iris, ciliary body)

was added to 500 μL pure water and homogenized using

a Bio-Gen PRO200 Homogenizer (ProScientific, USA).

Fluid samples were also added to 500 μL pure water. A

volume of 200 μL of the mixture was transferred to a 1.5

mL centrifuge tube, with the addition of with 20 μL

aliquots of vancomycin internal standard (IS) 60 μg/mL

standard solution and mixed. After thorough vortex mix-

ing for 30 s, 30 μL 50% trifluoroacetic acid was added

and then vortex mixed for 30 s. The mixture was stored at

4°C for 10 min. The mixture was centrifuged at

14,000 rpm for 5 min. The upper layer was removed

and dried with a miVac (Genevac) at 45°C. The dried

residue was dissolved with 200 μL mobile phase. After

centrifugation (14,000 rpm for 5 min), 2 μL of the clear

supernatant was injected into the liquid chromatography

system.

Pharmacokinetics and Statistical Analysis
NVCM concentrations were analysed for pharmacody-

namics in different tissues as calculated by Kinetica 5.1

software (Thermo Fisher Scientific, Waltham, MA, USA)

using a model of non-compartmental analysis. The phar-

macokinetic parameters included were maximum concen-

tration (Cmax), time to maximum concentration (Tmax), and

the area under the concentration–time curve from 0 to 24 h

(AUC0–24).

Statistical analysis was performed using SPSS 24.0

(IBM Corp., Armonk, NY, USA). All of the NVCM con-

centration results were presented as mean ± SD. One-way

analysis of variance was used to compare the overall

difference between the CTOIDD group and eye drop

group. An independent samples t-test was used to compare

the differences between the two groups at each time-point.

AUC0–24 comparison was performed using thet-test.

Differences were considered statistically significant at

p<0.05.

Results
Analytical Method Validation
Linearity

Standard calibration curves were prepared by spiking

blank serum with the appropriate volume of one of

the above-mentioned working solutions to produce the

standard curve points equivalent to 0, 1.67, 3.12, 6.25,

12.5, 25.0, 50.0, and 100.0 μg/mL of NVCM. Each

sample also contained 20 μL aliquots of vancomycin

(IS 60 μg/mL). The following preparation and assay

procedures were the same as described in the “Drug

analysis procedures” subsection. In each run, a blank

serum (no IS) was also analyzed. Least squares linear

regression was used to determine the plasma concentra-

tion from the peak area ratios (NVCM vs vancomycin).

The equation is:

Y =0.01019+0.0106*X, R2=0.9993. The instrumental

lower limits of detection and quantitation were 0.50 μg/
mL and 1.00 μg/mL, respectively.

Specificity and Selectivity

Figure 3A shows the chromatograph of blank plasma and

Figure 3B that of blank plasma spiked with NVCM and

vancomycin. The NVCM’s retention time was 5.1 min and
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that of vancomycin was 6.8 min. No disturbance in sam-

ples was found in this condition.

Recovery, Precision, and Stability

The recovery of the extraction procedure for NVCM and the

internal standard were calculated by comparing the peak area

obtained after extraction with that of an aqueous drug

solution of corresponding concentration without extraction.

Five samples were tested. The tested data are shown in

Table 1.

The NVCM plasma working standards prepared above, at

concentrations of 3.12, 12.5, and 50 μg/mL, were used to

determine the recovery, inter-day and intra-day precision, and

stability in storage of the method (Tables 2 and 3).

A

B

Figure 3 Chromatograph of blank plasma in the HPLC-PDA method (A); chromatograph of blank plasma spiked with norvancomycin and vancomycin (B).
Abbreviation: HPLC-PDA, high-performance liquid chromatography with photodiode array detector.
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Concentration of Norvancomycin in

the Two Groups
The mean concentrations of NVCM in different tissues in

the two groups at five time-points are shown in Table 4.

The concentration–time graphs are shown in Figure 4. The

NVCM concentrations in ocular tissues and blood plasma

were significantly different between the two groups. The

concentration levels of NVCM in conjunctiva tissue in

the CTOIDD group were higher significantly at 2, 6, 10,

and 24 (p=0.02 at 2 h, p=0.001 at 6 h, p=0.005 at 10 h,

p=0.001 at 24 h) and not significantly different at 4 h

(p=0.085) in comparison to the control group

(Figure 5A). The concentration levels of NVCM in corneal

tissue in the CTOIDD group were significantly higher at

all time-points (p=0.002 at 2 h, p=0.003 at 4 h, p=0.003 at

6 h, p=0.006 at 10 h, p=0.000 at 24 h) than in the control

group. NVCM concentration was shown to be very limited

in the cornea tissue in the control group (Figure 5B).

NVCM concentrations were also higher significantly at

all time-points in iris and ciliary body tissues in the

CTOIDD group (iris: p=0.033 at 2 h, p=0.000 at 4 h,

p=0.002 at 6 h, p=0.004 at 10 h, p=0.007 at 24 h; ciliary

body: p=0.007 at 2 h, p=0.000 at 4 h, p=0.000 at 6 h,

p=0.002 at 10 h, p=0.012 at 24 h) than in the control group

(Figure 5C and D). NVCM concentration reached peak

concentration rapidly at 4 h and declined quickly later,

while more moderate fluctuation was observed in the con-

trol group. The concentration levels of NVCM in aqueous

humour in the CTOIDD group were higher significantly at

4, 6, 10, and 24 h (p=0.041 at 2 h, p=0.001 at 6 h, p=0.000

at 10 h, p=0.003 at 24 h) and not significantly different at

2 h (p=0.054) in comparison to the control group

(Figure 5E). NVCM concentration levels measured in

blood plasma revealed significant differences between the

two groups at 4, 6, and 10 h (p=0.018 at 4 h, p=0.000 at

6 h, p=0.000 at 10 h) and negligible differences at 2 and

24 h (p=0.107 at 4 h, p=0.064 at 6 h) (Figure 5F).

Relative Relationship of Norvancomycin

Level in Ocular Tissue and Plasma

Within Groups
The relative relationship of NVCM in ocular tissue and

plasma, including conjunctiva/cornea, iris/cornea, and

plasma/cornea ratios in the CTOIDD and eye drop

groups are shown in Table 5. NVCM concentration–

time profiles in ocular tissue and blood plasma in

the CTOIDD group and eye drop group are shown in

Figure 6A and B.

Pharmacokinetic Study
The pharmacokinetic parameters of NVCM in ocular tis-

sue in the two groups are shown in Table 6. The AUC0–24

of all tissues in the CTOIDD was significantly higher than

in the eye drop group (Figure 5). In the CTOIDD group,

the Cmax values were 3033.92 μg/g (conjunctiva),

2105.45 μg/g (cornea), 1570.19 μg/g (iris), 181.94 μg/g
(ciliary body), 29.78 μg/mL (aqueous humour), and

26.89 μg/mL (blood plasma). The time-points of Tmax

were 6 h (conjunctiva), 6 h (cornea), 4 h (iris), 4 h (ciliary

body), 10 h (aqueous humour), and 6 h (blood plasma),

respectively. The AUC0–24 values were 32,514.48 μg·h/g
(conjunctiva), 27,543.70 μg·h/g (cornea), 8631.05 μg·h/g

Table 1 Mean Recovery Rates of Norvancomycin and Vancomycin

in Plasma

Drug Added (μg/

mL)

Recovery

(%)

RSD (%)

(n=5)

Norvancomycin 3.12 75.6 4.5

12.5 76.2 5.2

50.0 75.9 4.9

Vancomycin 60.0 76.1 5.0

Abbreviation: RSD, relative standard deviation.

Table 2 Intra-Day Precision and Inter-Day Precision

Concentration

(μg/mL)

Intra-Day Inter-Day

Mean Observed

Concentration

(n=5)

RSD

(%)

Mean

Observed

Concentration

(n=5)

RSD

(%)

3.12 3.20 6.7 3.16 6.3

12.5 12.4 1.2 12.6 2.1

50.0 50.1 1.5 49.9 1.9

Abbreviation: RSD, relative standard deviation.

Table 3 Stability of Long-Term Storage

Time Concentration

(μg/mL)

Mean Observed

Concentration (n=5)

RSD

(%)

5 days 3.12 3.18 6.2

12.5 12.3 1.5

50.0 50.2 1.6

30 days 3.12 3.09 5.9

12.5 12.4 1.7

50.0 50.1 2.2

Abbreviation: RSD, relative standard deviation.
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(iris), 2194.36 μg·h/g (ciliary body), 343.94 μg·h/mL

(aqueous humour), and 234.36 μg·h/mL (blood plasma),

respectively.

In the control group, the Cmax values were 806.99 μg/g
(conjunctiva), 97.18 μg/g (cornea), 46.93 μg/g (iris),

17.75 μg/g (ciliary body), 3.2 μg/mL (aqueous humour),

and 1.9 μg/mL (blood plasma). The Tmax time-points were

4 h (conjunctiva), 4 h (cornea), 2 h (iris), 2 h (ciliary

body), 6 h (aqueous humour), and 2 h (blood plasma),

respectively. The AUC0–24 values were 4505.89 μg·h/g
(conjunctiva), 1075.80 μg·h/g (cornea), 813.68 μg·h/g
(iris), 252.16 μg·h/g (ciliary body), 31.92 μg·h/mL (aqu-

eous humour), and 29.22 μg·h/mL (blood plasma),

respectively.

Discussion
Conventional topical eye drops have limitations because of

poor retention on the ocular surface due to tear turnover,

and low drug bioavailability in ocular tissue. Thus, fre-

quent application (half hourly or hourly)19 of eye drops

would be required to improve the drug concentration in a

short time when treating acute severe anterior segment

diseases, which generally leads to poor patient

compliance.20,21 NVCM has been considered the antibiotic

of choice for the treatment of infections caused by methi-

cillin-resistant Gram-positive bacteria.17,18 In this study,

we compared the distribution characteristics and pharma-

cokinetics of NVCM between continuous topical instilla-

tion via a CTOIDD system and hourly administration of

eye drops.

The ocular surface consists of tear film, conjunctiva

(bulbar, palpebrae, and fornix), and cornea. The cornea

and conjunctiva are the tissue barriers that limit ocular

drug absorption after the instillation of eye drops. There

are two main routes for topical eye drop absorption:

trans-corneal and trans-conjunctival.22 Topically admini-

strated drugs are diluted or even washed away when

they come into contact with the tear film in the pre-

corneal area. The cornea is composed of five layers: the

epithelium, Bowman’s layer, the stroma, Descemet’s

membrane, and the endothelium. The cornea can be

viewed as three distinct layers when discussing drug

delivery: the corneal epithelium, stroma, and

endothelium.8 The epithelium, with its tight junctions,

restricts drug permeation,23 especially for hydrophilic

and large molecules. The stroma beneath limits lipophi-

lic drugs; however, the innermost endothelium is not a

strict barrier.24 The surface area of the conjunctiva is

nine and 17 times larger than that of cornea in rabbits

and human, respectively,25 which may be another factor

contributing to the greater absorption of hydrophilic

Table 4 Norvancomycin Concentrations in the Anterior Segment

Tissue and Blood Plasma in OTCIDD and Eye Drop Groups

Hours (h) Eye Drop Group

(μg/g, μg/mL)

OTCIDD Group

(μg/g, μg/mL)

Conjunctiva

2 179.00±53.62 1330.01±793.57*

4 806.99±563.02 2221.90±1262.92

6 240.47±114.40 3033.92±1061.95**

10 145.16±34.96 1821.14±853.74**

24 51.57±13.47

(F=36.369)

249.70±62.11**

(p<0.01)

Cornea

2 68.04±51.15 1317.67±558.19**

4 97.18±43.14 1903.32±814.24**

6 66.36±54.87 2105.45±919.89**

10 43.53±21.15 1522.79±778.26**

24 15.85±6.51

(F=64.744)

243.77±73.00**

(p<0.01)

Iris

2 46.93±23.46 293.41±558.19*

4 39.98±8.75 1570.19±402.87**

6 44.75±18.32 651.39±259.50**

10 41.95±13.24 318.09±147.07**

24 12.58±4.03

(F=25.600)

56.08±23.45**

(p<0.01)

Ciliary Body

2 17.75±12.96 90.75±41.86**

4 10.73±6.35 181.94±47.11**

6 15.38±4.00 148.09±28.52**

10 11.38±6.52 101.81±33.77**

24 6.67±4.29 24.60±10.23*

(F=69.361) (p<0.01)

Aqueous Humour

2 0.95±0.75 2.72±1.05

4 1.18±0.24 6.17±4.39*

6 3.20±1.48 15.73±4.51**

10 1.39±0.39 29.78±4.90**

24 0.90±0.44

(F=30.949)

6.93±2.45**

(p<0.01)

Blood Plasma

2 1.90±1.87 6.11±4.23

4 1.18±1.20 9.05±5.05*

6 1.58±1.047 26.89±5.57**

10 1.46±0.44 16.59±4.26**

24 0.57±0.250

(F=33.948)

1.30±0.72

(p<0.01)

Notes: *p<0.05, **p<0.01.
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drugs via conjunctival routes, as the conjunctiva has

leakier and more numerous tight junctions than

the cornea.26 Furthermore, the conjunctiva is composed

of multi-layered vascularized connective tissue, which is

responsible for drug absorption and disposition to the

sclera, iris, and ciliary body, and sparingly to the retina

and choroid. In addition, the trans-conjunctival route is

one of the pathways that leads to systemic drug

absorption.26–28

In our study, the NVCM concentrations in the ocular

tissue and blood plasma in rabbits were measured by the

established HPLC-PDA method. HPLC determination

showed a good linear correlation and was validated via

extraction recovery, intra- and inter-day methodological

recovery, and stability of NVCM in serum.

Our results showed that NVCM levels of ocular tissues in

the CTOIDD group were much higher at all time-points,

except for in the conjunctiva at 4 h and the aqueous humour,

withno significant difference from the control group. It was

demonstrated that delivering NVCM administered by

the CTOIDD method increased the level of NVCM in ante-

rior segment tissue significantly compared to when the drug

B A 

C D 

E F 

Figure 4 Concentration–time curve of norvancomycin concentration in conjunctiva (A), cornea (B), iris (C), ciliary body (D), aqueous humour (E), and blood plasma (F) in
the two groups. The aread under the concentration–time curve from 0 to 24 h were compared using the t-test. Values are given as the mean±SD (n=6), **p<0.01.
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was administered topically in an hourly manner. NVCM

weighs 1435.19 Da and has hydrophilic characteristics with

a solubility of more than 100 mg/mL in solvent water. Thus,

in the control group, the NVCM concentrations present in

corneal tissue were low even when NVCM solution was

instilled at one drop/hour. The CTOIDD system used in our

experiment allows NVCM solution to be delivered continu-

ously, thereby elevating the concentration in the tear film and

counteracting the effects of high turnover of tear film to some

extent, as the rate of drug delivery by CTOIDD is faster than

tear production, which is unattainable by frequent eye drop

application. CTOIDD achieves higher levels of drug delivery

to the anterior segment of the eye by prolonging the residence

time of drug in the ocular surface. This prolonged residence

time was also seen to influence the trans-conjunctival route,

where the concentrations in the iris, ciliary body, and blood

plasma in the CTOIDD group showed higher values as a

result of greater absorption by the conjunctiva.

In the CTOIDD group, the mean NVCM concentra-

tions were found in the following samples, from highest to

lowest in order: conjunctiva, cornea, iris, ciliary body,

aqueous humour, and blood plasma. This order is same

as in the control group during the 24 h study. The differ-

ences between conjunctiva and cornea were closer in

A B 

C D 

E F 

Figure 5 Comparison of the levels of norvancomycin at different time-points between the two groups in conjunctiva (A), cornea (B), iris (C), ciliary body (D), aqueous

humour (E), and blood plasma (F). One-way analysis of variance was used to compare the overall difference between the CTOIDD group and eye drop group. Values are

given as the mean±SD (n=6), *p<0.05, **p<0.01.
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the CTOIDD group, but wider in the control group. The

ratios of conjunctiva/cornea at all time-points were lower

and the ratios of iris/cornea were slightly lower in

the CTOIDD group. Trans-conjunctival routes play an

important role in drop absorption, mainly because

NVCM is hydrophilic and the corneal epithelium favours

lipophilic drugs.28,29 However, continuous NVCM deliv-

ery can narrow the difference between these two routes.

For systemic absorption, the levels in plasma were higher

in the CTOIDD group. This can be explained by the fact

that more drug absorption occurs through the trans-

conjunctival route and through the nasolacrimal route into

the circular system. However, the ratio of plasma/cornea

showed a lower value in the CTOIDD system. The rate

and extent of trans-corneal routes increased faster than the

systemic absorption in the CTOIDD group.

The pharmacokinetic study in the two groups revealed

that, comparing the main pharmacokinetic parameters

between the CTOIDD and control groups, NVCM preserva-

tion in the cornea and conjunctiva in the CTOIDD group

during the 24 h study was about 25.60 and 7.22 times

greater than in the control group, and around 10 times

higher in the aqueous humour, iris, and ciliary body. The

Cmax of cornea and conjunctiva in the CTOIDD group

reached 2105.45 μg/g and 3033.92 μg/g, respectively. In
the CTOIDD group, the conjunctiva and cornea reached

their peak concentration at 6 h, aqueous humour at 10 h,

and iris and ciliary body at 4 h. We observed that the

NVCM level in the cornea, iris, and ciliary body at 24 h

in the CTOIDD group was more than the peak concentra-

tion in the control group. No significant ocular pathological

changes or adverse events were found in the CTOIDD or

the eye drop group. This study demonstrates that

the CTOIDD system can provide and maintain higher levels

of NVCM to the anterior segment in the eye and can

potentially be used for acute and severe anterior segment

diseases, such as ulcerative keratitis and bacterial conjunc-

tivitis, where expedient high drug concentrations are

required and need to be sustained for a relatively long time.

Studies on topical delivery device systems, including

polymeric micelles,30 contact lenses,31–33 resorbable con-

junctival devices, punctum plugs, and mini tablets,9 have

reported improved drug uptake over conventional drug for-

mulations. However, these devices were limited to a certain

total drug dosage, not controllable, with a limited time of

action and accidental loss.15 In addition, microneedles that

can be inserted into the cornea,34–36 trans-corneal

Table 5 Concentration Ratio of Conjunctiva/Cornea, Iris/Cornea, and Plasma/Cornea in OTCIDD and Eye Drop Groups

Hour 2 4 6 10 24

OTCIDD group

Conjunctiva/cornea 1.009 1.167 1.441 1.196 1.024

Iris/cornea 0.222 0.825 0.309 0.209 0.230

Plasma/cornea 0.005 0.005 0.013 0.011 0.005

Eye drop group

Conjunctiva/cornea 2.631 8.304 3.624 3.334 3.253

Iris/cornea 0.690 0.411 0.674 0.964 0.794

Plasma/cornea 0.028 0.012 0.024 0.034 0.036

A 

B 

Figure 6 Norvancomycin concentration–time profiles in different anterior segment

tissue and blood plasma in the CTOIDD group (A) and eye drop group (B).
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ultrasound-media drug delivery,37 and trans-corneal ionto-

phoresis techniques have been reported.38–40 Even though

these methods are non-invasive or minimally invasive, to

increase the ability of the drug to travel across the biological

barrier, and further research is required to confirm their

safety and efficacy.

The limitations in this experiment are as follows.

Differences exist between human and the rabbit eye model,

such as rabbits having smaller eyeballs and more rapid blood

circulation. However, rabbits are generally used as surrogates

for drug devices and pharmacokinetic studies as their eye

anatomy and physiology resemble those in humans.41 In

addition, the NVCM level in solid ocular tissue cannot be

measured in vivo at different time-points on the same rabbit

by the HPLC-PDA method because the solid ocular tissues

can only be obtained when the animal is humanely killed.

Generalization of these data from rabbits to humans would be

influenced by lower rabbit tear volumes and blink rate, which

may affect the dynamics of NVCM dissolution, and

the release and ocular absorption of the impregnated drugs.

Since the eyes of rabbits have proptosis, we fixed the

CTOIDD with a suture to prevent the tube from dropping

out in this study. More advanced versions of the CTOIDD

could be optimized to be placed in the cul-de-sac non-inva-

sively and effortlessly, with a portable pump, when applied in

human subjects.

In summary, this preliminary study suggests that con-

tinuous topical instillation via CTOIDD improves NVCM

concentration, and the convenience of the CTOIDD sys-

tem (without the need to frequently administer antibiotic

drops) relieves nursing needs. Although CTOIDD has

advantages over the current clinical methods of topical

eye drop delivery of NVCM into rabbit eyes, further

research is warranted to evaluate the efficacy of

the CTOIDD system in animal disease models.

Conclusion
The current study provided promising results for the poten-

tial application of the CTOIDD system to prolong the dos-

ing interval, increase compliance, and improve the efficacy

of NVCM in anterior segment ocular tissue in comparison

with the hourly eye drop method. Thus, the CTOIDD

system is a possible alternative method to deliver drugs to

the anterior segment of the eye and to provide possible

management of severe anterior segment disease.
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