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Background: Many studies have confirmed that high myopia is related to the high pre-

valence of cataracts, which results from apoptosis of lens epithelial cells (LECs) due to

endoplasmic reticulum stress. Krüppel-like factor 6 (KLF6) is a tumor suppressor that is

involved in the regulation of cell proliferation and apoptosis.

Purpose: In this study, our purpose was to find the relationship between KLF6-induced

apoptosis in LECs and ATF4 (activating transcription factor 4)-ATF3 (activating transcrip-

tion factor 3)-CHOP (C/EBP homologous protein) signaling pathway.

Methods: KLF6, ATF4, ATF3, and CHOP were ectopically expressed using cDNAs sub-

cloned into the pCDNA3.1+ vector. ATF4, ATF3, and CHOP knockdown were performed by

small interfering RNA (siRNA). Expression of relative gene was tested using QT-PCR and

western-blot. Then, accompanied by UVB stimulation, cell viability was measured by CCK-

8 assay; The cell damage was examined by live & dead staining; The apoptotic markers Bax

and Bcl-2 were detected by immunoblotting; Quantitative apoptotic levels were measured

with the Apoptosis Detection Kit; The expression level of reactive oxygen-free radical (ROS)

was analyzed by DCFH-DA` probe.

Results: Ectopically expressed ATF4, ATF3, and CHOP-induced apoptosis in cells, whereas

ATF4, ATF3, and CHOP knockdown by small interfering RNA (siRNA) blocked KLF6-

induced apoptosis. In addition, we determined that ATF4 regulates ATF3 and CHOP expres-

sion and that ATF3 silencing reduces CHOP upregulation without changing ATF4 levels;

however, ATF4 and ATF3 expression was unaffected by blockade of CHOP, suggesting that

KLF6 triggers endoplasmic reticulum stress in LECs by mediating the ATF4-ATF3/CHOP

axis. Besides, KLF6 overexpression significantly induced LEC apoptosis under UV radiation,

as demonstrated by the elevated Bax/Bcl-2 ratio.

Conclusion: The ATF4-ATF3-CHOP pathway plays an important role in KLF6-induced

apoptosis in HLECs. Our results increase our understanding of the mechanisms that regulate

LEC apoptosis and contribute to the development of a new preventative strategy for cataract.
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Introduction
Cataract is a clouding of the lens in the eye that affects vision. The process of

cataract initiation remains unclear, even though more and more related mechanisms

have been revealed. It was demonstrated that all age-related cataract patients had

a remarkable increase in apoptotic epithelial cells compared to healthy people,

indicating apoptosis in lens may lead to cataract. It is generally accepted that

endoplasmic reticulum stress (ERS) induces lens epithelial cell apoptosis.1

Although several drugs that can block LEC apoptosis have been identified, none
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has shown a definitive effect on cataracts. Therefore, non-

invasive means for preventing LEC apoptosis are being

investigated.

Many studies have revealed a strong correlation

between high myopia (myopia exceeding 6.00 diopter

(D) or axial length longer than 26 mm) and cataracts.2–4

It is well documented that myopia is a substantial risk

factor for several subtypes of cataract, such as cortical

cataract and posterior subcapsular cataract.5,6 Currently,

the only effective treatment for cataract is phacoemulsifi-

cation. However, operating on highly myopic eyes is chal-

lenging because of zonular weakness or posterior capsular

rupture; moreover, this procedure could increase the risk

of retinal detachment and macular edema postoperatively.

In addition, a retrospective study in Taiwan reviewed that

high myopia might accelerate nuclear sclerotic cataract in

younger patients. Our initial object was to understand the

mechanism of high myopia cataracts and develop targeted

treatment protocols. In previous work, we performed

mRNA microarray to find the differentially expressed

genes between high myopia patients versus non-myopia

patients and perform microarray analysis. GO functional

enrichment analysis suggested the functions of differen-

tially expressed genes between the two groups can be

mainly divided into three parts: biological behavior regu-

lation, cell component formation and molecular function.

Differentially expressed genes participate in molecular

biological processes and affect cell energy metabolism

and protein synthesis (paper has not been published yet).

We also identified two differentially expressed genes:

Krüppel-like factor 6 (KLF6) and ATF4. According to

this information, we designed a series of experiments to

verified specialized function and interactions between

KLF6/ATF4.

Our previous results have confirmed that KLF6 sup-

presses the IGF-1-induced proliferation of human LECs,7,8

a finding that is consistent with the inhibition of rat LEC

proliferation by KLF6 overexpression.9 We also found that

high KLF6 expression can induce apoptosis, suggesting

that KLF6 might be a potential factor in the regulation of

apoptosis.10 To further characterize the mechanism by

which KLF6 induce apoptosis in LECs, we explored the

molecular mechanism of KLF6 on the induction of ER

stress and demonstrate a novel mechanism of ATF4 as

a key mediator in KLF6-induced apoptosis.11

KLF6 is a tumor suppressor gene that is involved in

regulating cell proliferation and apoptosis.12 The overexpres-

sion of KLF6 upregulates the proapoptotic genes FAS, TNF,

TNFSF12, and PYCARD and inhibits the expression of the

antiapoptotic gene IL10. FAS protein expression is positively

correlated with KLF6 expression in Schwann cells.13 ERS is

caused by the dysfunction of ER homeostasis and correlates

with apoptosis in LECs.14 ATF4 is an activating transcription

factor and is a key molecule in the induction of apoptosis

during ER stress.15,16 ATF4, an upstream regulator of CHOP

and a proapoptotic factor in cellular stress,17 mediates ER

stress-induced cell apoptosis in cataract lens epithelium.18,19

To study this further, we put insight in several ER-related

genes, such as ATF3 and CHOP.

CHOP is a downstream component of endoplasmic

reticulum (ER) stress pathways, which can be triggered

by pancreatic ER kinase-like ER kinase-, activating down-

stream target and cause ER-related apoptosis. By now,

CHOP-induced apoptosis in ER stress was related to var-

ious human diseases, such as neurodegenerative diseases,

diabetes and tumor.20 ATF3, like ATF4, is also a stress

responsive protein, which can be triggered by ER stress. It

was previously reported that ATF3 played an integral part

in the PERK/eIF2 signaling branch of the UPR.21 PERK/

eIF2 cascade has been proved to be a remarkable pathway

that could influence apoptosis.22

For the past few years, multiple researchers have

reported a potential correlation in ATF4/ATF3/CHOP.

Liu et al reported that ATF4-ATF3-CHOP could induce

human pulmonary cancer cells apoptosis by mediating

DR5.23 Joo et al demonstrate ATF4-ATF3-CHOP cascade

act as an intrinsic pathway of the ER induced apoptosis.24

Those studies implying that there might be a connection

between the three genes.

UV exposure is inevitable in daily life and is closely

linked to eye diseases. There is growing evidence that oxida-

tive stress under UV exposure plays a critical role in the

HLECs apoptosis in cataract pathogenesis. UV radiation

stimulate intracellular ROS production, a complicated event

involving several potential pathways, such as p53 pathway or

Nrf2/ARE pathway.25–27 Therefore, studying UV-induced

apoptosis in human LECs may provide clues for the explora-

tion of the causes of cataract formation and lead to the

development of novel treatments. In our investigation, we

used UV radiation to simulate the daily sunlight in natural

environment, followed by comparison of cellular apoptosis

level between KLF6 up-regulated HLECS and normal cells.

Our data showed that KLF6 up-regulation was highly sus-

ceptible to UV-induced cell apoptosis cascade.

In our study, we examine the interaction between

ATF4/ATF3/CHOP under HLECs apoptosis induced by
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KLF6. Our results represent a novel therapeutic target for

ER stress-based cataract therapeutic approaches.

Materials and Methods
Cell Culture and Transient Transfection
Human lens epithelial cell line was kindly provided by Yang

Chunbo (Tianjin Medical University, Eye Institute). The cells

were grown in Eagle’s minimum essential medium that con-

tained 10% fetal bovine serum. For transient transfection, plas-

mids were transfected into cells using Lipofectamine 2000

(Invitrogen) following the manufacturer’s protocol.8,28,29

Plasmid Construction: Human cDNAs encoding the

full-length KLF6 gene, ATF4, ATF3, and CHOP were

obtained by PCR. The resulting cDNAs were then sub-

cloned into the pCDNA3.1+ vector to overexpress each

protein, respectively.

siRNA design: To suppress KLF6, ATF3, CHOP and ATF4

expression, we used the following siRNAs: KLF6 sense (5’-GC

CCGAGCUUUUGUUACAAtt-3’) and antisense (5’-UUG

UAACAAAAGCUCGGGCtg-3’); ATF3 sense (5’-UCAC

AAAAGCCGAGGUAGCtt-3’) and antisense (5’-GCUA

CCUCGGCUUUUGUGAtg-3’); ATF4 sense (5’-ggagcgc

auugauacuagad-3’) and antisense (5’-ucuaguaucaaugcgcucc

d-3), and CHOP sense (5’-gccuaggucucuuagaugad-3’) and anti-

sense (5’-ucaucuaagagaccuaggcd-3’), respectively. Non

silencing siRNA (5’-uucuccgaacgugucacgudTdT-3’ and 5’-

acgugacacguucggagaadTdT-3’) was used as a negative control.

HLECs were transfected with KLF6, ATF3, ATF4, and CHOP

using Lipofectamine RNAiMAX Transfection Reagent (Cat. #

13778150) in accordance with the manufacturer’s instructions.

Protein samples were collected for Western blot analysis 48

h after transfection.

UVB Irradiation
At 80% to 90% confluence, HLECs were washed twice with

PBS, and UVB irradiation was performed under a thin layer

of PBS. After 24 hrs transfection, cells were exposed to UVB

radiation (20 mJ/cm2) for 200 seconds, incubated for another

48 hrs, and collected for further use.30

Cell Viability Assay
Cell viability was measured using Cell Counting Kit-8

(Dojindo Laboratories, Kumamoto, Japan). Briefly,

HLEC cells (5×104 cells/well) were seeded into 96-

well plates and left to adhere overnight. After the

specific treatments, the cells were incubated with

plain DMEM basic (100 μL) that contained 10%

CCK-8 solution (10μL) for 2 h at 37°C. The absor-

bance of the cell solution was measured at 450 nm on

an Infinite 200 PRO Multimode Microplate Reader

(Tecan Group Ltd., Switzerland). This experiment was

repeated 3 times.

Hoechst Staining
Cell apoptosis was observed using Hoechst staining. HLECs

were fixed in 4% formaldehyde for 15 min at room tempera-

ture. After being washed with PBS, the cells were stained

with ready-to-use Hoechst staining buffer (Yeasan, China) at

room temperature for 5 min. After absorbing the dye solu-

tion, the cells were washed with PBS twice and subsequently

observed under a fluorescence microscope (Olympus) using

a 350-nm excitation filter. Apoptotic cells were counted

under 10 views in each condition and the average was calcu-

lated. This experiment was repeated 3 times.31

Live/Dead Staining Assay
Cell apoptosis was detected using LIVE/DEAD™ Viability/

Cytotoxicity Kit for mammalian cells (L3224, Thermo

Fisher). HLECs were seeded in a 12-well plate, and after 24

hrs of incubation, the cells were subjected to different treat-

ments and washed with ice-cold PBS twice. Then, the cells

were incubated in 500 μL tissue culture-grade D-PBS contain-

ing 1 μM calcein AM (Component A) and 2 μM ethidium

homodimer-1 (EthD-1) (Component B) for 30 min at room

temperature in the dark. Following the incubation, the live

cells were observed using a 490-nm excitation filter, whereas

the dead cells were observed using a 545-nm excitation filter

under a fluorescence microscope (Olympus). Dead cells were

counted under 10 views in each condition and the average was

calculated. This experiment was repeated 3 times.

ROS Assay
DCFH-DA assay was employed to determine intracellular

ROS (reactive oxygen species) levels. HLECs were seeded

in a 24-well plate, and after 24 hrs of incubation, the cells

were subjected to different treatments and washed with

cold PBS twice. Then, the cells were treated with 30 µL

PBS containing 10 μM DCFH-DA (Sigma–Aldrich,

St. Louis, MO, USA) and 4 μM ER-tracker Red (Yeasan,

China) for 30 mins at 37°C in the dark. ER-tracker Red

staining was used to mark the endoplasmic reticulum.

After the incubation, the cells were rinsed with PBS

three times to remove excess DCFH-DA. Intracellular

ROS levels were measured under a fluorescence micro-

scope (Olympus). This experiment was repeated 3 times.29
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TUNEL Assay
Terminal deoxynucleotidyl transferase-mediated dUTP nick

end labeling (TUNEL) was performed to confirm the exis-

tence of apoptotic cells. A total of 2 x 104 cells were seeded

onto coverslips. After overnight incubation, the cells were

treated or left untreated as indicated, fixed with 4% parafor-

maldehyde for 30 min, and permeabilized with 0.1% Triton

X-100. Then, the cells were incubated with TUNEL reaction

solution (Yeasan, China) for 1 h in the dark at 37°C. After the

incubation, the cells were treated with a drop of 5 µg/mL

DAPI (Thermo Fisher Scientific, Waltham, MA, USA) for 10

min and washed with PBS three times. Apoptotic cells were

visualized, based on green fluorescence, under a fluorescence

microscope. Nuclei were counterstained with DAPI (4’,6-dia-

midino-2-phenylindole). The positive control for apoptosis

was pretreated with DNase I to enzymatically induce DNA

strand breaks. This experiment was repeated 3 times.

Apoptosis Assays
Apoptosis was quantified using the Cell Death Detection

ELISA PLUS kit (Roche Applied Science, Catalog No.

11774425001, Mannheim, Germany) following the manufac-

turer’s protocol. This assay evaluates apoptosis by measuring

the contents of mono- and oligonucleosomes in the lysates of

apoptotic cells. The cell lysates were placed in a streptavidin-

coatedmicroplate and incubatedwith amixture of anti-histone

/biotin and anti-DNA/peroxidase. The amount of peroxidase

that was retained in the immunocomplex was determined

photometrically with 2,2-azino-bis(3-ethylbenzthiazoline-

6-sulfonic acid as the substrate. Absorbance was measured at

405 nm. This experiment was repeated 3 times.

RNA Extraction, Reverse Transcription,

and Quantitative Reverse-Transcription

Polymerase Chain Reaction (qRT-PCR)
Total RNAwas extracted fromLECs using the GeneJETRNA

Purification Kit (Thermo Fisher Scientific, Beijing, China) as

previously described.32,33 RNA concentration and purity were

determined on a Nanodrop 2000 (Thermo Fisher Scientific,

Waltham, MA, USA). Total RNA (6μg) was digested with

DNase I to eliminate residual DNA, and then, 1 μg of total

RNAwas subjected to reverse transcription in a 20-μL reaction

mixture using the RevertAid cDNA Synthesis Kit (Thermo

Fisher Scientific, USA) according to the manufacturer’s

instructions. Real-time PCR was performed on an HT7900

Real-time PCRSystem (Applied Biosystems, Foster City, CA,

USA). The reaction mixture contained SYBR Green FastStart

2XMaster Mix (Roche, Beijing, China), cDNA template, and

gene-specific primers. The primers are listed in Table 1.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

served as the internal control. The cDNA content of related

genes in each LEC sample was normalized to that of GAPDH.

The relative expression levels of genes were quantified using

the comparative threshold cycle (2−ΔΔCt) method. This experi-

ment was repeated 3 times.34,35,36

Western Blot Analysis
Lysates of LECs were prepared in RIPA buffer (1% Nonidet

P-40, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl

sulfate [SDS] in PBS) following previously described

protocols.14 A complete protease inhibitor mixture (catalog

no. 04693159001, Roche Applied Science, Mannheim,

Germany) was added to the lysis buffer prior to analysis.

Protein concentration was determined by BCA protein assay

(Catalog No. 23228, Pierce, Thermo Scientific, Rockford, IL,

USA). Equal amounts of proteins were separated on 10%SDS

polyacrylamide gels (100 V for 120 min) and transferred to

polyvinylidene fluoride (PVDF) membranes (Millipore, MA)

on a semi-dry transfer apparatus (Bio-Rad) for 40 min at 20

V. Binding of nonspecific proteins to the membrane was

blocked with blocking buffer (5% nonfat milk, 200 mM

NaCl, 50 mM Tris, 0.05% Tween 20) at room temperature

(RT) for 1 h. The blocked membrane was then incubated with

the following primary antibodies: anti-KLF6, C-terminal

(Abcam, ab135783); anti-ATF4 [EPR18111] (Abcam,

ab184909); anti-ATF3 [44C3a] (Abcam, ab58668), anti-

DDIT3 [9C8] (Abcam, ab11419), anti-Bax [E63] (Abcam,

Table 1 Primers Used for qRT-PCR

Gene Forward Primer Reverse Primer

KLF6 GGTCAGCTCGGGAAAATTGA CCTGCTCAGTTCCGGAGAAG

ATF4 AATTGGCCATCTCCCAGAAA GGGAAGAGGTTGTAAGAAGGTGAA

ATF3 CTCTGCGCTGGAATCAGTCA CCTCGGCTTTTGTGATGGA

CHOP GGGAGCTGGAAGCCTGGTAT CCCCCATTTTCATCTGAAGACA

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA
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ab32503); and anti-Bcl-2 [E17] (Abcam, ab32124), with

GAPDH as a reference at 4°C for overnight. After the mem-

brane was washed three times with TBST (20 mM Tris,

500 mM NaCl, 0.1% Tween 20) for 10 min each time at RT,

themembranewas incubatedwith Goat Anti-Rabbit IgGH&L

(HRP) (ab6721) in a dark place for 1 h at RT. Then, the

membrane was washed three times with TBST for 10 min

each time at RT in the dark. Detection was performed using an

ECL chemiluminescence kit (GE Healthcare, Freiburg, USA),

and the WB film was scanned on a MultiSpectral Imaging

System (EC3 410, UVP, Upland, CA, USA) and analyzed

with Image J software to quantify protein band intensities.

This experiment was repeated 3 times.37,38,39

Statistics
All data were expressed as mean±SD. All experiments

were performed at least three times. Statistical analyses

were performed using two-tailed Student t test and one-

way ANOVA followed by Tukey post-test. A p-value of

less than 0.05 was considered to be significant.40

Results
KLF6 Upregulates ATF4/ATF3/CHOP

Expression
To confirm the relationship between KLF6 and ATF4/ATF3/

CHOP, pCDNA3.1+-KLF6 plasmidwas employed to increase

KLF6 levels in HLECs, and the effects were measured by

Western blot and qRT-PCR. As shown in Figure 1A–C, p 3.1

+-KLF6 transfection upregulated KLF6 mRNA and protein

compared with the empty vector (Vec) group. Upregulation of

ATF4/ATF3/CHOP by pCDNA3.1+-KLF6 transfection was

detected by Western blot and qRT-PCR. pCDNA3.1+-KLF6

transfection can significantly increase ATF4/ATF3/CHOP

expression in HLECs (Figure 1A and D–I).

ATF4, ATF3, and CHOP are Involved in

the Regulation of HLEC Apoptosis
To determine the role of ATF4 in the apoptosis of HLECs,

ATF4 was overexpressed in HLECs by transient transfec-

tion of pCDNA3.1+-ATF4, and the upregulation of ATF4

was verified by real-time PCR and Western blot. As shown

in Figure 2A and B, overexpression of ATF4 by transient

transfection significantly increased ATF4 mRNA and pro-

tein, compared with cells that were transfected with empty

vector. Furthermore, ATF4 expression significantly

induced the apoptosis of HLECs (Figure 2C). Based on

these results, we also determine the effects of ATF3 and

CHOP overexpression on HLECs apoptosis. Figure 2D

and E show that pCDNA3.1+-ATF3/CHOP upregulated

ATF3/CHOP mRNA and protein in HLECs (Figure 2D,

E and G, H). Moreover, the increase in ATF3/CHOP was

positively related to HLECs apoptosis (Figure 2F and I).

These data indicate that ATF4, ATF3, and CHOP play

a role in the regulation of cell apoptosis.

ATF4, ATF3, and CHOP Mediates

KLF6-Induced Apoptosis
To determine the importance of ATF4 in KLF6-induced

apoptosis in HLECs, we employed a siRNA that targeted

ATF4 (Figure 3A) to specifically knock down the expression

of ATF4 in HLECs. As shown in Figure 3A, transfection with

ATF4 siRNA significantly downregulated KLF6-induced

ATF4 expression. Although KLF6-induced apoptosis in

HLECs that were transfected with the negative control

siRNA, it failed to do so in cells in which ATF4 was knocked

downby siRNA (Figure 3B). Furthermore, similar resultswere

observed with ATF3 (Figure 3C) and CHOP (Figure 3E)

siRNA. Knockdown of ATF4, ATF3, or CHOP reduced that

ratio of apoptotic cells that were induced by KLF6 (Figure 3D

and F). These data indicate that in addition to ATF4, ATF3 and

CHOP regulate KLF6-induced apoptosis.

The Relationship Between ATF4, ATF3,

and CHOP Under KLF6 Induction
Knocking down each protein in turn reduced the level of

apoptosis (Figure 3). Following this experiment, we vali-

dated the relationship between ATF4, ATF3, and CHOP in

KLF6-dependent cell apoptosis. Cells were transfected with

ATF4, ATF3, or CHOP siRNA, respectively. Transfection

with ATF4 siRNA decreased the expression of ATF3 and

CHOP (Figure 4A). Furthermore, by inhibiting ATF3 expres-

sion using siRNA, we found that the induction of ATF4 was

unaffected, whereas the expression of CHOP declined

(Figure 4B). In cells that were transfected with CHOP

siRNA, KLF6-induced expression including ATF4 and

ATF3 was still unchanged (Figure 4C). These results suggest

that KLF6 mediate induction of the ATF4-ATF3/CHOP axis,

which leads to KLF6-dependent apoptosis.

KLF6 Aggravates Apoptosis in LECs

Under UV Treatment
UVradiation was used as a classic oxidative stressor to induce

cell apoptosis. To determine the effect of KLF6 on the survival

of HLECs under UV radiation, pCDNA3.1+-KLF6 plasmid
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was employed to increase KLF6 levels in HLECs. Viability

and cytotoxicity were measured to assess viability under UV

treatment with or without KLF6. As shown in Figure 5A

and B, living cells showed green signals, whereas dead cells

generated red signals. There were only a few red cells in the

normal group by fluorescence microscopy; however, the

decrease in green signals was accompanied by a dramatic

increase in red signals and KLF6 levels.

We performed Hoechst staining to determine the effect

of KLF6 on UV-induced HLEC apoptosis. UV treatment

significantly increased the number of apoptotic cells, as

shown by the increase in apoptotic nuclei (condensed,

Figure 1 KLF6 upregulates ATF4/ATF3/CHOP Expression. HLECs were transfected with empty p or various amounts of pCDNA3.1+-KLF6 plasmids in 6-well plates. (A)

Overexpression of KLF6 by transient transfection. Western blot was performed using anti-CDNA3.1+ with cell lysates collected at 48 hrs after transfection. KLF6

upregulates ATF4/ATF3/CHOP protein expression, detected by Western blot. (B) KLF6 gene expression levels were elevated with increasing amounts of pCDNA3.1+-KLF6

plasmid. (C) Grey level analysis suggested KLF6 protein expressions were elevated with increasing amounts of pCDNA3.1+-KLF6 plasmid. (D–F) Overexpression of ATF4/

ATF3/CHOP in HLECs. HLECs were transfected with empty vector (Vec) or various amounts of pCDNA3.1+-KLF6. ATF4/ATF3/CHOP and GAPDH mRNA levels were

detected by qRT-PCR. (G–I) HLECs were transfected with empty vector (Vec) or various amounts of pCDNA3.1+-KLF6. ATF4/ATF3/CHOP and GAPDH protein levels

were detected by Western-blot. *p < 0.05.
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crescent-shaped, and fragmented nuclei), which KLF6

exacerbated. Taken together, these results suggest that

KLF6 aggravates HLECs death during UV-induced injury

in vitro (Figure 5C and D).

To confirm the role of KLF6 in UV-induced HLEC apop-

tosis, cells were pretreatedwith or without KLF6 overexpres-

sion and subjected to TUNEL assay. As shown in Figure 6A,

the increase in TUNEL-positive cells was accompanied by

a rise in KLF6.

On this basis, we also checked the expression of Bax and

Bcl-2 in HLECs. Consistent with the increased apoptosis in

HLECs, byWestern blot, KLF6 upregulated the pro-apoptosis

protein Bax, whereas the active form of the pro-viability

protein Bcl-2 decreased (Figure 6B). Considering that the

ratio of Bax to Bcl-2 protein is a decisive factor in transmitting

apoptosis signals, we compared the gray values of the two

corresponding bands and make clear the ratio of Bax/Bcl-2 to

be augmented with KLF6 upregulation (Figure 6C–E).

HLECs died through apoptosis, as confirmed by ELISA of

mono- and oligonucleosome content in the lysates of apoptotic

cells (Figure 6F). These data confirm that KLF6 increased the

susceptibility of UV-induced apoptosis in HLECs.

Figure 2 ATF4, ATF3, and CHOP are involved in the regulation of HLEC apoptosis. (A, B) Overexpression of ATF4 in HLECs. HLECs were transfected with empty vector

(Vec) or pCDNA3.1+-ATF4. ATF4 and GAPDH expression levels were detected by qRT-PCR and Western blot. (C) ATF4 induces apoptosis in HLECs. HLECs were

transfected with empty vector or pCDNA3.1+-ATF4. Apoptosis was analyzed using the Cell Death Detection ELISA kit 48 h after transfection. (D, E and G, H) HLECs

were transfected with empty vector (Vec) or pCDNA3.1+-ATF3/CHOP. Compared with the Vec group, ATF3/CHOP mRNA and protein expression was elevated in the

pCDNA3.1+-ATF3/CHOP group. (F, I) ATF3/CHOP-induced apoptosis was analyzed using the Cell Death Detection ELISA kit 48 hrs after transfection. *p < 0.05.
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Figure 3 ATF4, ATF3, and CHOP Mediates KLF6-Induced Apoptosis. (A–C) ATF4-, ATF3-, and CHOP-targeting siRNAs or negative control siRNA were transfected into

HLECs. At 24 hrs post-siRNA transfection, empty pCDNA3.1+- or pCDNA3.1+-KLF6 was transfected into cells. Downregulation of ATF4, ATF3, and CHOP was confirmed

by Western blot of protein samples collected at 48 hrs after siRNA transfection. (D–F) HLECs were transfected with ATF4, ATF3, and CHOP siRNA or negative control

siRNA, followed by empty pCDNA3.1+ or pCDNA3.1+-KLF6, as described in A–C, and apoptosis was analyzed 48 h after siRNA transfection using the Cell Death

Detection ELISA kit. *p < 0.05.
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Discussion
Cataract is the leading cause of blindness worldwide, and

its prevalence rises in high myopia patients with much

younger age. As the relationship between LEC apoptosis

and cataract is studied in greater detail, scientists are

inclined to believe that the apoptosis of lens epithelial

cells is the common pathogenesis of all types of cataract,

except congenital cataract. UV radiation, aging, hypoxia,

and other stimuli could cause excess apoptosis of lens

epithelial cells, thus causing cytoskeletal degradation,

accumulation of crystal protein, and ultimately cataract.37

It has been approved that the apoptosis of lens epithelial

cells is much more different in high myopia cataract and

ordinary age-related cataract patients. We analyzed lens

capsule gene microarray data in high myopia patients

and identified two differentially expressed genes: Krüppel-

like factor 6 (KLF6) and ATF4. We supposed that the two

difference may play a pivotal role in the apoptosis of lens

epithelial cells so that the stimuli above can cause more

damage and protein degradation followed by subsequent

cataract formation in lens of high myopia. Therefore, first

of all, understanding the mechanisms by which KLF6

induces apoptosis in the lens is important for developing

the novel pathogenic hypothesis of cataracts.

KLF6 is a member of the specificity protein 1/Krüppel-

like transcription factor family (Sp1/KLF) and was initi-

ally cloned from leukocytes.41 KLF6 is a tumor suppressor

protein that is downregulated or mutated in several types

of cancers, including prostate cancer.42–44 KLF6 sup-

presses tumor growth by activating p21WAF1/Cip1, an

inhibitor of cyclin-dependent kinases, in cultured cells

and a transgenic mouse model.45,46 KLF6 also interacts

directly with cyclin D1 to suppress cyclin-dependent

kinase 4 and causes cell-cycle arrest.47 In addition, the

overexpression of KLF6 increases the susceptibility of

hepatic stellate cells to apoptotic stress, as evidenced by

PARP cleavage in the liver.48 Moreover, KLF6 overex-

pression induces apoptosis in several human cancers,

including prostate cancer, non-small-cell lung cancer, and

osteosarcoma.49–52 However, the mechanism of KLF6-

induced apoptosis remains unknown. In previous study,

we found that KLF6 induces apoptosis via ATF4 activation

Figure 4 The relationship between ATF4, ATF3, and CHOP under KLF6 induction. Cells were transfected with (A) ATF4, (B) ATF3, or (C) CHOP siRNA. At 24 hrs post-

siRNA transfection, cells were treated with pCDNA3.1+-KLF6 for 24 hrs and harvested, and Western blot was used to detect the expression of related proteins.
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Figure 5 KLF6 affects survival in LECs under UV radiation. HLECs were transfected with pCDNA3.1+-KLF6 plasmids in 6-well plates. (A) LIVE/DEAD staining was used to

identify live (green) and dead (red) cells. (B) The number of dead cells was significantly increased in KLF6-transfected cells compared with the normal group under UV

radiation. (C) Hoechst staining showed more condensed and crescent-shaped nuclei in the KLF6 versus Vec group, as indicated by the arrows. (D) The number of apoptotic

cells was significantly increased in KLF6-transfected cells compared with the normal group under UV radiation. *p < 0.05.

Figure 6 KLF6 induces apoptosis in LECs under UV radiation. HLECs were transfected with pCDNA3.1+-KLF6 plasmids in 6-well plates. (A) The normal group showed

regular round and normal nuclei, with almost no sign of staining by TUNEL; however, the KLF6 group showed typical characteristics of apoptosis. (B) Expression of Bax and

Bcl-2, with GAPDH as a control. (C, D) Densitometric quantification of Bax and Bcl-2 normalized to GAPDH. (E) Relative Bax/Bcl-2 ratio was determined via Western blot.

(F) KLF6-induced apoptosis in HLECs. Apoptosis was analyzed using the Cell Death Detection ELISA kit at 48 h after transfection. *p < 0.05.
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and that the induction of apoptosis likely has a key role in

cataract formation.

In the presence of disequilibrium in the endoplasmic

reticulum, such as hypoxia and oxidative stress, endoplas-

mic reticulum stress that is induced by the accumulation of

misfolded endoplasmic reticulum proteins is called the

unfolded protein response (UPR).53,54 Three pathways

are known to mediate the UPR according to different

transmembrane receptors: inositol-requiring enzyme 1

(IRE1), protein kinase R-like ER kinase (PERK), and

activating transcription factor 6 (ATF6), the foremost of

which is the PERK-mediated PERK-eIF2α-ATF4

pathway.55 PERK phosphorylation is activated during

endoplasmic reticulum stress, leading to eIF2α phosphor-

ylation, which subsequently inhibits protein translation

and reduces protein synthesis, thereby reducing false pro-

tein folding and maintaining endoplasmic reticulum home-

ostasis. This procedure can improve ATF4 mRNA

translation, and ATF4 combined with amino acid regula-

tory element, AARE, increased the expression of CHOP,

and further induces oxidative damage through the endo-

plasmic reticulum stress pathway. Initially, activation of

PERK is a protective measure under mild stress. However,

activation of PERK also leads to the induction of CHOP,

which is an important factor that switches the survival

signal to a pro-death signal.54,56–58 ATF4 plays an impor-

tant role in anti-tumor responses and anti-oxidation and

promotes renal interstitial fibrosis through the endoplasmic

reticulum stress pathway (Figure 7).59–61 Previously, our

study has revealed that the direct activation of ATF4

mRNA expression can elevate apoptosis in HLECs. In

addition, ATF4 knockdown by siRNA blocks KLF6-

induced apoptosis, indicating that ATF4 is a key compo-

nent in HLECs apoptosis.

KLF6 could induce endoplasmic reticulum stress under

UV radiation, large amount of unfolded protein can bind to

BIP (immunoglobulin binding protein) and inhibit the

bound of BIP to PERK, thereby activate the PERK path-

way. PERK activation leads to phosphorylation of the

subunit of eukaryotic initiation factor 2 (eIF2a), which

inhibits protein synthesis and subsequently inhibits protein

translation, thereby reducing false protein folding and

maintaining endoplasmic reticulum homeostasis. This pro-

cedure can improve ATF4 mRNA translation, and ATF4 is

known to activate the ATF3 gene by binding to a ATF/

cAMP response element binding (ATF/CREB). ATF3 con-

trols CHOP expression and CHOP leads to decrease in

Bcl-2 but increase in DOCs, TRB3, directly induce cell

apoptosis.

ATF3 and ATF4 belong to the ATF/cAMP response

element binding (ATF/CREB) family of transcription

factors.21,62 Members of the ATF/CREB family sense envir-

onmental stimulation signals and participate in cellular pro-

cesses. Liu reported that the UPR increases ATF3

expression via p-eIF2-ATF4 signaling.21 Studies have

shown that ATF3 is an adaptive response gene that has

dual functions in cell apoptosis and the cell cycle.63 ATF3

can induce glomerular mesangial cell apoptosis under stress

conditions via KLF6 upregulation.64 It also triggers

HDACI-induced proapoptotic activity through the ATF4/

ATF3/CHOP pathway.65 Conversely, ATF3 might have anti-

apoptotic effects. Nakagomi found that ATF3 protects PC12

cells and superior ganglion neurons from JNK-induced

apoptosis.66 Several genes have been found to be its targets,

including p53, CHOP, DR5, and Nrf2.23,67,68 CHOP is

a target gene of ATF3. ATF3 can promote the transcription

of CHOP and induce apoptosis of tumor cells.69 Liu has

indicated that salermide promotes the expression of CHOP

by upregulating ATF3, which contributes to overexpression

of DR5 and promotes salermide-induced apoptosis.23 The

mainly accepted mechanism of how CHOP lead to cell

apoptosis is CHOP worked as a transcriptional factor med-

iating multiple apoptotic/anti-apoptotic genes such as DOCs

(for down-stream of CHOP), Bcl-2 (B-cell lymphoma-2),

TRB3 (tribbles-related protein3).20 DOCs TRB3 is an intra-

cellular pseudokinase that modulates the activity of several

signal transduction cascades. During ER stress, TRB3 is up-

regulated by an ER stress-inducible transcriptional factor,

over-expression of TRB3 would work as feedback to down-

regulates its own expression via the repression of ATF4/

CHOP transcriptional activity;70 Bcl-2 family contains both

pro-apoptotic (BAX, Bak, Bok) and antiapoptotic (Bcl-2,

Bcl-X, Bcl-W). Under ER stress, CHOP down-regulates the

expression of Bcl-2 but not Bcl-X, leading cells to

apoptosis.71 DOCs are a family composed of three mem-

bers: DOC1, DOC4, and DOC6. However, the mechanism

of DOCs effect either survival or death fell far behind the

pharmacological and biochemical research.40

In this study, we assumed that KLF6 induces HLECs

apoptosis through ATF4 and ATF3. We employed siRNA

to block ATF4, ATF3, and CHOP expression separately. The

results showed that ATF4 regulates ATF3 and CHOP expres-

sion and that ATF3 regulates CHOP expression; however,

when blocking CHOP, ATF4 and ATF3 expression remained

unchanged. Our further work would be focusing on how the
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three molecules interact with each other. Wang speculates

that ATF4 promotes ATF3 expression; thus, ATF4 and ATF3

could form a complex and subsequently enhance the tran-

scription of CHOP,72 Some earlier studies have found that

ATF3 can suppress CHOP gene transcription, whereas

CHOP inhibits ATF3 protein function.73 However, our data

show that ATF3 can promote CHOP expression. Anyway,

how CHOP is regulated by ATF3 and ATF4 remains

unknown and needs to be studied further.

In our research, we stressed HLECs with UV, which is a

physiological stressor in vivo and relevant for study of oxi-

dative stress-induced ocular disorders. KLF6 overexpression

significantly accelerated UV-induced HLECs apoptosis, as

verified by cell death detection and cell staining, such as

Hoechst, and live and dead staining. We proved that KLF6

upregulation can activate the proapoptotic protein Bax, inac-

tivate the anti-apoptotic protein Bcl-2, and simultaneously

elevate the Bax/Bcl-2 ratio in HLECs that are transfected

with KLF6. Bax/Bcl-2 ratio is a crucial “molecular switch” in

cell apoptosis reflecting the apoptotic state of HLECs.74,75

In summary, KLF6 is a novel transcriptional activator that

induces apoptosis in HLECs via the ATF4-ATF3-CHOP

pathway. Moreover, our data provide evidence that KLF6

could make HLECs prone to ER stress and elevated apopto-

sis level in HLECs under UV radiation. Our results increase

our understanding of the regulatory mechanisms of HLECs

Figure 7 A model of KLF6-induced cell apoptosis via ATF4-ATF3/CHOP pathway under UV.
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apoptosis for the development of novel approaches to prevent

and treat high myopia cataract.
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