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Background: Chronic obstructive pulmonary disease (COPD) is a common disease char-

acterized by persistent respiratory symptoms and airflow restriction. It is usually manifested

as airway and/or alveolar abnormalities caused by significant exposure to harmful particu-

lates or gases.

Objective: We aim to explore plasma metabolomic changes in the acute exacerbation stage

of COPD (AECOPD) and stable stage of COPD (Stable COPD) to identify potential

biomarkers for diagnosis or prognosis in clinical practice.

Methods: Untargeted metabolomics and lipidomics analyses were performed to investigate

dysregulated molecules in blood plasma of AECOPD patients (n=48) and Stable COPD

(n=48), and a cohort of healthy people were included as a control group (n=48). Statistical

analysis and bioinformatics analysis were performed to reveal dysregulated metabolites and

perturbed metabolic pathways. SVM-based multivariate ROC analysis was used for candi-

date biomarker screening.

Results: A total of 142 metabolites and 688 lipids were dysregulated in COPD patients.

Pathway enrichment analysis showed that several metabolic pathways were perturbed after

COPD onset. Several biomarker panels were proposed for diagnosis of COPD vs healthy

control and AECOPD vs Stable COPD with AUC greater than 0.9.

Conclusion: Numerous plasma metabolites and several metabolic pathways were detected

relevant to COPD disease onset or progression. These metabolites may be considered as

candidate biomarkers for diagnosis or prognosis of COPD. The perturbed pathways involved

in COPD provide clues for further pathological mechanism studies of COPD.

Keywords: metabolomics, lipidomics, COPD, biomarker

Introduction
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and

therapeutic disease characterized by persistent respiratory symptoms and airflow

limitations, usually associated with exposure to toxic particles and gases. COPD is

currently the fourth leading cause of death in the world and is expected to become

the third leading cause of death by 2020.1 In 2012, more than 3 million people died

of COPD worldwide, accounting for 6% of all deaths. Continuous exposure to risk

factors and population aging will lead to an increase in the burden of COPD disease

in the future.2 It is estimated that by 2020, the number of COPD patients will reach

384 million.3 In China, the latest research shows that the standardized prevalence of

COPD is 13.6% for people over 40 years old, 8.1% for women, and 19.0% for men.
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As a chronic disease, early diagnosis and disease monitor-

ing of COPD are urgent. In the clinic, COPD can be

further divided into subtypes according to phenotypes.4

Acute exacerbation of COPD (AECOPD) is the aggrava-

tion of any symptoms (such as cough, sputum, wheezing)

in COPD patients. It can be caused by bacterial or viral

infection, environmental pollution, cold weather, or inter-

rupted routine treatment, and is the main cause of admis-

sion and death. Every acute aggravation will aggravate the

pulmonary function and complications of patients, and

increase the risk of re-hospitalization.5 In 2011, the

Society for Qualification of Biomarkers for Chronic

Obstructive Pulmonary Disease was established to accel-

erate the research and development of biomarkers. COPD

biomarkers have become an important and challenging

area in COPD research.

The metabolome is defined as the total collection of small

molecular metabolites present in a given type of cell or

organism, and is the final downstream product of metabo-

lism. The metabolome can provide a more exact reflection of

the current metabolic status of the organic body compared to

genomics, transcriptomics, or proteomics.6 NMR,7 GC-MS,8

and LC-MS9 are the main techniques used for metabolomics.

Due to the advantages of the great metabolite coverage and

reliable analytical performance,10–12 LC-MS-based lipido-

mics and metabolomics have been widely employed in bio-

logical studies or biomarker screening studies.13–15

The metabolomics technique has been widely applied in

mechanism studies and biomarker screening using exhaled

breath condensate16 or blood of COPD patients.17 A variety

of metabolic pathways and biological molecules have been

found to be involved in the progression of COPD, such as

amino acid metabolism dysfunction,18–20 oxidative

stress,21,22 energy metabolism dysfunction,23,24 and lipid

metabolism dysfunction.25,26 But most of the previous stu-

dies focused on patients from African, American, and

European populations, and to the best of our knowledge, no

COPD related metabolomics study has been reported using

large cohorts of the Chinese population. Considering the

complexity of COPD pathology and different influences of

environmental factors on COPD disease onset and progres-

sion, it is urgent and meaningful to systematically study the

metabolic perturbance in Chinese patient cohorts.

In the present study, we aim to explore the metabolic

changes of Chinese COPD patients in progressive and

stable stages by applying comprehensive LC-MS-based

metabolomic and lipidomic analysis to plasma samples.

Our findings can not only provide clues for pathological

studies and novel biomarker development but also provide

important complementary data for previous studies using

non-Chinese populations.

Materials and Methods
Chemicals and Reagents
Ammonium acetate was purchased from Sigma-Aldrich.

Formic acid, HPLC grade isopropanol, acetonitrile, and

methanol were purchased from Fisher Scientific. Deionized

water was produced by a Milli-Q system. The chemical

standards were of analytical grade with typical purity

of >99%.

Study Population
Initially, a total of 234 subjects were retrospectively enrolled

in this study, including 133 patients with COPD and 101

healthy volunteers, from January 2012 to June 2016 at

Peking University Third Hospital. In all, 133 COPD cases

were diagnosed according to the GOLD criteria, which are

based on COPD risk factors, symptoms, and post-

bronchodilator FEV1/FVC 70%, and patients with asthma,

bronchiectasis, pleural effusion, history of exposure to nox-

ious particles (such as founder’s pneumoconiosis, silicosis,

and asbestosis) and diseases affecting activity were excluded.

After the exclusion procedure, 48 patients in the AECOPD

group and 72 patients in the Stable COPD group were left.

Different GOLD airflow limitation stages were distinguished

as COPD 1–4 according to post-bronchodilator FEV1% pre-

dicted. The included healthy controls were subjects with

normal pulmonary function and without chronic heart and

lung diseases or a recent history of respiratory tract infection.

This study was conducted in accordance with the Declaration

of Helsinki and with approval from the ethics committee of

Peking University Third Hospital. All participants provided

written informed consent. General information, past history,

smoking history, complications, out-of-hospital basic medi-

cation, and home oxygen therapy were collected. The num-

ber of times of hospitalization was increased in the past year.

The aggravating factors, such as fever, lower extremity

edema, pulmonary function in stable period, serological indi-

cators at admission, CAT score and hormone use were also

collected. Information including usage of mechanical venti-

lation, length of stay, blood routine, blood gas analysis, CT

score, and other clinical data were recorded at discharge.

Three groups of plasma samples were included in the meta-

bolomics analysis, including patients in acute exacerbation of

COPD (AECOPD, n=48), stable stage of COPD (Stable
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COPD, n=48), and healthy controls (n=48). The patients or

healthy subjects not included in the metabolomics analysis

were no longer analyzed in the present study. Baseline char-

acteristics and clinical parameters of the patients included in

the metabolomics analysis are presented in Table 1A and B.

Sample Preparation
After an overnight fast, blood was collected in EDTA

tubes and placed on ice. Plasma was separated by centri-

fugation at 3000 g for 20 min, and then stored at −80°C.
All plasma samples included for metabolomic analyses

were processed for metabolite extraction as one batch.

Metabolites and lipids were extracted from the plasma

samples using liquid–liquid extraction as follows: 100 μL
plasma was extracted by fourfold volume of cold chloro-

form: methanol (v/v=2:1). The mixture was centrifuged at

13,000 g for 15 min and then the upper phase (hydrophilic

metabolites) and lower organic phase (hydrophobic meta-

bolites) were separately collected and evaporated at room

temperature under vacuum. The dried samples were stored

at −80°C for about 2 days until LC-MS analysis.

Liquid Chromatography
Metabolomics and lipidomics were performed on an

Ultimate 3000 UHPLC system coupled with Q-Exactive

MS (Thermo Scientific). For the aqueous phase (metabo-

lomics), an Xbridge amide column (100 × 2.1 mm i.d.,

2.5 μm; Waters) was employed for compound separation

at 30°C. The mobile phase A consisted of 5 mM ammo-

nium acetate in water with 5% acetonitrile, and mobile

phase B was acetonitrile. The flow rate was 0.35 mL/min

with the following linear gradient: 0 min, 95% B; 3 min,

90% B; 13 min, 50% B, 14 min, 50% B; 15 min, 95% B,

and 17 min, 95% B. The samples were suspended with 100

μL of acetonitrile:water (1:1, v/v) solution and the injec-

tion volume was 10 μL.
For the lipid, chromatographic separation was per-

formed on a reversed phase X-select CSH C18 column

(2.1 mm × 100 mm, 2.5 μm, Waters, USA) at 40°C. Two

solvents, containing 10 mM ammonium acetate and 0.1%

formic acid, were used for gradient elution: (A) ACN/

water (3:2, v/v), (B) IPA/ACN (9:1, v/v). The gradient

program was: 0 min 40% B; 2 min 43% B; 12 min 60%

B; 12.1 75% B; 18 min 99% B; 19 min 99% B; 20

min 40% B. The flow rate was set to 0.4 mL/min. The

samples were suspended with 100 μL of chloroform:

methanol (1:1, v/v) solution and then diluted threefold

Table 1 Baseline characteristics and clinical parameters of the

patients

(A) Baseline Characteristics of the Participants

Control Stable

COPD

Acute

Exacerbation of

COPD

P value

Number 48 48 48

Clinical

Features

Male/female 38/10 38/10 38/10 1

Age 63.72±6.12 67.34±8.45 66.19±7.34 0.893

BMI 23.76±5.12 24.85±4.65 23.09±6.34 0.854

Course of

COPD

(year)

0 4(1,7) 6(2,9) 0.712

(B) Clinical Parameters of the Patients

Stable COPD Acute

Exacerbation of

COPD

P value

GOLD Classification

I 1(2.08%) 2(4.16%) 0.868

II 9(18.95%) 7(14.58%)

III 18(37.5%) 20(41.67%)

IV 20(41.67%) 19(39.58%)

Complicated with cor

pulmonale

13(27.1%) 15(31.25%) 0.653

Complication

Coronary heart disease 24(50%) 26(64.17) 0.683

Heart failure 11(22.9%) 14(29.2%) 0.485

Diabetes 8(16.7%) 6(12.5%) 0.563

Hypertension 37(77.1%) 39(81.25%) 0.615

OASAHS 13(27.1%) 12(25%) 0.816

Anemia 4(8.3%) 3(6.25%) 0.695

Smoking index 800(200,1000) 780(200,900) 0.834

Smoking 12(25%) 11(22.92%) 0.811

ICS 46(95.83%) 48(100%) 0.153

Family oxygen therapy 35(72.9%) 37(77.1%) 0.637

The number of

aggravations in the

past year

1(0,1.75) 1(0.1.25) 0.712

CAT score 26.22±7.12 25.75±6.14 0.834

Laboratory Examination

White blood cell (*109/L) 7.45±2.13 13.54±3.15 0.033

Neutrophil/lymphocyte

count

1.16(0.70–1.65) 2.43(1.34,2.91) 0.041

Hemoglobin (g/L) 131.13±22.14 134.23±12.07 0.791

Platelet (*109/L) 254.14±54.24 289.15±76.65 0.704

Fibrinogen 3.85(3.12,4.75) 5.54(3.78, 4.76) 0.056

D-Dimer 0.45(0.21,0.63) 0.78(0.54,1.67) 0.061

Procalcitonin positive 1(2.08%) 43(89.58%) <0.01

(Continued)
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with isopropanol:acetonitrile:H2O (2:1:1, v/v/v) solution.

The injection volume was 10 μL.

Mass Spectrometry
Data-dependent acquisition (DDA) was performed using

the Q-Exactive MS (Thermo Scientific) using positive-

negative ion switching mode. Each acquisition cycle con-

sists of 1 survey scan (MS1 scan) at 70,000 resolution

from 60 to 900 m/z for the hydrophilic metabolites and

mass range m/z 300 to 1200 for the lipids, followed by 10

MS/MS scans in HCD mode at 13,500 resolution using

stepped normalized collision energy (step-NCE) of 15, 30,

and 45. The dynamic exclusion was set to 8 s. The auto-

matic gain control (AGC) target was set to 5e6 (maximum

injection time 30 ms) and 2e5 (maximum injection time

100 ms) for the MS1 and MS/MS scan. The parameters of

ion source were: spray voltage 3.3 kV for positive ion

mode and 3.0 kV for negative ion mode; ion source sheath

gas 40; aux gas 10; capillary temperature 320°C; probe

heater temperature 300°C; S-lens RF level 55. Samples

(n=144 in total) were analyzed in random order. Quality

control (QC) samples were prepared by pooling equally

volumes of all study samples, and were analyzed between

every 15 samples during the entire LC-MS analytical

sequence.

Data Processing
Raw data collected from the DDA-MS were processed on

MS-DIAL software v3.6 (http://prime.psc.riken.jp/

Metabolomics_Software/MS-DIAL/) according to

the user guide. Briefly, the raw MS data (.raw) were

converted from into the common file format of Reifycs

Inc. (.abf) using the Reifycs ABF converter (http://www.

reifycs.com/AbfConverter/index.html). After conversion,

the MS-DIAL software was used for feature detection,

spectra deconvolution, metabolite identification and peak

alignment between samples. The MS2 spectra based

metabolite identification was performed in MS-DIAL by

searching the acquired MS2 spectra against the

MassBank database provided by MS-DIAL software,

containing MS1 and MS/MS information of metabolites

(8068 records in positive ion mode and 4782 records in

negative ion mode). The MS2 spectra based lipid identi-

fication was performed in MS-DIAL by searching the

acquired MS2 spectra against the software’s internal in

silico MS/MS spectra database (version: LipidDBs-VS23

-FiehnO), which includes MS1 and MS/MS information

of common lipid species. The tolerances for MS1 and

MS/MS search were set to 0.01 Da and 0.05 Da, sepa-

rately. Peak alignment was performed using retention

time tolerance of 0.2 min and MS1 tolerance of 0.01

Da. Other parameters used in MS-DIAL were set as

default.

Statistical Analysis and Multivariate ROC

Analysis
Statistical analysis (including PCA analysis, ANOVA, and

hierarchical cluster analysis) and bioinformatics (pathway

enrichment analysis) were carried out by the MetaboAnalyst

web service (https://www.metaboanalyst.ca/). For each sam-

ple, the peak area of each metabolite was normalized to the

total peak areas of all metabolites. Significance was analyzed

using ANOVA and an FDR-adjusted p-value of less than 0.01

was considered as significant, and Tukey’s HSD was used as

a post hoc test. For pathway enrichment analysis, dysregulated

metaboliteswere used as input to search against theKEGGand

SMP database, and a p-value of less than 0.01 was considered

significant. Multivariate ROC curve analyses were performed

using the MetaboAnalyst web service.27 The analysis was

based on support vector machine (SVM) algorithms. ROC

curves are generated by Monte-Carlo cross-validation

(MCCV) using balanced sub-sampling, to visualize the out-

come of multivariate modeling. In each MCCV, two-thirds of

the samples are used to evaluate the feature importance. The

top 5, 10, 15, 25, 50, and 100 important features are then used

to build classificationmodels that are validated on the one-third

of the samples that were left out. The procedure was repeated

multiple times to calculate the performance and confidence

interval of each model. The feature ranking method was set to

“SVM built-in.”

Results
Study Design and Overview of the Study
In this study, we systematically investigated the expressive

profiles of metabolites and lipids in the plasma of COPD

patients and healthy people in a Chinese population. Two

subgroups were separately analyzed in COPD patient

Table 1 (Continued).

(B) Clinical Parameters of the Patients

C-reactive protein 4.00(3.01,4.65) 180.31

(90.23,331.56)

<0.01

FEV1%pred 40.91±12.87% 37.58±14.75 0.692
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cohorts according to COPD disease stage (ie AECOPD

and Stable COPD). After metabolite identification and

quantification, statistical analyses were used to retrieve

dysregulated molecules between groups. Pathway enrich-

ment analysis was also used to find relevant metabolic

pathways to COPD pathology. Finally, we performed mul-

tivariate ROC analysis to reveal potential biomarker

panels that could be used for diagnosis of COPD disease

onset or stages. Our findings provide, for the first time,

a comprehensive view of the plasma metabolic profile of

COPD patients in a Chinese population, and thus provide

valuable information for further pathological research and

biomarker development studies.

A total of 96 patients with COPD (including 48

AECOPD patients, 48 Stable COPD patients) and 48 age-

sex matched healthy volunteers were retrospectively

enrolled in this study. Their demographic data are summar-

ized in Table 1. There were no significant differences in

gender, age, BMI, smoking history, pulmonary heart dis-

ease, complications, basic ICS use, home oxygen therapy,

or the number of aggravations in the past year between the

two groups (Table 1A). For other clinical parameters, there

were significantly higher level of white blood cell (13.54 ±

3.15 vs 7.45 ± 2.13, p=0.033), ratio of neutrophil/lympho-

cyte (5.54 (3.78, 4.76) vs 3.85 (3.12, 4.75), p=0.041), pro-

calcitonin positive (89.58% vs 2.08%, p<0.01) and

C-reactive protein level (180.31 (90.23, 331.56) vs 4.00

(3.01, 4.65), p<0.01) in AECOPD than those in Stable

COPD (Table 1b).

Metabolomics Revealed Dysregulated

Metabolites Between COPD Stages
Principle component analysis (PCA) was performed to get

a comprehensive view of the metabolomics data. PCA score

plots of all sample groups (ie AECOPD, Stable COPD,

Healthy control, and QC) in positive (Figure 1A) and nega-

tive ion mode (Figure 1B) are shown. QC samples clustered

well in both ion modes, proving the reliability of the meta-

bolomics data, thus no QC-based drift correction or data

cleaning were performed. No obvious trends of separation

were observed in positive ion modes, but the healthy control

group showed clear trends of separation with COPD groups

in negative ion mode. Further ANOVA analysis revealed

a total of 142 dysregulated metabolites between three sample

groups, as presented in Table S1. Dysregulated metabolites

belonging to four different expression patterns are shown in

Figure 1C–F. Glutamylphenylalanine and taurine were found

to be dysregulated in three groups (Figure 1C). Metabolites

dysregulated in only one group are shown by the heat map in

Figure 1D (AECOPD), E (Stable COPD) and F (Healthy

control).

Lipidomics Revealed Dysregulated

Metabolites Between COPD Stages
For the lipidomics data, PCA was performed to get

a comprehensive view. PCA score plots of all sample groups

(ie AECOPD, Stable COPD, Healthy control, and QC) in

positive (Figure 2A) and negative ionmode (Figure 2B) were

shown. QC samples clustered well in both ion modes, prov-

ing the reliability of the lipidomics data, thus no QC-based

drift correction or data cleaning were performed. The healthy

control group showed clear trends of separation with COPD

groups in both positive and negative ion modes, but no

obvious trends of separation were observed between two

COPD subgroups. Further ANOVA analysis revealed

a total of 688 dysregulated lipids, as presented in Table S2.

Dysregulated lipids belonging to four different expression

patterns are shown in Figure 1C–F. Lipids that dysregulated

between three groups are shown in Figure 2C, while lipids

that only dysregulated in AECOPD or Stable COPD are

shown in Figure 2D and E. A scatter plot (Figure 2F) was

used to present lipids only dysregulated in healthy control but

not dysregulated between COPD subgroups.

Pathway Enrichment Analysis Revealed

Perturbed Metabolic Pathways
To find the metabolic pathways involved in COPD disease

onset or progression, we performed pathway enrichment

analysis using all the dysregulated metabolites as inputs. As

shown in the scatter plot in Figure 3, dysregulated metabo-

lites were enriched in eight pathways with a p-value of less

than 0.01 (Table S3). Five of the dysregulated pathways

belonged to amino acid metabolic pathways involving

amino acids of valine, leucine, isoleucine, arginine, proline,

phenylalanine, glycine, serine, threonine, and beta-alanine.

ROC Analysis Revealed Candidate

Biomarkers for COPD Onset
We employed SVM-based multivariate ROC curve analysis

to retrieve metabolites or lipids that can distinguish COPD

patients from healthy controls, which can be potential bio-

markers for COPD onset. AECOPD and Stable COPD were

combined as the disease group and compared against

healthy control. Multivariate ROC curves constructed with
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5–100 metabolites or lipids are shown in Figure 4A

and D. The predicted class probabilities (average of the

cross-validation) for each sample using the 15 feature

model are shown in Figure 4B and E, in which the COPD

disease group showed clear separation from the healthy

control. The top 15 metabolites or lipids contributing to

the prediction model are shown in Figure 4C and F, ranked

by mean importance measure.

Figure 1 Dysregulatedmetabolites revealed by metabolomics. (A and B) Principle component analysis score plots of all sample groups in positive (A) and negative ion mode

(B). Groups are presented in different colors (AECOPD, green; SSCOPD (Stable COPD), blue; healthy control, red; QC, dark blue). (C) Grouped scatter plots presenting

levels of glutamylphenylalanine and taurine. (D) Heat map presenting metabolites that are only dysregulated in AECOPD. (E) Heat map presenting metabolites that are only

dysregulated in SSCOPD (Stable COPD). (F) Heat map presenting metabolites that are only dysregulated in the Healthy control.
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ROC Analysis Revealed Candidate

Biomarkers for COPD Stages
Multivariate ROC curve analysis was also used to retrieve

metabolites or lipids that can distinguish AECOPD from

Stable COPD, which can be potential biomarkers for the

diagnosis of COPD stages. Multivariate ROC curves con-

structed with 5–100 metabolites or lipids are shown in

Figure 5A and D. The predicted class probabilities for each

sample using the 15-feature model are shown in Figure 5B

and E, in which AECOPD and Stable COPD did not show

Figure 2 Dysregulated metabolites revealed by lipidomics. (A and B) Principle component analysis score plots of all sample groups in positive (A) and negative ion mode

(B). Groups are presented in different colors (AECOPD, green; SSCOPD (Stable COPD), blue; healthy control, red; QC, dark blue). (C) Heat map presenting lipids

dysregulated in three groups. (D) Heat map presenting lipids that are only dysregulated in AECOPD. (E) Heat map presenting lipids that are only dysregulated in SSCOPD

(Stable COPD). (F) Heat map presenting lipids that are only dysregulated in the Healthy control.
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absolute separation, but most of the samples could be distin-

guished correctly. The top 15 metabolites or lipids contrib-

uted to the prediction model are shown in Figure 5C and

F ranked by mean importance measure.

Discussion
COPD is a common disease characterized by persistent

respiratory symptoms and airflow limitations, usually

associated with exposure to toxic particles and gases, and

airflow is not fully reversible.28 As a chronic disease, early

diagnosis and disease monitoring of COPD are urgent.

Several previous studies have explored the metabolic

changes between COPD patients in different disease stages

as well as healthy people, but few studies have used

the Chinese population as participants. Our present study

provides a comprehensive view of the metabolic and lipi-

domic profile of plasma in Chinese COPD patients, thus

can provide not only clues for pathological mechanism

studies and novel diagnostic biomarker development, but

also complementary data to previous COPD related studies

focusing on non-Chinese populations.

Among the dysregulated metabolites, four different

expression patterns can be concluded as shown in Figure

1C–F. Glutamylphenylalanine and taurine were found sig-

nificantly dysregulated in three groups (highly expressed

in the healthy group and less expressed in AECOPD), thus

may be the key metabolites involved in the disease onset

and progress, and our study was the first to report the

relationship between COPD and these two metabolites.

Glutamylphenylalanine is a dipeptide composed of gluta-

mate and phenylalanine, and is a proteolytic breakdown

product of larger proteins; thus, the different plasma

levels of glutamylphenylalanine in different COPD stages

may be the result of different proteolytic activities. Taurine

Figure 3 Metabolic pathways involved in COPD disease onset and progression. Scatter plot presenting enriched metabolic pathways. The color gradient indicates the

significance of the pathway ranked by p-value (y-axis; yellow: higher p-values and red: lower p-values), and circle size indicates the pathway impact score (x-axis; the larger

circle the higher impact score). Significantly affected pathways with p-value less than 0.01 were marked by names.
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is a sulfur amino acid and is a lesser-known amino acid

because it is not incorporated into the structural building

blocks of protein.29 Taurine has many diverse biological

functions, serving as a neurotransmitter in the brain,

a stabilizer of cell membranes and a facilitator in the

transport of ions such as sodium, potassium, calcium,

and magnesium.30 In the pathway enrichment analysis

(Figure 3 and Table S3), five of the perturbed pathways

Figure 4 ROC analysis revealed candidate biomarkers for COPD diagnosis. (A and D) Multivariate ROC curve constructed with 5–100 metabolites (A) or lipids (D) based

on the cross-validation (CV) performance. (B and E) The predicted class probabilities (average of the cross-validation) for each sample using the 15 feature model of

metabolites (B) or lipids (E). The top 15 metabolites (C) or lipids (F) contributed to the prediction model ranked by mean importance measure and the expressive levels

are presented aside by color (red, high; green, low).
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belonged to amino acid metabolism, showing the close

link between amino acid metabolism and COPD, and this

finding was in accordance with previous studies.17

Phenylalanine is one of the essential amino acids, and the

activity level of the phenylalanine metabolism pathway

may reflect the synthesis and breakdown state of the

systematic protein. Previous studies indicated that its

level may be related to the severity of COPD.31 The

three BCAAs included in the valine, leucine, and isoleu-

cine biosynthesis pathway can promote protein anabolism

and maintain glucose homeostasis in skeletal muscle.20

Reduced BCAA levels in COPD progression may be

Figure 5 ROC analysis revealed candidate biomarkers for COPD disease stage diagnosis. (A and D) Multivariate ROC curve constructed with 5–100 metabolites (A) or

lipids (D) based on the cross-validation (CV) performance. (B and E) The predicted class probabilities (average of the cross-validation) for each sample using the 15 feature

model of metabolites (B) or lipids (E). The top 15 metabolites (C) or lipids (F) contributed to the prediction model ranked by mean importance measure and the expressive

levels are presented aside by color (red, high; green, low). SSCOPD stands for Stable COPD group.
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a result of protein malnutrition, and in some cases hyper-

metabolism caused by COPD exacerbation is another pos-

sible reason for that.19 The pathways of arginine and

proline metabolism and nitrogen metabolism may influ-

ence COPD progression via regulation of oxidative stress.

It has been reported that NO, a common and highly reac-

tive free radical in living systems, is converted by arginine

oxidation and nitrite reduction, and the dysregulation of

these pathways may contribute to airway obstruction and

chronical airway remodeling in COPD.32

In lipidomics results, several lipids showed a significant

difference between three groups (Figure 2C), which can be

used to distinguish not only COPD patients from healthy

people, but also COPD patients in different disease stages.

For the lipids dysregulated only between healthy control

and COPD groups (Figure 2F), different lipid species

showed different changing trends, for example, all lipids

belonged to LPC were downregulated in COPD groups,

and all PE and p-PE were upregulated; PCs and TGs were

partially upregulated and others were downregulated in

COPD groups. These results hinted about the complexity

of lipid metabolism involved in COPD, and lipid molecules

belonging to the same lipid species may play different roles

in COPD pathology. Among the total of 18 lipid species we

found dysregulated between groups, some of them have

been reported as relevant to COPD, such as LPC, LPE,

and PE,25,33,34 and some lipid species, such as ceramide,

PS, and PI, were newly found to be involved in COPD.

For the purpose of providing new biomarkers for

diagnosis, we firstly explored the potential biomarkers

to discriminate COPD patients from healthy controls. As

shown in Figure 4, many dysregulated metabolites and

lipids showed excellent discriminative power; the AUC

of the ROC curve constructed with only 5 molecules is

higher than 0.99. Using the SVM-based discriminative

mode constructed with 15 metabolites or lipids, samples

in the COPD group and healthy control could be entirely

separated (Figure 4B and E). These candidate markers

provide a new choice for further biomarker development

for COPD diagnosis. COPD is a heterogeneous disease,

and the diagnosis of COPD is mainly based on the

pulmonary function test, but some patients cannot fully

finish the pulmonary function test due to poor lung

function or body condition.35 Thus, the candidate bio-

markers we found in this study may be considered as

a complementary way to perform a pulmonary function

test for the diagnosis of COPD because the blood test

was relatively noninvasive and more practicable. What

is more, patients with COPD diagnosed by pulmonary

function have an irreversible decline in pulmonary

function,36 and the warning effect of pulmonary function

on COPD is limited. The blood-based molecular biomar-

kers may be detected at an early stage of COPD, and thus

have a better warning effect.

In the past decades, researchers have found that COPD has

different phenotypes, such as eosinophilic phenotype, over-

lapping phenotype of COPD asthma, and acute exacerbation.

Some important biomarkers can identify the characteristics

and severity of the disease, and monitor the therapeutic

effect.37 In the present study, we also tried to find potential

biomarkers for discrimination between AECOPD and Stable

COPD. The metabolic and lipidomic profiles between these

two stages showed less difference than COPD vs healthy

control, and the ROCs constructed also had less discriminative

performance (Figure 5A andD).With the increased number of

selected features, the AUC increases from 0.8 to 0.9. But

considering the increased feature number may result in the

complexity of analytical assay methods, so we chose 15

metabolites or lipids as targets of the biomarker panel. Even

though total separation cannot be achieved using these 15

biomarker panels (Figure 5B and E), most samples can still

be assigned correctly to AECOPD and Stable COPD groups.

These two biomarker panels could be considered for the

diagnosis of COPD disease stages. Further, the biomarkers

we found for COPD vs Healthy and AECOPD vs Stable

COPD merely overlapped except private acid, hinting that

COPD onset and development may involve different meta-

bolic and pathological procedures.

There were some limitations to our study that need to be

addressed. First, the metabolite and lipid expressive levels in

plasma are a comprehensive reflection of body metabolism,

and considering the fact that cellular metabolism is highly

flexible, and varies with tissue of origin, environment fac-

tors, and diets, we cannot directly assess the exact metabolic

changes in lung tissue from results of plasma analysis. Our

study aims to provide clues for changed metabolism relevant

to COPD disease onset and progression, and the detailed

molecular regulative mechanism in lung tissue needs to be

further validated using more biological experiments before

a final conclusion can be made. Second, the expressive

levels of metabolites and lipids provided in our study are

determined by relative quantification; for biomarkers used

for clinical practice, absolute quantification is usually

needed. Thus, further validation studies with absolute quan-

titative analysis of these candidate biomarkers (or biomarker

panels) in larger COPD patient cohorts need to be done
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before these candidate biomarkers can finally be applied in

clinical practice.

In summary, this study provides a comprehensive view of

dysregulated plasma metabolites and lipids in AECOPD and

Stable COPD in a Chinese population. We found that expres-

sion levels of a variety of metabolites and lipids are different

between COPD disease stages or healthy people. Our study

provides clues for further COPD pathological studies and

several potential biomarker panels for diagnosis of COPD

disease stages.
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