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Abstract: Transthyretin (TTR) is a tetrameric protein, and its dissociation, aggregation,

deposition, and misfolding are linked to several human amyloid diseases. As the main

transporter for thyroxine (T4) in plasma and cerebrospinal fluid, TTR contains two T4-

binding sites, which are docked with T4 and subsequently maintain the structural stability of

TTR homotetramer. Affected by genetic disorders and detrimental environmental factors,

TTR degrades to monomer and/or form amyloid fibrils. Reasonably, stabilization of TTR

might be an efficient strategy for the treatment of TTR-related amyloidosis. However, only

10–25% of T4 in the plasma is bound to TTR under physiological conditions. Expectedly, T4

analogs with different structures aiming to bind to T4 pockets may displace the functions of

T4. So far, a number of compounds including both natural and synthetic origin have been

reported. In this paper, we summarized the potent inhibitors, including bisaryl structure-

based compounds, flavonoids, crown ethers, and carboranes, for treating TTR-related amy-

loid diseases and the combination modes of some compounds binding to TTR protein.
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Introduction
Transthyretin (TTR), functions as a mediator in transporting thyroxine (T4) in the

cerebrospinal fluid and plasma,1 is a 55 kDa homotetrameric protein composed of

127 amino acid residues in each monomer, which consists of two four-stranded β-

sheets. Strands DAGH and CBEF are the β-sheets, and they are extended in the

dimer to be DAGHH’G’A’D’ and CBEFF’E’B’C’, standing for their individual

monomers. Hydrogen bonds between the main-chain atoms and strand H from

different dimers promote the association of two dimers, forming a tetramer.2 The

contact areas in monomer-monomer and dimer-dimer are extensive in TTR. More

than 120 TTR mutations have been associated with amyloidogenesis and diseases.

Investigation on the roles of some specific amino acids, such as T119M,2 V30M,3

and R104H,4 has been conducted. The A25T-TTR variant is among the most

destabilized and fastest dissociating TTR tetramers.5 Tetramer stability is mainly

governed by hydrophobic interactions, and the subunits exchange among TTR may

occur faster at 4°C than at 25°C or 37°C.6

The tetramer structure of TTR contains two funnel-shaped T4-binding sites, and

binding of T4 may maintain the stability of the TTR tetramer structure.7,8

Structurally, TTR is a homotetramer with an extensive β-sheet structure, and the

two identical T4-binding sites locate at the dimer–dimer interfaces (Figure 1).9–15

Specifically, two T4 molecules, with different orientations, bind to the unique
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binding sites between AC and BD dimers (Figure 1A),

bridging these subunits. Within the binding cavity, some

key amino acids (Glu54, Lys15, Leu17, Ala108, Thr119,

Leu110, Ser117) (Figure 1B) from the corresponding

monomer are orchestrated to form halogen-binding

pockets P1, P2, and P3 (Table 1). The amino- and car-

boxyl-terminal structures of T4 form hydrogen bonds by

interacting with Glu54 and Lys15, respectively, in the P1

binding pocket.16 Interaction of ligands with T4-binding

sites is dominantly enforced by the hydrophobic effect and

electrostatic interactions, which promote kinetic stabiliza-

tion in the weaker dimer–dimer interface, stabilizing TTR

tetramer, and increasing the kinetic barrier for

dissociation.16,17

However, most of TTRs T4-binding cavities are unoc-

cupied, only less than 25% of which in plasma is binding to

T4. Therefore, under certain conditions (such as genetic

mutation and induction by some chemical pollutants),

TTR tetramer without T4 may become instability, dissocia-

tion into monomer, and misfolding, leading to initiation of

oligomerization processes of monomeric TTR and forma-

tion of amyloid fibrils (Figure 2), and induction of trans-

thyretin amyloidogenesis (ATTR), and activation of NF-κB

signaling pathway, inflammatory stress, and cell death.18 A

number of mutations in the gene encoding TTR protein

have been identified in elderly individuals, and a conforma-

tional change in mutated TTR tetramer is observed, which

results in the deposition of amyloid fibrils and induction of

several diseases, such as familial amyloid polyneuropathies

(FAP), familial amyloid cardiomyopathy (FAC), and senile

systemic amyloidosis (SSA).19 One of the possible envir-

onmentally etiological factors might be the inheritance from

parents with TTR mutations. In addition, any pollutants

may directly or indirectly affect the complex stability by,

at least in partial, inducing genetic mutations. Under normal

physiological conditions, clusterin is a plasma chaperone

and may recognize exposed hydrophobic regions of mis-

folded protein, preventing them from aggregation (Table 1).

Clusterin has been demonstrated to form a complex with a

monomeric or oligomeric β-sheet rich structure of TTR in a

stable manner, preventing TTR amyloid fibril formation.20

The stabilization of TTR tetramer by small molecules

like T4 and T4 analogs, which interact with the binding

pockets, is a promising therapeutic strategy against

ATTR.21 This article will review the categories and struc-

tures of ATTR inhibitors.

Potent Inhibitors of ATTR
In the past few decades, a large number of small molecules

with the activity of stabilizing the TTR tetramer structure

have been reported. Most of these compounds contain a

substructure with two aromatic rings by a linker. The

bisaryl structures with a linker form the possible pharma-

cophoric elements, which have been indicated in Figure 3.

In addition, other compounds with different characteristic

structures also show strong activity in the stabilization of

TTR tetramer, such as flavonoids, crown ethers, and car-

boranes, although they bind to the T4-binding sites in

different manners. Inhibitors with disaggregating TTR

amyloid fibrils also play an important role for managing

ATTR.

Bisaryl Structures with a Linker
The substructure-combinational strategy has been used for

producing potent and selective TTR stabilizers (Figure 3).

The groups including aryl-X and aryl-Z rings as well as

Figure 1 Crystal structure (PDB ID: 1IE4) of TTR tetramer with T4 interacting with the two T4-binding sits is shown. (A) The two T4-binding sites located at the dimer–

dimer interfaces are framed by the white boxes. (B) The specific interaction between T4 and amino acids at the binding pockets is shown. The yellow rod structure is

indicated as T4, and the green solid lines are hydrogen bonds. These pictures are prepared using the program UCSF Chimera developed by the University of California.
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Table 1 The Structure–Activity Relationship of TTR Amyloidogenesis Inhibitors

Category Compounds SAR References

T4 T4 Key interacting residues Glu54, Lys15, Leu17, Ala108, Thr119, Leu110, Ser117 in the

binding sites; occupies halogen-binding pockets P1, P2, and P3.

[16]

Bisaryl structures

with a linker

Bisaryl

structures

Thyroid hormone-like substitution (3,5-X-4-OH, where X=CH3, F, Cl, Br, and I) produces

potency; The linker Y designed as non-polar E-olefin or –CH2CH2- group also generates

high selection.

[22]

Position 2.6; 2.5; 2; 3,4,5 and 3.5 substitutions generate excellent potency and selectivity,

and the efficacy scores are 0.789, 0.748, 0.734, 0.697 and 0.538, respectively.

[24]

Diflunisal Reaches the maximal therapeutic concentration of 224 μM in vitro, leading to 0.85 eq of

drug bound to TTR.

[26]

Flurbiprofen Flank on both sides by the hydrophobic side chains of Lys15, Leu17, Ala108, Leu110,

Ser117, Thr119, and Val121; The substituted phenyl ring forms interacts with Val17 and

Ala108. CH3CHCOOH substituent interacts with Lys15.

[27]

Bromodiflunisal The binding potencies with values of 0.85 and 0.53, respectively, calculated by EC50 T4/

EC50 tested compound, compared with that of T4 (the value of 1).

[29]

Iododiflunisal Interacts with Leu17, Thr106, Ala108, Thr119, and Val121. The value of EC50 (T4)/EC50

(I) is 0.7, compared with that of T4 (the value of 1).

[30]

PCBs, OH-

PCBs

Bind to TTR tetramer with Ki values of 10–140 nM, similar to the natural ligand T4 (a Ki
value of 62 nM)

[37]

LC-PCB

sulfates

Produces hydrogen bonding between the sulfate groups and Lys15. Binds to TTR with

equilibrium dissociation constants in the range of 4.8–16.8 nM, similar to that for T4 with

4.7 nM.

[46]

Flavonoids Flavonoid The more hydroxyl groups, the lower the conversion degree to amyloid fibrils. [60]

Apigenin Exhibits the conversion value of 6% at the concentration of 10.8 μM and completely

inhibiting fibril formation at 36 μM. Inhibits TTR disaggregation with an IC50 value of 10.3

μM, compared with T4 with IC50 value of 4.34 μM.

[60]

Luteolin In V30M TTR, Lut inhibits TTR disaggregation with an IC50 value of 5.68 ± 1.10 μM,

compared with that in the wild type of TTR with an IC50 value of 6.38 ± 1.17 μM,

[63,64]

β-amin-

oxypropionic

acids

Compounds

283–299

Different from T4, the aromatic ring is mainly docked into P3 and interacts with the

residues near Ser117 and Lys15 and plays a role in deciding the binding mode.

[68]

Crown Ethers Compounds

315

Inhibit the formation of TTR-related amyloid fibril by 58% (at a concentration of 2 mM).

Different from T4 in inhibiting mechanism, Compounds 315 located on the surface of TTR

to stabilize the tetramer.

[70]

Compounds

317

Inhibit the formation of TTR-related amyloid fibril by 47% (at a concentration of 10 mM).

Different from T4 in inhibiting mechanism, Compounds 317 located on the surface of TTR

to stabilize the tetramer.

[15]

Oxazoles Compounds

327

A carboxyl group at C-4 demonstrates efficiency in inhibiting TTR amyloidogenesis.

Substitution of ethyl, propyl, or CF3 group at C-5 enhances the inhibiting activity.

[77]

γ-Mangostin γ-Mangostin Inhibit the amyloid fibril formation of V30M amyloidogenic TTR with EC50 value of 7 ± 0.6

μM. X-ray crystallographic analysis reveals a novel diagonal model for binding to T4-

binding sites, associating with two chloride ions.

[78]

(Continued)
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the linker-Y can be varied in generating alternative ATTR

inhibitors (Table 1).22 Structure–activity relationship

(SAR) study indicates that the Y linker optimization

must be in concert with SAR data from aryl-X and aryl-

Z optimization to predict potential structures for selective

TTR amyloidogenesis inhibition. The linker (Y) can be

formed by variable chemical structures with different

lengths, and both the two aryl rings (X and Z) bear a

combination of substituents, including alkyl, carboxyl,

halide, trifluoromethyl or hydroxyl groups (Table 1).23,24

Structural optimization for better activities is focusing on

aryl-X, -Z, and Y. Thyroid hormone-like substitution (3,5-

X-4-OH, where X=CH3, F, Cl, Br, and I) produces potent

selective TTR amyloidogenesis inhibitors. The linker Y

structure is designed as non-polar E-olefin or –CH2CH2-

group also generates highly selective inhibitors, and the

hydrophobic effect of linker Y contributes to binding

energy. Similar to that of T4, the binding mode of these

compounds to the binding pockets has been indicated that

two aromatic rings occupy P1 and P3 pockets, respec-

tively, and the linkers occupy the P2 pocket.25 A series

of ATTR small molecular inhibitors with two aromatic

rings and the linkers have been designed and synthesized,

which will be described below.

Under physiological conditions, T4 (1, Figure 4) with a

diphenyl ether structure maintains the stability of TTR

tetramer by binding to the T4-binding sites within TTR

protein. Fenoprofen (2, Figure 4), a non-steroidal anti–

inflammatory drug (NSAID), is also a diphenyl ether

structure compound. The activity of Fenoprofen in inhibit-

ing amyloid fibril formation has been evaluated with a

maximal therapeutic concentration of 96 μM (Table 1).26

Diflunisal reaches the maximal therapeutic concentration

of 224 μM with 0.85 equiv of drug bound to TTR.

Similarly, flufenamic acid reaches 54 μM with 0.59

equiv. Increasing amount of molecules with diphenyl

ether structure has been explored (3–12, Figure 4). All of

these compounds show a high affinity to TTR protein and

prevent against fibrillogenesis by stabilizing the tetramer

structure of TTR.18

Similarly, diphenyl compounds can also bind to T4-

binding sites, stabilizing TTR tetramer. A variety of

NSAIDs with diphenyl groups, such as diflunisal (13,

Figure 5) and flurbiprofen (14, Figure 5), have been iden-

tified to contribute to the stability of TTR tetramer

(Table 1).27,28 Specifically, the biaryl moiety of flurbipro-

fen is flanked on both sides by the hydrophobic side chains

of Lys15, Leu17, Ala108, Leu110, Ser117, Thr119, and

Val121. The substituted phenyl ring forms van der Waals

interactions with Val17 and Ala108. The carboxylate

group of the CH3CHCOOH substituent is observed to

electrostatically interact with Lys15. Furthermore, a num-

ber of diphenyl structure-related derivatives have been

synthesized (15–65, Figure 5) and tested as potent inhibi-

tors against amyloid fibril formation. High inhibitory

activity has been observed for about half of these analogs,

and eight of them greatly promote tetramer dissociation

into monomer.27 Structure–activity relationship study

shows that connecting of a carboxylate-substituted

Table 1 (Continued).

Category Compounds SAR References

Quinoline Compound

329

Inhibits TTR fibril formation with an IC50 value of 1.49 μM against wild-type TTR and 1.63

μM against V30M TTR variant. Exhibit 80% inhibition against more amyloidogenic V30M-

TTR at a concentration equal to the V30M-TTR tetramer over a 120 h time course.

[79]

difunisal

difunisal

tetramer monomer
unfolded/
misfolded
monomer

oligomers

protofibril

amyloid fibril

kinetically
stabilized
tetramer

kinetically
stabilized
dimer

Figure 2 The dissociation of TTR tetramer. TTR tetramer dissociates into mono-

mers, which can be dimerized and further tetramerized by interacting with difluni-

sal. The unfolded/misfolded monomers of TTR aggregate to form amyloid fibrils,

which may be inhibited by inhibitors, such as diflunisal.

Guo et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2020:141060

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


hydrophilic ring to a di-halogen hydrophobic ring is essen-

tial for its potential activity in inhibiting amyloid fibril

formation.

The TTR binding affinity of bromine- and iodine-substi-

tuted diphenyl compounds iododiflunisal and bromodiflunisal

(66–67, Figure 6) has also been investigated that both bromine

and iodine substitutions increase the binding potencies with

values of 0.85 and 0.53, respectively, calculated by EC50 T4/

EC50 tested compound, compared with diflunisal with a value

of 0.04 (Table 1).29 A series of iodine-substituted biphenyls,

including iododiflunisal (68–89, Figure 6), have been pro-

duced. Data from the T4 competition assay show that the

ability of these iodine-substituted biphenyls to stabilize TTR

has been improved significantly than that of those inhibitors

O
Cl

Cl

OH

Cl

3 Triclosan

O
I

I

I

OH
I

NH2

OH O

1 Thyroxine(T4)

O
R2

R1

R3

R4

4 R1=R2=Cl, R3=OH, R4=CHO

5 R1=R2=Cl, R3=OH, R4=CH2Cl

6 R1=R2=Cl, R3=OH, R4=CH2OH

7 R1=R2=Cl, R3=OCH3, R4=CH2Cl

8 R1=R2=Cl, R3=OCH3, R4=COOH

9 R1=R2=Cl, R3=OH, R4=COOH

10 R1=R2=H, R3=OCH3, R4=CH2Cl

11 R1=R2=H, R3=OCH3, R4=CHO

12 R1=R2=H, R3=OH, R4=COOH

O
O

2 Fenoprofen

Figure 4 Biphenyl ethers act as the potent ATTR inhibitors.

Y

Z

X

Glu-54
-O2C Glu-

54'
NH3

+ +
3HN

Lys-15 Lys
-15'

Ser-117
OH

Ser-
117'

HO

P1

P2

P3

B

O N

X

Y

BrBr
OH

O

Br Br
OH

A Z

Y

BrBr
OH

Z

Aryl-X ring
Optimization

Aryl-Zring
Optimization

Linker
Optimization

A substructure 
combination strategy
to create potent and
selective TTR stabilizers

CO2
-

Y

Z

X

C

Possible
pharmacophoric

elements

Figure 3 The substructure-combinational strategy is used for producing potent and selective ATTR inhibitors (A). The binding model is indicated within the T4-binding

pockets (B). The indicated structure may be considered as the possible pharmacophoric elements (C), and the alternative substitutions may be showed as Z, Y, and X.
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without iodine atoms (Table 1).30 The iodine atom in the

iododiflunisal complex produces hydrophobic interactions

with Leu17, Thr106, Ala108, Thr119, and Val121, occupying

the P1 pocket. Studies have showed that methyl and chloro

groups in the phenyl ring and carboxyl group are the necessary

requirement for flurbiprofen to create high affinity and stabi-

lization effects on binding to TTR. Flurbiprofen analogs

CHF5074 (90, Figure 6), CHF5075 (91, Figure 6), CHF4795

(92, Figure 6), and CHF4802 (93, Figure 6) are also involved

in the investigation of their effects on stabilizing TTR.

CHF5075 (91) and CHF4802 (93) exhibit greater activities

than flurbiprofen on TTR stabilization. CHF4795 (92) shows a

similar effect, and CHF5074 (90) indicates a worse effect on

TTR stabilization.31

Polychlorinated biphenyls (PCBs) and hydroxylated

polychlorinated biphenyls (OH-PCBs), due to their slow

degradation, are known for their pollution to the environment

and toxicity to humans.32–35 Both PCBs and OH-PCBs bind

F

F

COOH

OH

COOH

F

13 Difunisal 14 Flurbiprofen

15 R1=H, R2=OH,R3=R5=F, R4=R6=H

16 R1=OH, R2=H,R3=R5=F, R4=R6=H

17 R1=H, R2=OH, R5=F, R3=R4=R6=H

18 R1=OH, R2=H, R5=F, R3=R4=R6=H

19 R1=H, R2=OH, R3=F, R4=R5=R6=H

20 R1=OH, R2=H, R3=F, R4=R5=R6=H

21 R1=H, R2=OH, R3=R5=H, R4=R6=F

22 R1=OH, R2=H, R3=R5=H, R4=R6=F

23 R1=H, R2=OH,R3=R4=R5=R6=H

R1

R2

R3

R4

R5

R6

F F
OH

O

24

25 R1=COOH, R2=H,R3=R5=F, R4=R6=R7=H

26 R1=H, R2=COOH,R5=F, R3=R4=R6=R7=H

27 R1=COOH, R2=H,R5=F, R3=R4=R6=R7=H

28 R1=H, R2=COOH, R3=F, R4=R5=R6=R7=H

29 R1=COOH, R2=H, R3=F, R4=R5=R6=R7=H

30 R1=H, R2=COOH, R3=R5=R7=H, R4=R6=F

31 R1=COOH, R2=H, R3=R5=R7=H, R4=R6=F

32 R1=H, R2=COOH, R4=R5=R6=H, R3=R7=F

33 R1=COOH, R2=H, R4=R5=R6=H, R3=R7=F
R1

R2

R3

R4

R5

R6

R7

34 R1=H, R2=COOH, R3=R4=R5=R6=R7=H

35 R1=COOH, R2=H, R3=R4=R5=R6=R7=H

OH

OH

R1

R2

R3

R4

O

36 R1=R2=R4=H, R3=F

37 R1=F, R2=R3=R4=H

38 R1=R3=H, R2=R4=F

39 R1=R3=Cl, R2=R4=H

40 R1=R2=R3=R4=H R4

R2

OH
R1

R3

41 R1=R2=F, R3=COOH, R4=H

42 R1=R2=F, R3=H, R4=COOH

43 R1=R2=Cl, R3=COOH, R4=H

44 R1=R2=Cl, R3=H, R4=COOH

F

COOH
OCH3

F

OH

F F

OCH3

O

45 46

R1

R2

R3

R4

47 R1=R3=F, R2=R4=H

48 R3=F,  R1=R2=R4=H

49 R1=F,  R2=R3=R4=H

50 R1=R3=H, R2=R4=F

51 R1=R3=H, R2=R4=Cl

Figure 5 Continued.
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to TTR tetramer with a high affinity withKi values of 10–140

nM, similar to the natural ligand T4 (a Ki value of 62 nM)

(Table 1).36,37 Expectedly, several PCBs and OH-PCBs are

reported (94–123, Figure 7), and their inhibitory activities

against ATTR are also measured.38,39 Only 12–50% of the

normal amount of fibril formation is observed after a period

of 72 h incubation (PCB 3.6 μM, TTR 3.6 μM). Studies on

the binding selectivity of PCBs and OH-PCBs for TTR in

human blood plasma have been shown that compounds 102–

109 bind to TTR with IC50 values of less than 50 nM.37 In

addition, OH-PCBs (compounds 110–123) competitively

bind to the T4-binding sites of TTR and lower T4 levels in

mice or rats.26,40,41

However, due to bioaccumulation and toxicity to the

human body, PCBs and OH-PCBs are exclusively used in

industry, such as lubricants and coolants.42 In contrast to the

higher-chlorinated congeners, the lower-chlorinated PCB

congeners (LC-PCBs) are more susceptible to metabolic

conversion, producing less toxicity to the human body.43

Specifically, LC-PCBs may undergo oxidative metabolism

and become hydroxylated LC-PCBs (OH-LC-PCBs) cata-

lyzed by cytochrome P-450 enzymes.44 LC-PCB sulfates,

the further metabolites of LC-PCBs, are also artificially

synthesized (124–141, Figure 8).45,46 The binding poten-

tials of several LC-PCB sulfates (compounds 125–129) and

OH-LC-PCBs (compounds 137–141) to TTR have been

investigated that PCB sulfates non-covalently act as the

ligands with higher affinity to TTR than their respective

OH-PCB precursors. The equilibrium dissociation con-

stants of LC-PCB sulfates in binding to TTR are in a low

nanomolar range (4.8–16.8 nM), similar to that observed for

T4 (4.7 nM) (Table 1).46 Docking simulations provide mul-

tiple high-affinity model of binding. The lowest-energy

binding conformations indicate an orientation that produces

hydrogen bonding interactions between the sulfate groups

and Lys15. The ortho-sulfate group appears to form hydro-

gen bonding with Leu110.

In addition to diphenyl ethers and biphenyls, 40 binary

molecules based on 10 unique linker substructure (142–

181, Figure 9) have been developed and evaluated as

potent and highly selective ATTR inhibitors.23 Of the 40

tested compounds, 20 compounds exhibit potent inhibitory

activity against TTR aggregation with percent fibril for-

mation (% F.F.) values of <20% (Table 2). TTR binding

stoichiometry (P.S.) values are obtained by the plasma

selectivity assay for the active candidate compounds. The

average values of the % F.F. and P.S. are calculated and

indicated as % F.F.ave and P.S.ave, respectively.
26,47,48 The

two factors were then input into the equation below to

afford an “Efficacy Score” for each linker, as indicated that

higher efficacy scores correspond to more potent and

selective linkers.

The results show that inhibitors with connection of two

aryls by non-polar E-olefin or –CH2-CH2- exhibit higher

efficacy scores (Table 2) and more potent and selective

activity in inhibiting ATTR (Table 2).23

R1 R2

R4

R5

52 R1=R2=Cl, R3=R5=H, R4=CHO

53 R1=R2=Cl, R3=R4=H, R5=CHO

R3
54 R1=R2=Cl, R4=R5=H, R3=CHO

55 R1=R2=H, R3=R5=H, R4=CHO

56 R1=R2=H, R3=R4=H, R5=CHO

54 R1=R2=H, R4=R5=H, R3=CHO

R1 R2

R4

R5

R3

55 R1=R2=Cl, R3=R5=H, R4=COOH

56 R1=R2=Cl, R3=R4=H, R5=COOH

57 R1=R2=Cl, R4=R5=H, R3=COOH

R1 R2

R4

R5

58 R1=R2=Cl, R3=R5=H, R4=CH2OH

59 R1=R2=Cl, R3=R4=H, R5=CH2OH

R3
60 R1=R2=Cl, R4=R5=H, R3=CH2OH

61 R1=R2=H, R3=R5=H, R4=CH2OH

62 R1=R2=H, R3=R4=H, R5=CH2OH

63 R1=R2=H, R4=R5=H, R3=CH2OH

F F

CHO

F F

CHO

5646

Figure 5 Diphenyl structure-related derivatives act as the potent inhibitors against ATTR.
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Furthermore, the effects of Aryl-Z with different sub-

stitution positions and substituted groups in binding to

TTR using a library of 80 benzamides (compounds 182–

262, Figure 10) have been investigated. Of which, 56

compounds are involved in the evaluation of the amyloid

inhibition potency, and 41 display increased potency, com-

pared with their parent compound 182. The capacity of 41

compounds in selectively binding to TTR in blood plasma

using ex vivo plasma TTR binding selectivity assay is also

studied, as indicated in Table 3.24,49,50 Kinetic stabilizer

binding to TTR needs to adopt similar out-of-plane aryl

conformation to achieve optimal receptor–ligand

interactions. Optimal TTR-ligands interactions can also

be affected by the differences in structure and energy

between the preferred conformations of the free versus

bound ligands. The rotational energy barriers for aryls

adjacent to a linking NH group are dramatically higher

than when adjacent to carbon or oxygen atoms. It is likely

that other factors substantially affect ligand binding affi-

nity and inhibitor potency, notably desolvation energies,

which are difficult to predict.

Inhibitors with position 2,6; 2,5; 2; 3,4,5 and 3,5 sub-

stitutions generate excellent potency and selectivity, and the

efficacy scores of which are 0.789, 0.748, 0.734, 0.697, and

F

F

R

COOH

OH

66 R=Br, bromodiflunisal

67 R=I, iododiflunisal
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74 R1=R2=H
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Figure 6 Bromine- and iodine-substituted diphenyls act as the potent inhibitors against ATTR.
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0.538, respectively, higher than that of their parent com-

pound 182 (P.S. value of 0.41). It has been shown that

substitution by -OH, -Cl, -Br, -CH3, -F, -NH2, and -OCH3

groups in Aryl-Z generates significant potency in interact-

ing with TTR. The efficacy scores are 0.706, 0.667, 0.599,

0.597, 0.552, 0.525, and 0.456, respectively, and higher

than that of the parent compound 182 (P.S. value of 0.41).24

Another study reports some TTR-related amyloidogen-

esis inhibitors composed of two aryl rings and linkers of

variable chemical composition (Table 1).16,51-61 The bio-

logical activity of these bisaryl molecules in inhibiting

ATTR is significant, and the relative summary on different

linker connections, substitution positions, and substituted

groups in the two aryl rings has also been reported

OH
ClR1

R2

R3

R4

R5

R6

94 R1=Cl, R2=R3=R4=R5=R6=H

95 R1=R3=Cl, R2=R4=R5=R6=H

96 R1=R4=Cl, R2=R3=R5=R6=H

97 R1=R5=Cl, R2=R3=R4=R6=H

98 R1=R3=R6=Cl, R2=R4=R5=H

99 R4=R5=Cl, R1=R2=R3=R6=H

Cl
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Figure 7 PCBs and OH-PCBs act as the potent inhibitors against ATTR.
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(Figure 11). Two semi-quantitative models for predicting

the optimal structures of potent and selective TTR kinetic

stabilizers have been established. By comparing the effi-

cacy scores, connection of two aryls with linkage through

non-polar E-olefin or –CH2-CH2- generates more potency

in interacting with TTR. The activities of Aryl-Z inhibitors

with position 2.6, 2.5, and 2 substitutions are indicated as

the most potency. Hydroxyl substitution on Aryl-Z inhibi-

tors increases the most in activity. In contrast, the activity

of Aryl-Z inhibitors with trifluoromethyl substitution is

lowest. In addition, the substitution of 4ʹ-hydroxyl groups
on Aryl-X can improve the inhibitory activity.62

Flavonoids and Isoflavones
Flavonoid is considered as a representative compound that

exhibits inhibitory activity against TTR-related amyloid

fibril formation. Nine flavonoids (263–271, Figure 12)

with different amounts of phenolic hydroxyl groups have

been screened for their inhibitory activity against TTR-

related amyloid fibril formation. Conversion from nor-

mally folded TTR to amyloid fibrils shows that the more

hydroxyl groups are substituted on flavonoids, the lower

the conversion degree to amyloid fibrils is observed. As

indicated in Figure 12, compounds 267–271 exhibit the

percent conversion less than 10%. Apigenin (270) has

been identified as the best inhibitor in all the tested fla-

vones, exhibiting the conversion value of 6% at the con-

centration of 10.8 μM and completely inhibiting fibril

formation at the concentration of 36 μM (Table 1).60

Several natural flavonoids (272–278, Figure 12),

including luteolin (272), have been tested to probe the

influence of the number and position of hydroxyl groups

in flavonoid scaffold on the interactions between flavo-

noids and TTR. The results indicated that changing the

number and position of hydroxyl groups attached to the

flavonoid core strongly influences flavonoid recognition by

TTR. Hydrophobic interaction with Lys15 may be favor-

able to binding to TTR. The Lys15 side chains at the

entrance of TTR orients the position of flavonoid AC

rings on the center and bottom of the binding sites. The

flexibility of the B ring also contributes to the binding

entropy. Luteolin, being considered as a potent ATTR

inhibitor, has a highest inhibitory potency against TTR

disaggregation in vitro with an IC50 value of 5.68 ± 1.10

μM, lower than that of the natural ligand T4 with an IC50

value of 7.14 ± 1.08 μM (Table 1).63,64
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R2
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R4

R5

R6

R7

R8

R9

R10

124 R1=OSO3NH4, R2=R3=R4=R5=R6=R7=R8=R9=R10=H

125 R1=OSO3NH4, R2=R3=R4=R5=R7=R8=R9=R10=H, R6=Cl

126  R1=R2=R3=R4=R5=R7=R8=R9=H, R6=Cl, R10=OSO3NH4

127  R1=R2=R3=R4=R5=R7=R8=R10=H, R6=Cl, R9=OSO3NH4

128 R1=OSO3NH4, R2=R3=R4=R7=R8=R9=R10=H, R5=R6=Cl

129 R1=OSO3NH4, R3=R4=R6=R7=R8=R9=R10=H, R2=R5=Cl

130 R1=OSO3NH4, R2=R3=R5=R6=R8=R9=R10=H, R4=R7=Cl

131 R1=OSO3NH4, R2=R4=R7=R8=R9=R10=H, R3=R5=R6=Cl

132 R1=OSO3NH4, R3=R5=R6=R8=R9=R10=H, R2=R4=R7=Cl

133 R1=OSO3NH4, R3=R5=R7=R8=R9=R10=H, R2=R4=R6=Cl

134 R1=OSO3NH4, R3=R5=R6=R8=R9=H, R2=R4=R7=R10=Cl

135 R1=OSO3NH4, R3=R5=R7=R8=R9=H, R2=R4=R6=R10=Cl

136 R1=OSO3NH4, R2=R3=R4=R5=R7=R8=R10=H, R6=R9=Cl

137 R1=Cl, R2=R3=R4=R5=R6=R7=R9=R10=H, R8=OH

138 R1=Cl, R2=R3=R4=R5=R6=R8=R9=R10=H, R7=OH

139 R1=R2=R3=R4=R5=R8=R9=H, R6=OH, R7=R10=Cl
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141 R1=R10=Cl, R2=R3=R4=R5=R7=R8=R9=H, R6=OH

Figure 8 OH-LC-PCBs and PCB sulfates act as the potent inhibitors against ATTR.
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Genistein (279, Figure 13) and its O-glucoside con-

jugate genistin (280, Figure 13), which are isoflavones

found in soybeans, are excellent acid-mediated ATTR

inhibitors and reduce acid-mediated fibril formation to

<10%. Additionally, these two natural products exhibit

high selectivity in binding to TTR in plasma. Another

two natural isoflavones from soybeans, daidzein (281,

Figure 13) and its O-glucoside conjugate (282,
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Figure 9 Compounds 142–181 with the different linkers as the potent inhibitors against ATTR are indicated.
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Figure 13), exhibit lower potency in fibril aggregation

inhibition as they lack the hydroxyl groups at position 5

on genistein and genistin. This suggests that the hydroxyl

group at position 5 on flavonoids plays an important role

in fibril aggregation inhibition.65

β-Aminoxypropionic Acids
A series of β-aminoxypropionic acids (283–299,

Figure 14) and their derivatives (300–310, Figure 14)

have been synthesized and reported as TTR-related amy-

loid formation inhibitors.66–68 These compounds contain a

flexible oxime-based tether between the aromatic (aryl or

fluorenyl) and acidic moieties, which are structurally dis-

tinct from the native ligand thyroxine and typical haloge-

nated biaryl NSAID-like inhibitors and avoid off-target

hormonal or anti–inflammatory activity. The aromatic

ring is docked into P3 and plays a role in deciding the

binding mode for this series of TTR inhibitors, and the β-
aminoxyethyl chain directs the carboxylic group to Lys15.

The ortho-CF3 substitution on the phenyl ring is engaged

in interaction with P3 residues Ala108, Leu110, Ser117,

and Thr119. However, substitutions in the meta- and para-

position do not interact with P3 to the same extent. Of the

28 tested compounds, six compounds (291, 293, 294, 302,

304, and 305, Figure 14) at a concentration of 3.6 μM
show significant inhibition in TTR amyloidogenesis (fibril

formation inhibition >50%) by using an in vitro fibril

formation assay. Notably, fluorenyl compounds 293, 294

and 304 display stronger inhibitory activities in TTR-

related fibril formation (69% inhibition for 293 and 294

and 65% for 304) than the well-known TTR amyloid

inhibitor diflunisal (63% for diflunisal) (Table 1). 27,68

Compound 293, the most potent inhibitor, also avoids

anti–inflammatory activity and shows good selectivity in

contrast to NSAID-based TTR inhibitors, determined by

an in vivo carrageenan-induced paw edema assay in rats.68

Crown Ethers and Carboranes
Of the seven lysine residues in the human transthyretin

monomer, only Lys15 is located at the T4-binding site,

providing a protonated amino group to form a salt bridge

with the TTR stabilizers that have a ring structure.28,69-71

The cyclic hexamer 18-crown-6 (315) is well known as a

receptor of protonated amino groups of lysine residues due

to its reasonably sized cavity (Table 1).70 CLR01, a Lys-

specific molecular tweezer with a circular three-dimen-

sional structure (311, Figure 15), has been reported to

inhibit the fibrillization by binding to lysine residues in

Table 2 The Efficacy Scores of Compounds 142–181

Compounds % F.

F.

P.S. % F.

F.ave

P.

S.ave

Efficacy

Scores

Compounds % F.

F.

P.S. % F.

F.ave

P.

S.ave

Efficacy

Scores

142 12% 0.13 7.8 0.66 0.510 162 80% – 33.3 0.40 0.312

143 17% 0.11 163 44% –

144 1% 0.98 164 8% 0.31

145 1% 1.41 165 1% 1.30

146 28% – 11.5 0.87 0.492 166 77% – 42.8 0.25 0.238

147 15% 0.10 167 9% 0.02

148 2% 1.10 168 79% –

149 1% 1.47 169 6% 0.96

150 71% – 22.0 0.73 0.450 170 83% – 55.0 0.30 0.195

151 14% 0.30 171 41% –

152 2% 0.84 172 85% –

153 1% 1.78 173 11% 1.19

154 70% – 30.0 0.62 0.377 174 88% – 80.3 0.15 0.152

155 48% – 175 70% –

156 3% 0.88 176 81% –

157 1% 1.58 177 2% 0.58

158 47% – 29.5 0.41 0.331 178 89% – 62.5 0 0.125

159 8% 0.13 179 43% –

160 61% – 180 92% –

161 2% 1.51 181 26% 0.41

Notes: Efficacy scores are calculated from % F.F.ave and P.S.ave. Compounds with % F.F. values of >20% fibril formation are exclusive in the plasma selectivity assay as they are

assigned with P.S. values of 0. Higher efficacy scores correspond to more potent and selective linkers.
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TTR protein and indicate an IC50 value of 50 μM in

inhibiting the toxicity of amyloidogenic proteins in PC12

cells.72,73 However, due to its high molecular weight,

CLR01 may not be a favorable TTR stabilizer.

Therefore, small cyclic molecules are promising to be

developed as TTR-related fibrosis inhibitors.

Six crown ethers (312–317, Figure 16) containing a

ring structure with different sizes are tested and identified

as TTR-related amyloidogenesis inhibitors using fluores-

cence probes and chemical cross-linking assays. Unlike

crown ethers 312 and 313 that do not produce any effects

on amyloid fibril formation, the hexameric cyclization

crown ether 314 significantly suppresses amyloid fibril

formation at a concentration of 20 nM. In addition,

crown ethers 315 and 317 are found to be the most potent

candidates among the selected crown ethers, inhibiting the

formation of TTR-related amyloid fibril by 58% (at a

concentration of 2 mM) and 47% (at a concentration of

10 mM), respectively (Table 1).15 It indicates that a

hexameric cyclization is required for crown ethers in the

inhibition of TTR-related amyloid fibril formation, and the

addition of a phenyl group may increase the inhibitory

potency. However, the carboxyl phenyl group is more

important for crown ethers 315 to bind to the allosteric

sites of TTR than the cyclic polyether moiety. In addition,

crown ethers 315 and 317 stabilize the TTR tetramer in a

dose-dependent manner, compared with other crown

ethers.74

Carboranes, being rich and untapped, have been con-

sidered as a novel class of inorganic pharmacophores,

which contain a rigid skeleton of dicarba-closo-dodecabor-

anes. This rigid scaffolding structure affords carboranes

extraordinary chemical properties, such as strong hydro-

phobicity, resistance to catabolism, and especially high

selectivity. Furthermore, carboranes share approximately

the same volume as the rotated three-dimensional

aromatics.75 A study on the structure and properties of

carboranes shows that replacing a benzene ring in
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Figure 10 Compounds 182–262 with different substitution positions of benzamides as the potent inhibitors against ATTR are indicated.
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NSAIDs with the carborane moiety can improve their

selectivity for TTR protein and decrease their anti-COX

activity, indicating that the carborane-substituted com-

pounds may have the potentials to be developed as

ATTR inhibitors.

A group of carborane-based compounds (318–325,

Figure 17) have been recognized as the promising

inhibitors against TTR-related amyloid formation.52,60,75

In TTR assays, compound 318 has been proven to be a

moderate inhibitor against TTR-related amyloid formation

with the percent fibril formation by 46% at a concentration

of 3.6 μM. Consistently, compounds 322 and 325 have

been identified as the most potent inhibitors with the

percent fibril formation by 22% and 15%, respectively.76

Table 3 The Efficacy Scores of Compounds 178–258

Compounds % F.

F.

P.S. % F.

F.ave

P.

S.ave

Efficacy

Scores

Compounds % F.

F.

P.S. % F.

F.ave

P.

S.ave

Efficacy

Scores

183 – – 2.5 1.43 0.789 223 4% 1.56 17.0 0.94 0.538

184 1% 1.67 224 2% 1.39

185 – – 225 5% 1.29

186 3% 1.73 226 4% 1.30

187 3% 1.69 227 10% 1.02

188 – – 228 – –

189 3% 0.62 229 24% 0.05

190 – – 230 – –

191 – – 231 – –

192 – – 232 70%

193 1% 1.01 1.3 1.27 0.748 233 9% 1.40 18.6 0.63 0.443

194 0% 1.70 234 8% 1.09

195 1% 1.40 235 8% 0.95

196 1% 1.46 236 12% 0.85

197 0% 1.73 237 13% 0.68

198 – – 238 25% 1.21

199 1% 1.57 239 29% –

200 – – 240 34% –

201 – – 241 11% 0.16

202 5% 0.05 242 37% –

203 2% 1.14 8.2 1.40 0.734 243 – – 25.0 0.65 0.413

204 2% 1.48 244 9% 1.48

205 1% 1.56 245 10% 1.13

206 2% 1.56 246 36% –

207 2% 1.39 247 45% –

208 3% 1.58 248 – –

209 2% 1.88 249 – –

210 3% 1.82 250 – –

211 64% – 251 – –

212 1% 1.62 252 – –

213 – – 3.0 1.16 0.697 253 21% 1.33

214 3% 0.94 254 53% –

215 2% 0.87 255 53% –

216 3% 1.70 256 49% –

217 4% 1.11 257 45% –

218 – – 258 27% –

219 – – 259 54% –

220 – – 260 50% –

221 – – 261 11% 0.49

222 – – 262 83% –

Notes: Efficacy scores are calculated from % F.F.ave and P.S.ave. Compounds with % F.F. values of <25% fibril formation are included in the plasma selectivity assay as the P.S.

values are lower than those of their parent compound 182 (% F.F. values of 26%). Higher efficacy scores correspond to more potent and selective inhibitors.
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Oxazoles
Aryl oxazoles bearing a carboxyl group at C-4 have been

demonstrated to be an efficient class in inhibiting TTR

amyloidogenesis. Substitution of ethyl, propyl, or CF3

group at C-5 may significantly enhance the inhibiting

activity. In contrast, the substitution of a 3.5-dichlorophe-

nyl at C-2 on the oxazole ring dramatically reduces its

activity. Compounds 326 and 327 (Figure 18) have been

showed to inhibit TTR activity and fibril formation at the

dose of 3.6 μM and 7.2 μM, respectively (Table 1).77

γ-Mangostin
γ-Mangostin (328, Figure 18), a xanthone derivative iso-

lated from mangosteen, has been reported to bind to T4-

binding sites directly, stabilize TTR tetramer, and inhibit

the amyloid fibril formation of V30M amyloidogenic TTR

with EC50 value of 7 ± 0.6 μM (Table 1).78

Quinoline Derivatives
A library of quinolone derivatives has been synthesized.

Among these quinolone derivatives, compound 329 has

been screened to dock into the T4-binding sites of TTR

and be the most potent in inhibiting TTR fibril formation

with an IC50 value of 1.49 μM against wild-type TTR and

1.63 μM against V30M TTR variant. Intravenous injection

of 2 mg/kg compound 329 and 330 (Figure 18) produces

the peak plasma concentration (Cmax) in rats as 3.107 and

2.381 μg/mL, respectively, and half-life (T1/2) as 2.710 and

2.745 h, respectively (Table 1).79

TTR-Targeting RNAi
RNA interference (RNAi) is a clinically validated technol-

ogy, being a promising approach for managing ATTR

amyloidosis. TTR-targeting siRNAs have been evaluated

in hTTR V30M HSF1± mice. Knockdown of TTR
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Figure 11 Summary of the structure–activity relationships of small molecule ATTR inhibitors composed of two aryl rings and variable linkers.
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expression by RNAi significantly inhibits the deposition of

TTR and promotes regression of existing TTR deposits in

pathological tissues, showing a greater activity than that of

tafamidis and highlighting the potential of RNAi.80 TTR

siRNA promotes clearance of TTR deposition in the extra-

cellular matrix of meninges and brain blood vessels.

However, the cerebrospinal fluid TTR concentration is

unchanged, although it is declined significantly in the

blood. This indicates that TTR-targeting siRNA may not

affect the neuroprotective activity of TTR in the central

nervous system.81

ATTR Inhibitors by Disaggregating TTR-

Related Amyloid fibrils
In addition to stabilizer of TTR tetramers, small molecules

that directly disaggregate amyloid fibrils have been
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developed to manage ATTR disease. Animal experiments

show that doxycycline (331, Figure 19) inhibits the for-

mation of amyloid fibers and destroys the deposited fibers,

exhibiting good effects on FAP and light-chain

amyloidosis.82,83 Tauroursodeoxycholic acid (TUDCA)

(332, Figure 19) can reduce the deposition of TTR pre-

cursor fibers, which is often combined with doxycycline to

significantly promote the deposition of amyloid substances

and non-fibrous TTR oligomers.84,85

Several natural products have been analyzed for their

activity in inducing amyloid fibril disaggregation, as

revealed that gossypol, rottlerin, and hematoxylin (333–

335, Figure 20) disrupt the pre-formed amyloid fibril. The

competitive assays are involved to judge that, except

hematoxylin, both gossypol and rottlerin competitively

bind to the T4-binding site. Collectively, hematoxylin is

an amyloid fibril disrupter, and gossypol and rottlerin are

dual inhibitors.7 Indeed, some biphenyl ether compounds

have been shown to exhibit TTR stabilization and fibril

disruption activities.18

Clinical Perspectives
The familiar NSAID diflunisal (13, Figure 5), which

may bind to the T4-binding site of TTR, stabilize the

tetramer, and inhibit the amyloidogenesis, has already

been approved as a prescription drug in more than 40

countries.27,28,86-88 In addition, tafamidis (336,

Figure 21), an oral small molecule inhibitor, has been

developed for the treatment of FAP by stabilizing the

TTR tetramer.89–91 However, tafamidis is exclusively

effective in the early stage of FAP and currently avail-

able in Europe, Japan, Mexico, and Argentina till

2018.92 In the management of TTR amyloid cardiomyo-

pathy, tafamidis has been showed to be associated with

lower all-cause mortality (29.5%) than placebo (42.9%).

At month 30, tafamidis is indicated with a lower rate of

decline in distance for the 6-min walk test and in

KCCQ-OS score, reducing cardiovascular-related hospi-

talizations and the decline in functional capacity and life

quality.93 Pfizer is now working on the application for a

US listing of tafamidis, which are expected to be

approved by the end of 2019. Inotersen, an antisense

oligonucleotide, has been recently demonstrated to

improve disease course and life quality in the early

hereditary transthyretin amyloidosis polyneuropathy by

reducing the production of transthyretin.94 Inotersen has

been clinically approved in the European Union for the

management of adult patients with hATTR-PN on

August 20, 2018.95 And now it is accepted by USA,

European Union, and Canada.94

Epigallocatechin-3-gallate (EGCG) (337, Figure 21)

and resveratrol (338, Figure 21), two polyphenols isolated

from green tea and grape skins, respectively, have been

shown to stabilize TTR tetramers.96,97 EGCG may inhibit

the deposition of TTR pre-fiber by up to 50% and decom-

pose amyloid.98 In addition, EGCG stabilizes myocardial

mass in wtATTR-CM patients with good tolerance and no

major safety concerns.99,100 Therefore, EGCG has been

expected to be developed for the treatment of amyloid

cardiomyopathy. In vitro, studies have shown that resver-

atrol may promote free monomers to form a tetramer and

decrease the toxicity of pre-fiber TTR molecules.97

However, the clinical application of resveratrol is limited,

due to its poor drug-like physicochemical and ADMET

properties.101,102

Reduction or stop of endogenous TTR protein produc-

tion is also an effective strategy to prevent the further

progression of ATTR disease, as TTR has been shown to

be a non-essential protein transporter of T4.103

Oligonucleotides, such as patisiran, revusiran, and ASOs,

are molecules that reduce the production of mutated pro-

teins, thus modifying ATTR disease outcome.104 Patisiran

(ALN-TTR02) and revusiran (ALN-TTRsc), the two

siRNA molecules currently under clinical investigation,

contain a double-stranded RNA that targets wild-type

and mutated TTR proteins, inhibit the synthesis of TTR,

and promote the degradation of surrounding amyloid.105–

107 Specifically, patisiran is a siRNA encapsulated in a

lipid nanoparticle and binds to the mutant and wild-type

TTR mRNA, reducing the level of TTR in the blood.108

The results from Phase III clinical trials show that intra-

venous administration of patisiran significantly reduced

blood TTR level at an optimal dose of 0.3 mg/kg of

body weight for every 3 weeks.109 Promisingly, patisiran

has been approved by the FDA.94 Revusiran, another one

siRNA developed by Alnylam Company, is conjugated

with N-acetylgalactosamine.106 Unfortunately, revusiran

was halted at phase III clinical trials, due to more deaths

in the treatment group.110 ASOs, an antisense oligonucleo-

tide developed by Isis pharmaceuticals, have been used to

treat amyloid cardiomyopathy. Combination of ASOs and

TTR mRNA inhibits the production of mutant TTR and

wild-type TTR. After 4 weeks of subcutaneous injection,

the inhibitory rate may reach over 90%, indicating that this

strategy can be applied for the treatment of hereditary

ATTR and SSA.111 In addition, the neuro-energy
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turbulence and living quality in FAP patients may be

improved by ASOs in phase III clinical trials.112

Tolcapone (SOM0266), a catechol-O-methyltransferase

inhibitor in Phase II–III in the clinical trial, has been

used as an adjunct to levodopa/carbidopa for management

of Parkinson’s diseases. Tolcapone, better than tafamidis,
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Figure 14 β-aminoxypropionic acids act as small potent inhibitors against ATTR.

Figure 15 Lys-specific molecular tweezer CLR01 interacts with Lys by forming a salt bridge.
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may dock into the T4-binding sites of wild-type TTR and

the V122I cardiomyopathy-associated TTR variant with

enthalpically driven optimization, inhibiting their aggrega-

tion with EC50 values of 1.50 ± 0.12 μM and 4.72 ± 0.45

μM, respectively (Table 1).113 In addition, tolcapone also

inhibits the aggregation of the leptomeningeal-associated

A25T-TTR variant. Tolcapone increases 52% of TTR sta-

bilization at the dose of 200 mg within 2 h in phase A and

increases 38.8% at the dose of 100 mg.114 In vitro,

tolcapone partially ameliorates the activation of caspase-

3 induced by Y78F-TTR oligomers in RN22 cells.115

Conclusion
In this article, the different types of ATTR inhibitors

and a summary of the structure–activity relationship of

some compounds have been reviewed (Figure 22).

Bisaryl structures with a linker, such as diphenyl ethers

and biphenyl compounds, functions as the largest class
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of ATTR inhibitors. This class of compounds is mainly

docked into the two T4 active pockets of TTR, main-

taining the stability of the TTR tetramer, and the spatial

distance between the two active pockets determines the

length of the biphenyl linker. In addition, the types and

position of substituents on the two aryl rings also affect

the activity. Inhibitors that inhibit TTR amyloid fibril

formation play an important role in the treatment of

ATTR. Flavonoids and isoflavones, represented by luteo-

lin and genistein, have been considered as the potential

inhibitors against TTR protein fiber formation. β-ami-

noxypropionic acid, a class of well-known amyloid fibri-

nogen formation inhibitors, has the distinct advantage of

avoiding off-target and producing incoherent anti–

inflammatory activity. Crown ethers and carboranes

also show good selectivity contrast to NSAID-based

TTR inhibitors. Amyloid fibril disrupters are the novel

therapeutic compounds, providing a new strategy for the

management of ATTR. Some molecules that directly

disaggregate amyloid fibrils have been developed. For

example, antibiotic doxycycline and natural product

hematoxylin have been shown the surprising disaggrega-

tion activity against amyloid fibrils.
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