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Abstract: Traditional Chinese medicine (TCM) has been used as a significant cancer

treatment method for many years in China. It has been demonstrated that TCM could assist

in inhibiting the growth of tumors and prolonging the survival rates of cancer patients.

Although the mechanism of TCM are still not clear, accumulating evidence has shown that

they may be related to the tumor microenvironment (TME). Tumor-associated macrophages

(TAMs) play a significant role in TME and are polarized to two phenotypes, M1 (classically

activated) and M2 (alternatively activated) TAMs. The two different phenotypes of TAMs

play converse roles in the TME and M2-polarized tumor-associated macrophages (M2-

TAMs) always lead to poor prognosis in cancer patients compared to M1-polarized tumor-

associated macrophages (M1-TAMs). In this review, the potential correlation between TCM

and TAMs (especially the M2 phenotype) in tumor progression and promising TCM strate-

gies targeting TAMs in cancer are discussed.

Keywords: traditional Chinese medicine, TCM, tumor-associated macrophages, TAMs,
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Introduction
Traditional Chinese medicine (TCM) has been used as a very important tumor

treatment strategy for many years in China.1 TCMs and their active ingredients

have been shown to enhance the antitumor effects and reduce the toxicity of

chemotherapy and radiotherapy, alleviate the symptoms of cancer, and prolong

the survival rates of cancer patients in many clinical and preclinical studies.2–11

Although it is not clear how TCM plays a role in tumors, increasing evidence has

shown that the mechanism of TCM may be related to its synergistic effect on

regulating the tumor microenvironment (TME).12,13

Among tumor-infiltrating immune cells, tumor-associated macrophages (TAMs)

constitute an important population, and considerable data have indicated that TAM

infiltration into tumors always leads to poor prognosis.14–17 In addition, TAMs are

stimulated by different molecules to polarize into two phenotypes, classically

activated phenotype (M1) and alternatively activated phenotype (M2) TAMs. The

two phenotypes of TAMs, M1-polarized tumor-associated macrophages (M1-

TAMs) and M2-polarized tumor-associated macrophages (M2-TAMs), play impor-

tant roles in the TME by functioning as immune cells and playing different roles in

cancer cells. Furthermore, M2-TAMs could diminish effective antitumor immune
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responses, promote angiogenesis and cause vascular per-

meability to support tumor growth. Therefore, TAM-

targeted therapy, including the functional suppression of

M2-TAMs and repolarization of M2-like TAMs towards

the M1-like phenotype, has emerged as a novel and pro-

mising strategy for cancer treatment.18

In this review, we suggest a hypothesis that the syner-

gistic effect and molecular mechanisms of TCM in cancer

treatment are related to TAMs (especially M2-TAMs) in

the TME, and we hope to find promising strategies target-

ing TAMs for tumor treatment using TCMs and their

active ingredients.

The Mechanisms of TAMs in Tumors
Tumor microenvironment (TME), composed of tumor cells

and surrounding stroma, is related to the progression and

metastasis of tumor, and immunosuppression.19

Additionally, one of cancer therapies is remodeling TME.18

TAMs are a major component of the tumor microenviron-

ment (TME) as immune regulators and potential

targets.14,20,21 TAMs are known to be polarized into two

phenotypes, M1 (classically activated) and M2 (alternatively

activated) TAMs, and these two types play different roles in

the TME.18,22 Increasing studies have shown that the M1

phenotype exerts tumor resistance effects, while the M2

phenotype promotes tumors in the TME;18,23 both of these

functions are related to their roles as immune cells.

The Roles of M1-TAMs and M2-TAMs as

Pivotal Immune Cells
Considering different stages of tumor development, TAMs

could enable a dual role by switching two phenotypes as

M1–like phenotype and M2-like phenotype. When in early-

stage of tumor progression, TAMs mostly display M1 pheno-

type to cause tumor cell disruption. Conversely, themajority of

TAMs showM2 phenotype in tumoral late-stage, followed the

decreased antitumoral capacity. During various stages, there is

not only one phenotype of TAMs butM1-polarized TAMs and

M2-polarized TAMs coexisting.24 And the balance of M1 and

M2 phenotype determines patients’ outcome. The difference

between stages is the occupancy rate of two phenotypes TAMs

and this rate could be changed by the changeable environment

or components, added medicants and various kinds of targets.

For example, the removal of apoptotic neutrophils could

reverse M1-TAMs to M2-TAMs;25 the polarization of TAMs

to M2 phenotype could be promoted by tumor hypoxia;26

targeting CSF1/CSF1R axis could repolarize the phenotype

of TAMs of M2-like to M1-like.27 M1-TAMs and M2-TAMs

are coexisting and functioning differently in TME, and could

repolarize to each other.

The antitumoral capacity of M1-TAMs is always

related to the inflammatory response and the activation

of specific lymphocytes. Interferon-γ (IFN-γ) could induce

M1-TAMs alone or cooperate with cytokines (tumor

necrosis factor (TNF)-α) or microbial stimuli (lipopolysac-

charide (LPS)) to secrete proinflammatory cytokines, such

as (C-X-C motif) ligand 9 (Cxcl9), Cxcl10, Cxcl5, TNF-α,
interleukin (IL)-1, IL-6, IL-12, or IL-23, and exert great

phagocytic and microbicidal ability.23,28–34 In addition,

M1-TAMs contribute to the higher expression levels of

major histocompatibility complex class II (MHC II) mole-

cules and higher secretion levels of IL-12; these changes

could induce an antiangiogenic effect by increasing the

expression of Cxcl10 or IP-10, which is chemokine indu-

cible protein-10, and promote the bactericidal activity of

phagocytes through naïve T cells differentiating into Th1

cells to stimulate the growth of both natural killer (NK)

cells and T cells23,24,28,34 (Figure 1).

In contrast, M2-TAMs play a role in supporting tumor

growth by upregulating anti–inflammatory cytokine

expression and suppressing inflammation in the tumor

immunosuppressive microenvironment (TIM). M2-TAMs

are activated by IL-4 and IL-13, known as Th2 cytokines,

to downregulate IL-12 and IL-23 and increase the expres-

sion level of IL-10, which is an anti–inflammatory cyto-

kine, and conversely, IL-10 expressed by M2 macrophages

stimulates Th2 cells to produce IL-4 and IL-13.23,34–37 The

activation of IL-4 or IL-13 accompanied with Fizz-1’s

high expression, which is an indicator of the polarization

from TAMs to M2 phenotype. The functions of Fizz-1 in

TME include inflammation, angiogenesis, and cell

proliferation.38–40 In addition, IL-10 could suppress proin-

flammatory cytokine (including IFN-γ, IL-2, IL-3, and

tumor necrosis factor-α (TNF-α)) synthesis and inhibit

antigen-presenting cells from presenting antigens.

Furthermore, M2-TAMs can produce ccl17, ccl22, ccl24,

and ccl22 and inhibit CD4+ and CD8+ T cell effector

functions and recruit regulatory T cells (Tregs) to the

TME18,28,41–44 (Figure 1).

M1-TAMs secrete proinflammatory cytokines (TNF-α,
interleukin (IL)-1, IL-6, IL-12, or IL-23) to exert great

phagocytic and microbicidal ability. Additionally, M1-

TAMs could promote the bactericidal activity of phagocytes

by differentiating naïve T cells into Th1 cells to stimulate the

growth of both T and NK cells. M2-TAMs secrete
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proangiogenic factors, such as vascular endothelial growth

factor (VEGF) and matrix metallopeptidase 9 (MMP9), to

support metastasis and tumor growth. M2 cytokines, such as

ccl17, ccl22, and ccl24, could inhibit CD4+ and CD8+ T cell

effector functions and recruit regulatory T cells (Tregs) to

the TME. In addition, a high level of IL-10 expression

suppresses the synthesis of proinflammatory cytokines and

inhibits antigen-presenting cells from presenting antigens.

Direct Effects of M1-TAMs and M2-TAMs

on Cancer Cells
As mentioned above, the polarization of TAMs to the M1

phenotype is related to the inflammatory response and the

activation of specific lymphocytes, both of which are methods

for attempting to eliminate tumor cells.29,33,34 Additionally, in

the early stage of tumor progression, M1-like phenotype

TAMs exert tumor resistance effects by causing tumor cell

disruption by expressing high levels of IL-1234 (Figure 2).

Studies have shown thatM2-TAMs could promote cancer

progression by supporting the proliferation, migration, and

invasion of cancer stem cells. Huang et al45 found that after

co-incubating M2-TAMs with A549 and H441 cells, which

are non-small cell lung cancer (NSCLC) cell lines, the pro-

gression of cancer stem cells was promoted by increased

CD133-positive cell populations, increased mRNA levels

of Muc-1, CD133 (stemness), and NF-κB (inflammation),

Figure 1 Polarization of TAMs and the immune roles of the M1 phenotype and M2 phenotype in the TME.

Abbreviations: TME, tumor microenvironment; TAMs, tumor-associated macrophages.

Figure 2 Antitumoral effects of M1-TAMs and protumoral effects of M2-TAMs in the TME.

Abbreviations: TME, tumor microenvironment; M2-TAMs, M2-polarized tumor-associated macrophages; M1-TAMs, M1-polarized tumor-associated macrophages.
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and enhanced self-renewal ability of both NSCLC cell lines.

As cancer stem-like cells (CSCs) show resistance to apopto-

sis and have continuous self-renewal and proliferation capa-

city, M2-TAMs involved in regulating CSC function could

indirectly promote tumor progression. In addition, accumu-

lating evidence has suggested that the polarized-M2 pheno-

type could increase the proliferation, migration and invasion

abilities of cancer cells.18,23,46 Zhao et al47–49 found that M2-

TAMs enhanced metastasis by improving the migration

capacity of breast cancer 4T1 cells. In addition, Pang et al46

found that culturing NSCLC cells with M2-polarized TAM-

conditioned medium (TAM-CM) ultimately led to stronger

proliferation, migration, and invasion than culturing these

cells in routine medium (Figure 2).

M1-TAMs are involved in the inflammatory response

and the activation of specific lymphocytes to eliminate

tumor cells. In addition, M1-TAMs could cause tumor

cell disruption by inducing high levels of IL-12

expression.

M2-TAMs could promote the development of tumors

by promoting the progression of cancer stem cells, sup-

porting the proliferation, migration, invasion of cancer

cells, diminishing effective antitumor immune responses,

and facilitating tumor metastasis.

M2-TAMs Diminish the Effective

Antitumor Immune Response
Compared to the antitumor effects of M1-TAMs via the

inflammatory response, the protumoral roles of M2-TAMs

are related to downregulating the effective antitumor

immune response by releasing chemokines that play

basic roles in immunosuppression and secreting immune

suppression molecules, such as transforming growth fac-

tor-β (TGF-β), IL-10, and arginase-1 (Arg-1),23,25,46,50–53

Which enable M2-polarized TAMs to block immune

responses against tumor antigens of T cell.25

Chemokines, for example, Ccl13/18/22, are consider-

able chemoattractants of immune suppressor cells (such as

Tregs) that inhibit antitumor immunity to promote the

growth of tumors and decrease the survival rate of

patients.23,28 In addition, Ccl2 and Ccl5 have the capacity

to suppress T-cell responses.23,28

TGF-β could block the stimulation, proliferation, dif-

ferentiation, and effector function of conventional CD4+

and CD8+ T cells to inhibit the antitumor response

directly.54–57 Moreover, TGF-β blocks the immune func-

tion of conventional CD4+ and CD8+ T cells by

promoting the induction of CD4+CD25+FoxP3+ regula-

tory T cells.58–60 TGF-β also inhibits the cytolytic activity

of NK cells56,61 and maintains Treg cell differentiation57 to

suppress the antitumor response.

Like TGF-β, IL-10 also has the ability to block the

function of conventional CD4+ and CD8+ T cells to sig-

nificantly reduce the development of effector T cells.62–64

In addition, IL-10 inhibits antitumor immunity by imped-

ing the production of IL-12, releasing the cytokine IFN-γ,
and blocking epidermal antigen presenting cells (APCs)

from presenting tumor-associated antigens.65,66

Furthermore, IL-10 and TGF-β could revert immune

cells to immunosuppressive phenotypes, such as regula-

tory T cells, regulatory B cells, and even TAMs. These

cells express immunosuppression and protumor cytokines,

consume proinflammatory factors (IL-2, TNFα), and pro-

mote angiogenesis and tumor invasion by producing

matrix metalloproteinases (MMPs) and vascular endothe-

lial growth factor (VEGF). The vicious cycle of TAMs, IL-

10 and TGF- β results in poor prognosis in cancer

patients.67–70

Arg-1 suppresses antitumor immunity with its immu-

nosuppressive catabolic products71–74 and blocks the abil-

ity of T cells to generate immune effector cells by

exhausting arginine from the environment of conventional

T cells.71–74 In addition, high Arg-1 expression might

downregulate NO-regulated tumor cytotoxicity, increase

the proliferation of cells, dysregulate T cell receptor

(TCR) signaling, and subsequently induce CD8+ T cell

unresponsiveness to promote tumor growth.75,76

M2-TAMs Facilitate Tumor Metastasis
To function in tumor metastasis, M2-like TAMs produce

VEGF and type IV collagenases MMP2 and MMP9, which

promote not only angiogenesis in tumor progression but

also tumor migration by causing vascular

permeability.18,77–86 Additionally, TAMs indirectly upregu-

late the expression of proangiogenic factors (such as

Cxcl12), and Cxcl12 could promote M2 macrophage polar-

ization as a chemoattractant of macrophages in prostate

cancer.18,23 However, the correlation between M2-TAMs

and proangiogenic factors requires more investigation. In

addition to promote angiogenesis, TAMs also promote lym-

phangiogenesis in tumor by transdifferentiate as endothelial

progenitor cells.87

Besides, epithelial-mesenchymal transition (EMT) is

a pivotal step in tumor invasion and migration. M2-like

TAMs upregulate IL-10 production by activating Toll-like
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receptor 4 (TLR4) to enhance EMT in pancreatic cancer

cells,88 and they activate the epidermal growth factor

receptor (EGFR) pathway by inducing epidermal growth

factor-like (EGF-like) ligand secretion in lung cancer

cells.89 Both of these factors could ultimately promote

EMT and result in facilitating tumor metastasis.18

Studies have shown that TAMs secrete MMPs (such as

MMP-2, 7, and 9) and subsequently induce the expression

of Vascular endothelial growth factor C (VEGF-C), which

stimulates the formation of lymphatic vessels to promote

tumor metastasis.90

Correlation Between TCM and
TAMs
The significant advantage of Western medicine in cancer

treatment is its focus on definite targets, such as mono-

clonal antibodies against cancer cells or immunosuppres-

sive factors, to suppress tumor progression. However,

cixutumumab-associated dermatologic events suggest

underlying problems and side effects of Western medi-

cine. Introducing traditional Chinese medicine (TCM)

not only counteracts the shortcomings of Western medi-

cine but also helps prolong the survival rates of cancer

patients. TCM treatment has been demonstrated to

increase the cancer survival rate,91 and the effects of

TCM treatment on tumors could be observed in the

development of tumors, the activation of cancer cells

and the expression levels of tumor-associated molecules.

At the oncological level, TCM could inhibit the progres-

sion of tumors to increase the survival rate of tumor

patients by decreasing tumor weights and volumes and

suppressing tumor generation.45,46,92,93 From the per-

spective of cancer cells, TCM has the ability to promote

cancer cells to apoptosis and suppress the actions of

cancer cells, such as proliferation, migration, invasion,

and even viability.46,49,91–96 An increasing number of

investigations have suggested that TCMs can reduce

the expression level of oncogenic proteins and tumor-

related mRNAs at the molecular level.45,46,91,94,95,97–100

In addition, evidence has shown the important role of

TAMs in the tumor immunosuppressive microenvironment

(TIM), and the two polarized phenotypes are related to

different effects on tumors. Here, we describe the potential

roles of TCM in the TIM and suggest a hypothesis that the

antitumor ability of TCM treatment is related to M1-

polarized TAMs and M2-polarized TAMs.

The Effects of TCM Treatment on the

TIM
Many studies have demonstrated that chronic inflammation

has an important functional effect on the tumor microenvir-

onment. Immune cells constitute a part of the tumor immu-

nosuppressive microenvironment (TIM), which is related to

immunologic function, angiogenesis and lymphangiogen-

esis in tumors, and could promote tumor progression.

Therefore, researchers have regarded the TIM as

a promising target for tumor treatment and have thought

TCM treatment could potentially enhance tumor immune

responses in the TIM.101 MHC class I molecules have the

capacity to kill tumor cells by activating cytotoxic lympho-

cytes (CTLs) and launching a sequence of cytolysis reac-

tions; MHC class II molecules have the ability to induce

a cellular-mediated immune response by presenting tumor

antigens to CD4+T helper cells. However, immune cells and

malignant cells in the TIM downregulate the expression of

MHC class I molecules and upregulate the expression of

nonclassical human leukocyte antigen (HLA), which is

related to poor prognosis in cancer patients. Studies have

proven that TCM, eg, Invigorating Spleen and

Detoxification Decoction (ISD), can enhance the expression

of both MHC class I and MHC class II molecules to pro-

mote the immune response.102 TCM induces apoptosis in

tumor cells via the Fas/FasL pathway, which is known as an

important immune regulatory pathway. FasL overexpression

is related to the promotion of tumor cell immune escape, and

tumor cells rarely express Fas or express nonfunctional

Fas.103 The TCM treatment Yang Wei Kang Liu Granule

(YWKL) has the ability to increase the expression level of

FasL and reduce the expression level of Fas, which results in

tumor cell apoptosis. Cancer stem-like cells (CSCs) partici-

pate in promoting the formation of the TIM and prevent

antitumor responses because they express low quantities of

immune recognition molecules and costimulatory mole-

cules. Investigations have shown that TCM may attenuate

the oncogenicity of CSCs; for example, bufalin could inhibit

the proliferation of CSCs,104 and Huaier (Trametes robinio-

phila Murr.) aqueous extract could downregulate the Wnt/β-
catenin pathway to inhibit the self-renewal of CSCs.105

Effect of TCM Treatment on M1-TAMs
It is widely known that M1-polarized TAMs play an anti-

tumoral role in the TME, while TCM treatment inhibits the

progression of tumors. Furthermore, TCMs have the ability

to enhance the anti-tumor effects of M1-polarized TAMs by
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increasing M1 polarization (Figure 3), which could be

detected by the upregulated expression of M1-specific mar-

kers or the mRNA expression of M1-related molecules.

Polyporus polysaccharide (PPS) is extracted from

Polyporus, a TCM anti-tumoral and immunoregulatory med-

icinal fungus. Liu et al used reverse transcription polymerase

chain reaction (RT-PCR) and found that PPS increased the

mRNA levels of inducible nitric oxide synthase (iNOS),

TNF-α and IL-6, which were related to M1-TAMs.

Additionally, compared with that in untreated RAW264.7

cells, the expression of CD86 in PPS-treated cells was

increased by 66.0%, which suggested that PPS could pro-

mote the polarization of the M1 phenotype of TAMs.106

The Qing-Re-Huo-Xue (QRHX) formula is a traditional

Chinese formulation consisting of Scutellaria baicalensis

and Radix Paeoniae Rubra. An investigation found that

QRHX treatment in a Lewis lung cancer (LLC) mouse

model resulted in increased mRNA expression levels of

iNOS, an M1 marker, and decreased mRNA expression

levels of Arg-1, an M2 marker. In addition, many TCMs,

such as berberine and G-Rh2, have the same effect as

QRHX on tumor cells, but whether the mechanism of

TCM is reversing the M2 phenotype to the M1 phenotype

or blocking polarization into the M2 phenotype while pro-

moting M1 polarization remains unclear.107

TCM Treatment Decreases the

Population of M2-TAMs and Blocks the

Polarization of TAMs into the M2

Phenotype
TCM treatment has four methods for reducing M2-TAMs:

decreasing the population of M2-TAMs, blocking the

polarization of TAMs into M2-TAMs, suppressing the

functional roles of M2-TAMs, and converting the M2

phenotype to the M1 phenotype (Figure 3).

Figure 3 Roles of TCM in M1-TAMs and M2-TAMs.

Notes: TCM have effects on tumor cells by targeting M1 phenotype and M2 phenotype TAMs. ① TCM treatment could increase the population of M1-TAMs through

increasing M1 polarization. ② Number of M2-TAMs decrease because TCM block the polarization of TAMs to M2 phenotype. ③ TCM reverse the phenotype of TAMs from

M2 to M1. ④ Monochrome M2-TAMs means the protumoral capacities of M2-TAMs are suppressed.

Abbreviations: TCM, traditional Chinese medicine; TAMs, tumor-associated macrophages; M2-TAMs, M2-polarized tumor-associated macrophages; M1-TAMs, M1-

polarized tumor-associated macrophages.
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Total flavonoids from TFRG Glycyrrhiza Radix et

Rhizoma (Glycyrrhiza Radix et Rhizoma), a vital extract

from Gancao (Glycyrrhiza Radix et Rhizoma), have been

demonstrated to block signal transducer and activator of

transcription 6 (STAT6) activation induced by IL-4/IL-13

by reducing the level of phosphorylated STAT6.

Additionally, studies have shown that miR-155 is related

to the polarization of TAMs to the M2 phenotype.108 The

induction of IL-4/IL-13 led to the downregulation of miR-

155, and TFRG pretreatment significantly increased the

level of miR-155. This evidence suggests that TFRG

may block M2 polarization by the STAT6 signaling path-

way and miR-155.48

Wang et al found obvious decreases in the population

of M2-TAMs in the spleens of mice treated with osthole.93

Using a Bayesian model to analyze the mRNA expression

levels of M1- or M2-associated genes, the results proved

that PHY906 could promote the polarization of TAMs into

the M1 phenotype, improving sorafenib (So) tumor cell

treatment, which means that the number of M2-TAMs was

lower in the So + PHY906 treatment group than in the

sorafenib only treatment group.92

Decreased expression levels of specific mRNAs asso-

ciated with the polarization of TAMs into the M2 pheno-

type reveals that the polarization process is blocked

indirectly. A previous investigation93 has shown that ost-

hole not only decreases the number of M2-TAMs but also

reduces the mRNA expression of TGF-b, CCL22, and

MRC1 in the spleens of mice with pancreatic cancer; F4/

80þCD206þ CD11bþ cells were also decreased according

to flow cytometry, and these results indicate that osthole

treatment could inhibit M2 polarization.

Pretreatment with pterostilbene in the NSCLC cell line

THP-1-H441 co-incubation system decreased the mRNA

levels of MUC-1 and NF-κB, both of which are key

molecules in promoting the polarization of M2

macrophages.45,109,110 Therefore, pterostilbene has the

ability to prevent macrophages from differentiating into

the M2 subtype.

CD206 is a marker of M2 macrophages, and the

expression of CD206 is significantly decreased by

G-RH2 compared with control conditions, which suggests

that G-Rh2 could block the polarization of TAMs into the

M2 phenotype.94

Because reactive oxygen species (ROS) could influ-

ence the polarization of TAMs into the M2 phenotype,

berberine treatment affected the M2 polarization process

by reducing the mRNA levels of NADPH oxidase2

(NOX2) in Apc (min/+) mice.111,112

Five TCM herbs, including Gancao (Glycyrrhiza Radix

et Rhizoma), Renshen (Ginseng Radix et Rhizoma),

Dongchongxiacao (Cordyceps), and Ciwujia

(Acanthopanacis senticosi Radix et Rhizoma Seu caulis),

have the capacity to decrease the expression of arg-1

mRNA, a known M2 marker.48

This evidence shows that TCM treatment could reduce

the M2-TAM phenotype by decreasing the expression

levels of associated markers in tumor cells. The reduced

M2-TAM phenotype may induce apoptosis or polarization

to the M1-TAM phenotype, which is accompanied by

increased expression of the M1-TAM phenotype marker.

TCM Suppresses the Abilities and

Functions of M2-TAMs
M2-TAMs are an important TME component related to its

protumoral effects, such as increased proliferation, inva-

sion, and migration of carcinoma cells. TCM treatment

inhibits the progression of tumors by suppressing the

effects and functions of M2-TAMs in tumors (Figure 3).

Lin et al used flow cytometric analysis and found that

the population of tumor-infiltrating macrophages was

reduced in the tumors of mice treated with osthole,

which indicated that osthole could block the infiltration

of M2-TAMs.95

Zhao et al showed that the IC50 of baicalein for M2-

TAMs at 24 h, 48 h and 72 h was 191.5/107.1/41.78 μmol/

L, which indicated that baicalein could inhibit the viability

of TAMs dose-dependently and time-dependently.49

As mentioned above, Huang et al used flow cytometric

analysis45 to observe that CD133-positive cell populations

were increased in the NSCLC cell lines A549 and H441

after co-culture with M2-TAMs. In addition, the expres-

sion level of CD133, which is related to stemness, was

increased after co-culture with M2-TAMs, which indicated

that M2-TAMs could promote the generation of NSCLC

stem cells. However, flow cytometric analysis also found

that pterostilbene treatment inhibited the percentage of

CD133-positive H441 cells in a dose-dependent manner

when co-incubated with M2-polarized macrophages.

Additionally, pterostilbene could decrease the self-

renewal ability of cancer cells when co-incubated with

M2-TAMs.

Co-incubation with M2-TAMs significantly increased

the expression level of TGF-β1, an active EMT inducer, in
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MDA-MB-231 cells. However, pretreatment with baica-

lein could reverse this effect, demonstrating that baicalein

suppresses increased EMT induced by co-incubation with

M2-TAMs in breast cancer cells. In addition, the breast

cancer cell line MDA-MB-231 can promote tumor growth

and lung metastasis better after co-culture with M2-TAMs,

but this effect is inhibited by baicalein, which subse-

quently exerts an anti-tumor effect.49

To prove the role of berberine in the invasion and

migration of cancer cells, Piao et al induced M2 polariza-

tion by berberine. Finally, the migration of HT-29 cells

was inhibited after co-incubation with berberine-induced

M2 macrophages compared with that after co-incubation

with IL-4-induced M2-TAMs.111

TCM Reverses the M2 Phenotype to the

M1 Phenotype
TCM could regulate the expression level of M1 pheno-

type- or M2 phenotype-specific markers to induce the

polarization of macrophages from the M2 phenotype to

the M1 phenotype (Figure 3). Baicalein treatment was

demonstrated to decrease the expression level of an M2-

TAM phenotype-specific marker (CD206) and increase the

expression level of an M1-TAM phenotype-specific mar-

ker (CD86).

Moreover, baicalein treatment decreased the mRNA

expression of M2-associated cytokines (such as TGF-β1,

Arg1, and IL-10) and increased the mRNA expression of

M1-associated cytokines (such as IL-12 and TNF-α). In

summary, baicalein not only reversed the M2 phenotype to

the M1 phenotype but also led to a functional change in

TAMs.

Li et al found that treating M2 macrophages with

G-Rh2 resulted in downregulation of the expression of

the M2 marker CD206 and upregulation of the expression

of the M1 marker CD16/32. Additionally, G-Rh2 treat-

ment of human THP-1 cell-differentiated M2 macrophages

resulted in the same finding.94 These results suggest that

G-Rh2 has the promising ability to change the phenotype

of TAMs from M2 to M1.

Piao et al used real-time PCR to observe that berberine

could induce macrophage polarization from the M2 to M1

phenotype, as it was observed that the mRNA level of an

M2-TAM phenotype-associated marker (IL-12) was down-

regulated, while IFN (a marker of the M1-TAM pheno-

type) was remarkably upregulated in intestinal tumors.111

In addition, berberine treatment decreased the expression

of COX-2 pathway molecules to polarize the M2 pheno-

type to the M1 phenotype during inflammation.111,113,114

Evidence has shown that berberine can induce M2 to M1

phenotype switching and consequently affect the biologi-

cal roles of TAMs. Not only extracts of TCM, but also

formulae could reverse the phenotype of TAMs from M2

to M1, such as Fuzheng Jiedu Formula (FZJD), which

decrease the expression of IL-10 and TGF- β and increase

the ratio of M1/M2.87

Previous investigations have shown a correlation

between the IL-4-STAT6 axis and M2 macrophages,

while C/EBPb promotes M2 polarization as an intracellu-

lar signaling molecule. Osthole has been shown to

decrease C/EBPb expression and suppress IL-4-mediated

STAT6 phosphorylation to inhibit M2 macrophage activa-

tion and block M2 polarization.93

This evidence demonstrates that TCM treatment may

reverse the M2-TAM phenotype to the M1-TAM pheno-

type by inhibiting the expression of related signaling path-

ways or suppressing significant phosphorylation. TCM

treatment is promising for changing the functional effects

of TAMs by reversing the M2 phenotype to the M1 phe-

notype. The overall effects of TCM treatment on both

cancer cells and TAMs are listed in Tables 1 and 2.

Summary
Previous studies have shown that traditional Chinese med-

icine (TCM) could help inhibit the progression of tumors,

but the cells or pathways involved remain uncertain.

Recent investigations suggest that tumor-associated

macrophages (TAMs), particularly M2-polarized TAMs,

might be potential targets for TCM treatment in cancer.

TCMs have the capacity to increase the polarization of

M1-TAMs, reduce the expression level of M2-TAM phe-

notype markers, suppress the function of the M2-TAM

phenotype, block M2-TAM phenotype polarization and

convert the M2 phenotype of TAMs to the M1 phenotype

of TAMs in the TME, which lead to the suppression of

M2-TAM function. Above all, it is worth further investi-

gation to determine the correlation and biochemical

mechanism of different TCM herb catalogues in regulating

TAM polarization phenotypes and to examine the effects

of multiple components in different TCM herbs that con-

tribute to their anti-tumor effects. Although studies have

shown that TCM has the potential to suppress tumor

growth and reverse the polarized phenotype of TAMs,

the interplay between TCM treatment and the polarization

of TAMs in tumors is not fully clear. Promising and novel
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cancer therapies in which TCMs target polarized TAMs

could be generated after understanding the mechanisms

through which TCMs affect tumors.
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