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Introduction: Chronic trauma repair is an important issue affecting people’s healthy lives.

Thermo-sensitive hydrogel is injectable in situ and can be used to treat large-area wounds. In

addition, antioxidants play important roles in promoting wound repair.

Methods: The purpose of this research was to prepare a novel thermo-sensitive hydrogel-

poly(N-isopropyl-acrylamide)/poly(γ-glutamic acid) (PP) loaded with superoxide dismutase

(SOD) to improve the effect for trauma treatment. The micromorphology of the hydrogel was

observed by scanning electron microscope and the physical properties were measured. The

biocompatibility of hydrogel was evaluated by MTT experiment, and the effect of hydrogel

on skin wound healing was evaluated by in vivo histological staining.

Results: Gelling behavior and differential scanning calorimeter outcomes showed that the

PP hydrogels possessed thermo-sensitivity at physiological temperature and the phase trans-

formation temperature was 28.2°C. The high swelling rate and good water retention were

conducive to wound healing. The activity of SOD in vitro was up to 85% at 10 h, which was

advantageous to eliminate the superoxide anion. MTT assay revealed that this hydrogel

possessed good biocompatibility. Dressings of PP loaded with SOD (SOD-PP) had a higher

wound closure rate than other treatments in vivo in diabetic rat model.

Discussion: The SOD-PP thermo-sensitive hydrogels can effectively promote wound heal-

ing and have good application prospects for wound repair.

Keywords: thermo-sensitive hydrogels, wound dressing, superoxide dismutase, poly(γ-glutamic

acid)

Introduction
Chronic wound repair is a long-term process of tissue remodeling that severely

affects the body’s health and living quality.1,2 Chronic trauma is often associated

with vascular disease, venous insufficiency, and diabetes. In chronic inflammatory

conditions, a large number of neutrophils might appear and inflammatory mediators

are generated, including reactive oxygen species (ROS), reactive nitrogen radicals

(RNS), and their derivatives.3,4 Oxidative stress is triggered when excess free

radicals are produced and can lead to local and overall inflammatory pathophysio-

logic effects,5 eventually forming chronic wounds such as diabetic foot.6

Superoxide dismutase (SOD) as a kind of antioxidant can inhibit or reduce ROS

production and is beneficial to the improvement of diseases caused by oxidative
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stress.7 So wound dressings with antioxidant properties

should be a feasible therapeutic method.

Hydrogels are a class of materials with the properties of

a 3-D network, swelling, and maintaining optimal moisture

in the area.8 Because of the hydrophilicity of hydrogels,

they may create a network with bound water and free water.

So hydrogels lose liquidity and keep the shape stable.9

Hydrogel dressing is a new biological material and has the

characteristics of good biocompatibility, strong moisture

absorption, good moisture retention and antibacterial activ-

ity. It has been widely studied and applied in the biomedical

field.10,11 Although the traditional dressing has some advan-

tages for wound healing, it is not suitable for large areas and

irregular wounds because of lack of environmental sensi-

tivity, especially thermo-sensitivity. If the hydrogels

are sensitive to temperature, they can have many advan-

tages for clinical applications, such as flexibility and

injectability12,13 and similarity to the extracellular matrix

for supporting cell attachment, proliferation, migration as

well as differentiation.14

Poly(N-isopropyl-acrylamide) (PNIPAM) has attracted

wide attention because of its sensitivity to temperature,15

especially in the field of biomedicine. Thermo-sensitive

hydrogel based on the properties of phase temperature

sensitivity can be used for tissue wound repair.16,17 The

lowest critical transition temperature of PNIPAM is

32°C,15 which is close to the human body temperature and

suitable for biomedical materials and drug loading.18

A family of thermosensitive hydrogels based on

N-isopropylacrylamide (NIPAM) macromer by Chen et al

was synthesized for drug delivery.19 So a PNIPAM-based

thermo-sensitive hydrogel could be loaded with SOD for

clinical injection in situ. But PNIPAM as synthetic poly-

mers could induce minimal inflammatory reaction and

decrease biocompatibility.20 One way to improve biocom-

patibility is to combine PNIPAM with natural materials.

Poly(γ-glutamic acid) (γ-PGA), a natural biopolymer that

is water-soluble, non-toxic, edible and biodegradable21,22 has

shown potential in tissue engineering. The structure of the

polymer containing a large number of carboxyl groups23 can

load drugs21 and has strong hydrophilicity,24 so it can

improve the hydrophobicity and SOD loading of the hydro-

gels. Zhuang et al25 prepared a poly(γ-glutamic acid)-based

hydrogel loaded with superoxide dismutase (SOD) to accel-

erate wound healing. But this kind of hydrogel lack of

injectability and is not conducive to irregular wounds.

In this study, we prepared PNIPAM/γ-PGA loaded with

SOD thermo-sensitive hydrogel (SOD-PP) to promote

wound healing. The system might be used to encapsulate

SOD at room temperature in solution and then solidify in

situ after injection. The work integrates the advantages of

SOD, PNIPAM and γ-PGA to reduce oxidative stress, to

confer thermo-sensitivity and to create a moist microen-

vironment, which are beneficial for healing chronic

wounds (Figure 1).

Materials and Methods
Material
γ-PGA (Mw=460,000) was provided by the laboratory of

microbial catalytic synthesis, College of Life Science,

Nankai University. N-isopropyl acrylamide (NIPAM) was

from J&K Scientific Ltd. (Beijing). Azobisisobutyronitrile

(AIBN) was from Beijing Hua Wei Rui Branch Chemical

Co. (China). Cu-Zn superoxide dismutase (SOD) was from

Zhejiang Conkey Biological Technology Co. (Hangzhou,

China) and streptozotocin (STZ) was from Sigma-Aldrich

(St. Louis, MO, USA). Tegaderm, a commercial product

for wound healing, was from 3M (3M Health Care) for

comparative purposes.

Preparation of PP Composite Solutions
Firstly, the PNIPAM was synthesized by free radical poly-

merization with NIPAM as a monomer and AIBN as an

initiator according to the method in the supporting infor-

mation section S1 and the PNIPAM polymer was con-

firmed byH1NMR spectra, FTIR spectrum and gel

permeation chromatography in the supporting information

section S2. The results in Fig S1 have shown that PNIPAM

can be successfully synthesized by this method. Then, the

PNIPAM and γ-PGA with different weight ratios (50/50,

75/25, 100/0) were dissolved in 1 mL deionized water

under ultrasonication. The total concentration of the poly-

mer solution was 20 mg/mL. The prepared mixture was

then kept at 4°C for 12 hrs.

Observation of Micromorphology
To observe the micromorphology of the composite hydro-

gels, the cross sections of hydrogel were observed using

scanning electron microscopy (SEM) at an accelerating

voltage of 10 kV.

Preparation of SOD-PP Composite

Solutions
PNIPAM and γ-PGA with different weight ratios (50/50,

75/25, 100/0) were dissolved in 1 mL deionized water
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by ultrasonication. An amount of 2 mg SOD was added,

and the prepared mixture was then kept at 4°C for

12 hrs.

Gelation Properties of Composite

Solutions
The tube inversion method was used to test the gel

formation of composite solutions. Briefly, the composite

solutions of PP were placed in a water bath at 37°C for

10 mins, and the flow of the solution was observed by

reversing the test tube. To further determine the gelling

temperature, differential scanning calorimetry (DSC)

was used (DSC 204, NETZSCH, Germany). The scan-

ning temperature range was 0–50°C, and the scanning

speed was 1°C/min. And storage (G′) and loss (G″)

modulus was obtained by a rheometer at 10–40°C with

a constant frequency of 1 Hz. The samples were tested

under angular frequency sweep mode with a fixed shear

strain of 1%.16,26,27

Determination of Swelling Ratio, Water

Retention
The formed hydrogels were placed in phosphate-buffered

saline (PBS; pH=7.4) at 37°C. The mass of swelled hydro-

gel was obtained after 24 hrs. Then, the swelling ratio (%)

was calculated according to the formula after recording the

weight of dry hydrogel (W0) and the swelled hydro-

gel (W).28

Swelling ratio %ð Þ ¼ W�W0

W0
� 100

To determine the water retention, the hydrogels were

weighted per hour. The water retention (%) was calculated

according to the formula as follows after the weight of

hydrogel for x hour (Wx), the weight of the dry hydrogel

(W’) and the weight of the swelled hydrogel (W) were

obtained.

Water retention %ð Þ ¼ WX �W0

W�W0 � 100

Figure 1 Graphic. Schematic illustration of over research design.
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Determination of SOD Release,

Scavenging Effect on SOD Radicals and

SOD Activity in vitro
Different ratios of hydrogel SOD-PP with 2 cm3 volume

were fabricated and soaked into release medium (10 mL

PBS and pH=7.4) at 37°C. An amount of 10 mL buffer

was refreshed and equal volumes of release medium were

added at certain time intervals. To determine the concen-

tration of the released SOD, the collected solution was

spectrophotometrically analyzed at 595 nm according to

the Bradford method.29,30

For the scavenging effect of superoxidant radicals and

SOD activity in vitro, the mixture was prepared as

described.31 This method is based on the inhibition of

pyrogallol autoxidation. The inhibition of the pyrogallol

autoxidation is proportional to the activity of the SOD

present in the sample (n = 3). The SOD sample and

distilled water were added to the 50 mmol Tris–HCl buffer

solution (pH 8.20, including 0.1 mmol EDTA) and stirred

to prepare the sample group and control group, respec-

tively. Then, 6 mmol pyrogallol was added to two solu-

tions and immediately stirred. The absorption of the

control group (Acontrol) and sample group (Asample) was

recorded at 299 nm, and the scavenging effect to super-

oxide radicals was defined with the following formula.

After obtaining the scavenging effect (α), the volume of

the sample solution (v) and the volume of the whole

solution (V), the SOD activity could be calculated as

follows:

Scavenging effect %ð Þ α ¼ Acontrol � Asample

Acontrol

SOD activity U=mLð Þ;¼ α�WX �W0

W�W0 � V

V

Evaluation of Cytocompatibility
To investigate the cytocompatibility of the hydrogels, the

extraction method was used according to the national stan-

dard GB/T 16886.5–2003.32 Briefly, because the previous

studies and related literature showed that the SOD concen-

tration of 2 mg/mL had good cellular compatibility,33,34 the

hydrogel without SOD was prepared by placing the gel

solution in a water bath at 37°C. The hydrogel was immersed

in a full medium (the ratio of film area to themedium solution

was 1.5 cm2/mL) in 24 hrs at 37°C. Then, the extract solution

was obtained. Afterwards, 3T3 fibroblasts were seeded on

48-well plates at 1×104 cells/well. After culturing for 12 hrs

with DMEM (10% fetal bovine serum, 1% antibiotic), the

medium was replaced with 200 μL hydrogel extract solution

prepared by immersing 100 mg hydrogel (under UV for

24 hrs) in 10 mL DMEM at 37°C for 24 hrs. Cells were

incubated for 1, 3, and 5 d at 37°C. Medium was refreshed

every 2 days. Methylthiazol tetrazolium (MTT) assay was

used to detect cell viability. An amount of 50 μL of 5 mg/mL

MTTwas added to each well. After incubating at 37°C for 4

hrs, the medium containing the MTT solution was removed

and 200 μL dimethylsulfoxide (DMSO) was added. The

solution was cultured under shaking conditions at 37°C for

20 mins and measured at 490 nm.

Creation of Skin Wounds on Diabetic

Rats
STZ can destroy pancreatic beta cells and block the synthesis

and release of insulin. It can lead to type I diabetes with a

one-time injection after 2–3 days.35 Sprague–Dawley rats

were selected (male, weight 300–350 g; Laboratory Animal

Center of Academy of Military Medical Sciences, Beijing,

China) and injected with STZ to induce diabetes. The type I

diabetic rat model was established as previously described.25

Then, square wounds (side length 1 cm) were created on the

left and right sides of the back spine of every rat. The control

group was covered with 3M wound dressing. The experi-

mental groups were treated with thermo-sensitive hydrogel

(PP and SOD-PP) via injection, and both groups were simi-

larly covered with 3M wound dressing. The 3M wound

dressing and hydrogel in wounds were changed every 3 days.

Evaluation of Wound Healing in vivo
The experimental procedures involving laboratory animals

were approved by the Animal Care Committee and fol-

lowed the regulations of the Administration of Affairs

Concerning Experimental Animals at Nankai University

(Tianjin, China). Sprague–Dawley rats used in the experi-

ments were obtained from the Laboratory Animal

Research Center of Nankai University and housed in a

temperature-controlled environment under a light/dark

cycle. Wound closure was measured at days 7, 14, and

21. The wound was disinfected and the digital camera was

used to record wound healing. After removing the wound

tissue, it was washed 3 times with normal saline and fixed

for 6 hrs in 4% paraformaldehyde and dehydrated over-

night with 30% sucrose solution. Then, 6-μm cryosections

of the trauma samples were prepared. Sections were

stained with hematoxylin and eosin (H&E) for observing
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inflammatory reaction and Masson’s trichrome for col-

lagen secretion and compared with native tissues.

Statistical Analysis
Data are expressed as mean±SD. Significance differences

between two groups were analyzed by Student’s t test. P <

0.05 was considered statistically significant.

Results
Micromorphology of PP Hydrogels with

Different Ratios
In clinical treatment, a wound dressing must have a porous

structure to facilitate the transfer of nutrients, oxygen and

water as well as the removal of cellular metabolites. So the

three-dimensional porous structure of the hydrogels is advan-

tageous in wound healing. To observe and confirm the micro-

structure, the cross-section of the various ratios of PP

hydrogels was investigated using SEM (Figure 2). It indi-

cated that there werewell-interconnected porous structures in

all hydrogels, and the mean pore size was about 10–15 μm.

Therefore, PP hydrogel possessed porosity. They can meet

the need of nutrient supply to cells, metabolite dispersal.

Gelation Property of Polymers with

Different Formulation
The matching of gelation temperature and the physiological

temperature is beneficial to the healing of wound after

hydrogel injection. The thermo-sensitive hydrogels are

accompanied by a certain phase transition with the tempera-

ture change. The DSC method is used to determine the

phase transition temperature. Figure 3A shows that the

hydrogel formed at 37°C. With an increase of temperature,

the three gel systems had an endothermic peak, and γ-PGA

reduced the shift of endothermic peak from 32°C to 28.2°C

(Figure 3B). A large number of hydrogen bonds may be

formed between γ-PGA and H2O, which affects the tem-

perature change of gel formation.36,37 To quantitatively

characterize the thermosensitivity of the prepared hydrogel,

we conducted rheological tests with different ratios sample

to measure the changes of its storage modulus (G′) and loss

modulus (G″) with temperature. As shown in Figure 3C and

Fig S2, at lower temperatures, G′ was larger than G″,

indicating a liquid-like sol state, whereas with the heating

process, G″ increased significantly faster than G′, indicating

a solid-like gel state. The crossover point at 28°C was

defined as the gelation temperature.

Determination of Swelling Ratio and

Water Retention of PP Hydrogel
Hydrogel dressing can effectively absorb wound exudates

and keep the wound clean.38 Good swelling ability could

promote wound healing.39 The swelling rates were 1470

±110%, 980±154%, 384±41% for PP 50/50, 75/25, 100/0,

respectively (Figure 4A). Wound dressings should keep

the wound surface moist, which is helpful for wound

repair. The water content was 32±0.9%, 68±1.6% and 61

±1.2% for the PP 100/0, 75/25, 50/50 gel system, respec-

tively, after 40 hrs (Figure 4B). Compared with the pure

PNIPAM hydrogel, adding γ-PGA improved the swelling

ratio and the water retention performance of the system.

With the increase of γ-PGA, the number of hydrophilic

carboxyls was enhanced, leading to an increase in swelling

rate and water retention of the materials.40 However, when

the content of γ-PGAwas too high, the free γ-PGA increased.

They can not participate in the formation of hydrogel net-

work structure, which resulted in decreasing water retention.

Figure 2 SEM micrographs of PP hydrogels with different ratios (A) PP 100/0; (B) PP 75/25; (C) PP 50/50.
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Therefore, from the results of swelling behavior and water

retention, PP 75/25 was better than other different ratios.

Wang prepared poly(N-vinyl pyrrolidone)/carboxymethyl

cellulose (PVP/CMC) hydrogel by radiation, and the water

retention rate was 54.5% after 6 hrs for PVP/CMC = 6:4.41

Nevertheless, the water content of PP 75/25 was still 51

±0.9% after 70 hrs. Therefore, the PP gel system has better

performance to keep a moist environment.

Determination of SOD Release,

Scavenging Effect on Superoxidant

Radicals and SOD Activity in vitro
Hydrogels are often used as a drug carrier for sustained and

controlled release.42 Figure 5A shows SOD release in three

different ratios of PP hydrogels. The accumulated SOD release

of PP groupswere both up to 85%and the pure PNIPAMgroup

was only 65% after 24 hrs. The interaction between the car-

boxyl in γ-PGA and the amino in SOD was enhanced, which

increased the amount of SOD loaded into the composite hydro-

gel. The effect of the SOD release was better with PP 75/25.

The SOD activities of the three components did not signifi-

cantly differ (Figure 5B). After 24 h, the activity SOD was

about 85%, so the PP hydrogel system couldmaintain the SOD

activity at a higher level. After 24 h, the scavenging effect of

the superoxide radical was 47.8±7.6%, 53.6±2.8%, 57.3±1.9%

for the PP 100/0, 75/25, 50/50 gel system, respectively

(Figure 5C). The superoxide radical scavenging effect was

better with PP 75/25. The increase in scavenging ability was

related to the accumulated release rate of SOD. Therefore, the

addition of γ-PGA could improve the anti-oxidative property

of the hydrogel system by increasing the amount of SOD.

Figure 3 The gel-forming properties of poly(N-isopropyl-acrylamide)/poly(γ-glutamic acid) (PP); (A) phase transformation at 37°C (PP 75:25); (B) Differential scanning

calorimetry thermodynamic diagram of hydrogels with different ratios (PP 50:50, 75:25, 100:0); (C) Storage (G′) and loss (G″) modulus changes of hydrogels with various

ratios (PP 50:50, 75:25, 100:0) with temperature variation.
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Evaluation of Cytocompatibility of PP

Hydrogels
Excellent biocompatibility is one of the most important

characteristics of materials in biomedical application. The

cell relative survival rate of three components was greater

than 70% after 24 and 48 hrs, respectively (Figure 6)

(relative survival rate greater than 70% could be consid-

ered non-toxic43).

γ-PGA is a product of microbial fermentation that has

good biological biocompatibility44,45 and the unreacted

NIPAM monomer and initiator was removed by dialysis,

so the synthetic hydrogels had fewer side effects on cyto-

compatibility. Thus, PP hydrogels in our experiment had

good biocompatibility and the synthesis method we

adopted in this experiment was feasible.

Figure 5 (A) Accumulated superoxide dismutase (SOD) release from hydrogels in phosphate-buffered saline (n=3); (B) Activity of released SOD (n=3); (C) Accumulated

scavenging effect on superoxide radicals of hydrogels (n=3). &, # and * represent the comparison between the group PP 50:50 and PP 100:0, the group PP 75:25 and PP

100:0, the group PP 50:50 and PP 75:25, respectively. &, # or *P < 0.05, ## or **P< 0.01.

Figure 4 Characteristics of PP hydrogels with different ratios. (A) Swelling behavior of hydrogels in phosphate-buffered saline (pH=7.4) (n=3); (B) Determination of water

retention of hydrogels (n=3). Data are mean±SD. *P < 0.05, **P< 0.01.

Figure 6 Cytotoxicity of the extracting solution of the PP hydrogels with different

component contents (n=6).
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Evaluation of Wound Healing in vivo
In the process of wound healing, excessive ROS would

cause oxidative stress and cause chronic wounds, such as

diabetic foot. The results of the previous experiment

showed that when the ratio of PNIPAM to γ-PGA was

75:25, the hydrogel had good swelling rate, water retention

and SOD release capacity. This experiment selected the PP

hydrogel (75:25) loaded with SOD to study the effects of

chronic wound healing in a diabetic rat model.

To evaluate the efficacy of SOD-PP hydrogel dressing

to promote wound healing, wound repair was evaluated on

days 0, 7, 14 and 21 after the hydrogel was injected into

wound site (Fig S3) and the wound healing rate was

calculated. The wound area of experimental groups

(group b and c) was less than the control group after 7,

14 and 21 days (Figure 7A), so the thermo-sensitive

hydrogel dressing could promote wound healing and the

wound area of all groups was decreased with time. The

effects of SOD-PP were the best among all groups, fol-

lowed by PP. On day 7, the closure rate of wounds was

higher with SOD-PP (45±5.5%) than PP (31±4.0%) and

control (16±3.1%) dressings (Figure 7B). Furthermore, the

resulting showed a treatment effect in wounds treated with

SOD-PP (52±8.0%) and PP (69±5.5%) as compared with

control wounds (40±5.0%) on day 14. After 21 days, the

wound healing rate of the control, PP and SOD-PP groups

was 68±7.6%, 75±8.9% and 92±3.8%, respectively. In

brief, SOD-PP had a better treatment effect on wounds

than the other two groups.

H&E staining was used to evaluate the effect of wound

healing, including inflammation and epithelialization.

Inflammatory cells were fewer in PP and SOD-PP groups

than the control group on day 7 (Figure 8). As expected,

the numbers of inflammation cells with PP and SOD-PP

continued to decrease with time, whereas the inflammatory

conditions remained severe in the control group. After 21

days, re-epithelialization in the wounds was almost com-

plete in all groups but more obvious in the SOD-PP group.

The results of H&E staining were consistent with the

evaluation of wound healing in vivo, and SOD-PP could

accelerate the process of epithelialization that is closest to

natural epithelialization (Fig S4A). Epithelialization bene-

fited from the SOD-sustained release from thermo-sensi-

tive hydrogels and decreased concentration of superoxide

anion (O2
−) via catalyzing O2

− into oxygen and H2O2.

Type I collagen is the main form of collagen protein

in the native skin (Fig S4B), mainly produced by

fibroblasts.32,46 Collagen deposition and the formation of

granulation tissue play a crucial role for tissue recon-

struction in wound healing. Granulation tissue and col-

lagen were formed during the progression of wound

healing (Figure 9). On day 7, collagen deposition did

not differ in all groups. On day 14, the SOD-PP group

showed denser collagen, and the epidermal layer in all

Figure 7 (A) Representative photographs of wounds in diabetic rats treated with control (a), PP (b), and SOD-PP (c) on days 0, 7, 14, and 21 after surgical excision of the

skin; (B) Percentage wound closure at various times (n=3). Data are mean±SD. *P < 0.05, **P< 0.01.
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groups was the thickest. After 21 days, collagen and

epidermis thickness increased markedly in all groups,

but the SOD-PP group had the largest collagen formation

and the thickest epidermis layer. Therefore, thermo-

hydrogels loaded with SOD could enhance the capability

of wound healing by promoting collagen formation and

epidermal formation.

Discussion
Because of the existing deficiencies in current treatments for

wound, the development of smart dressing is urgent. In the

present study, composite hydrogels with thermo-sensitivity,

capability for SOD and physical properties were successfully

prepared to apply for skin wound repair. PNIPAMas a typical

thermo-responsive polymer exhibits injection in situ at the

physiological temperature. After PNIPAM was synthesized

(Supplementary sections S1 and S2), the addition of γ-PGA

gives PNIPAM physical properties. When the ratio of

PNIPAM to γ-PGA in hydrogel is 75 to 25, hydrogels possess

good water retention and good swelling ability (Figure 4).

These results are related to forming network structure

because of hydrogen bonds between amino-group in

PNIPAMand carboxyl group in γ-PGA.When the proportion

of amino-group in PNIPAM and carboxyl group in γ-PGA is

appropriate, hydrogels have good physical properties. SOD

could reduce the concentration of superoxide anion.

Therefore, composite hydrogels integrating with SOD pos-

sess antioxidant properties (Figure 5).

γ-PGA has good biological biocompatibility, and the

unreacted NIPAM monomer and initiator were removed

Figure 8 H&E-stained slices of wound sites on day 7, 14, 21 (A) control, (B) PP, (C) SOD-PP.
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after PNIPAM was synthesized, so the hydrogels had

good cell compatibility (Figure 6). Re-epithelialization

is a key parameter for wound closure. A moist environ-

ment for wounds is conductive to keratinocyte migration

and epithelialization.47 In addition, thermo-sensitive

hydrogel has strong shape adaptation after gelation and

is similar to extracellular matrix,48 which is beneficial to

hydrogel-tissue adhesiveness, cell adhesion, prolifera-

tion, migration and differentiation. Moreover, the hydro-

gels could be directly applied at the wound site and had

no side effects on organisms.49 As compared with PP,

SOD-PP could release SOD controllably after gelation,

which could reduce free radicals of super oxygen and

promote wound healing at the trauma site. After 21 days

operation, the wound almost healed and the healing

rate was up to 92±3.8% in the SOD-PP group. H&E

and Masson’s trichrome staining results further indicate

that SOD-PP could accelerate the process of epitheliali-

zation (Figure 8) and the SOD-PP group had the largest

collagen formation and the thickest epidermis layer

(Figure 9). In the SOD-PP group, the regenerated skin

was closer to the natural tissue (Fig S4). Therefore, the

thermo-sensitive hydrogel dressing loaded with SOD

could promote wound healing effectively.

Conclusion
In this study, we prepared a thermo-sensitive hydrogel

loaded with SOD for wound healing. The thermo-sen-

sitive hydrogels exhibited greater water absorption,

better moisture retention, sustained release of SOD

and good biocompatibility, which was beneficial to

wound repair. In vivo results showed that SOD-PP

hydrogel was conducive to wound healing, wound

epithelialization and tissue remodeling in diabetic

rats. The preparation of thermo-sensitive hydrogel pro-

vides new ideas for designing intelligent hydrogels

with environmental sensitivity, and the thermo-sensi-

tive hydrogel loaded with SOD has good prospects

for wound repair.
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