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Background: Emerging cancer therapy requires highly sensitive diagnosis in combination

with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-

loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates

(HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for

breast cancer synergistic theranostics.

Materials and Methods: The synthesized amphiphilic HA-CHEMS conjugates and TPGS

self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous

environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were charac-

terized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS).

The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was

evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo

animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodis-

tribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice;

furthermore, pharmacokinetics were investigated in healthy mice.

Results: HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle

size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-

TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/

mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs

could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that
99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h

post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies

showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without result-

ing in obvious toxicities to major organs.

Conclusion: The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc

labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic

theranostics.
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Introduction
Breast cancer is one of the main threats to women’s health and has become the

number one cancer among women.1 Chemotherapy, one of the major clinical

treatments for breast cancer, still faces many problems, such as poor bioavailability

and severe side effects of the active ingredients. Curcumin, a natural polyphenol
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molecule derived from the Zingiberaceae and Araceae

plants has proved to be antineoplastic. However, its clin-

ical application has been limited because of its low solu-

bility and rapid metabolism in vivo.2–9 In the past decades,

nanocarriers have been rapidly developed for drug deliv-

ery to increase solubility, prolong duration in vivo,

improve tumor-selective cytotoxicity, and reduce drug

exposure to normal tissues including polymeric nanoparti-

cles, inorganic nanoparticles, and liposomes.10–18

Polymeric nanocarriers may be composed of a synthetic

polymer or natural polymer, both of which have exhibited

good biocompatibility, an easily manipulated chemical

structure, and stimuli-responsiveness.19–22

Hyaluronic acid, also called hyaluronan (HA), a natural

polysaccharide, consists of repeating disaccharide units

and has been widely used for its biocompatibility. HA

can target to CD44-overexpressed solid cancer and cancer

stem cells, such as breast, lung, and prostate cancers.23–28

By modifying hydrophobic segments, HA-derivatives

could self-assemble into nanoparticles that could be used

for chemotherapeutics delivery.29,30 For instance,

Jeannot et al reported HA-b-poly(γ-benzyl-L-glutamate)

nanoparticles that could actively target to the CD44 recep-

tor for delivery of vorinostat and gefitinib with strong

tumor growth inhibition.31 In another example, Gu et al

synthesized HA-b-poly(trimethylene carbonate-co-dithio-

lane trimethylene carbonate) that was capable of high

drug loading and tumor-targeted delivery of bortezomib

to myeloma in vivo. The HA-based nanoparticles exhib-

ited a broad therapeutic window and enhanced tolerance

with more effective growth suppression of CD44-overex-

pressed tumors.32

D-a-tocopheryl polyethylene glycol succinate (TPGS)

is a lipophilic polymer derivative of natural vitamin E, it

has been approved by the FDA for stabilization in drug

delivery systems. Recent studies have shown that TPGS

could play a role as an anticancer drug enhancer by inhi-

biting P-glycoprotein-mediated multidrug resistance in

multiple tumor cells.33–38 However, few investigations

have involved the combination functions of therapy and

diagnosis.

Compared with fluorescence imaging, nuclear imaging

provides infinite penetration depth and quantitative

capability.39 In particular, single photon emission compu-

ter tomography (SPECT) provides non-invasive detection

with high sensitivity and quantification suitable for diag-

nosis which can be conducive to optimizing the dosing

schedule for precise treatment.

Technetium-99m (99mTc), obtained from the 99Mo-99mTc

generator, is readily available and inexpensive. It has become

used daily as a radionuclide in clinics for its favorable phy-

sical and chemical properties, including a low energy gamma

emission of 140 keVand a half-life of 6 h.40 For example, HA

radiolabeled with 99mTc could provide quantitative informa-

tion on the biodistribution and pharmacokinetic of HA.41 By

labeling with 99mTc, tumor-targeting nanoparticles could

help guide tumor diagnosis. For instance, Polyak et al estab-

lished a 99mTc radiolabeled nanoparticles that self-assembled

by chitosan and folated poly-γ-glutamic acid, which was

regarded as a tumor-targeting imaging agent for folate-recep-

tor-overexpressing tumors and exhibited enhanced contrast

in mice models.42 With 99mTc radiolabeling, nanoparticles

could facilitate non-invasive quantitative diagnosis and allow

for personalized treatments by utilizing the same

nanoparticles.

In our previous study, we synthesized amphiphilic HA-

cholesteryl hemisuccinate conjugates that self-assembled into

docetaxel-loaded nanoparticles with high drug loading, excel-

lent stability in vitro and efficient antitumor effects.43 In this

study, we synthesized HA-CHEMSwith 20kd HA, which was

higher than the 7.6kd HA which previously reported. The

higher molecular weight HA may provide greater charge

shielding and higher affinity with CD44 receptors.44 Then,

we prepared HA-CHEMS and TPGS nanoparticles as a carrier

to deliver curcumin for actively targeting to CD44- overex-

pressed tumors. Furthermore, radiolabeled with 99mTc, the

nanocarrier was developed as a nuclear imaging agent of

SPECT imaging and quantification of the tumor targeting

ability. On the one hand, HA could serve as a vector that

could actively target to CD44-overexpressed tumor cells and

tumor stem cells and interfere with endogenous HA-CD44

interaction. On the other hand, curcumin and TPGS could be

released by the low pH of lysosome in tumor cells generating

the potential for synergistic therapy (Figure 1).

Materials and Methods
Materials
Sodium hyaluronic acid (molecular weight: 20 kDa) was

provided by Shandong Freda Biopharm Co. Ltd). Sodium

pertechnetate (Na99mTcO4
−) was supplied by Shanghai

GMS Pharmaceutical Co. Ltd. All chemicals were pur-

chased commercially and used without further purification.

The 4T1 mice mammary cancer cells were purchased from

the cell bank of the Chinese Academy of Sciences

(Shanghai, People’s Republic of China).
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Female BALB/C mice (6 weeks of age, 20−23 g) of

specific pathogen-free grade were received from the

Shanghai SLAC Laboratory Animal Co., Ltd. All of the

animal experiments were carried out in compliance with

the guidelines for the Care and Use of Laboratory Animals

of Shenyang Pharmaceutical University. Ethical approval

was obtained for the use of animals in this study from the

review board for the Care and Use of Cells/Laboratory

Animals of Shenyang Pharmaceutical University.

Preparation and Characterization of

Nanoparticles
HA-cholesteryl hemisuccinate (HA-CHEMS) was synthe-

sized via an esterification reaction. Briefly, cholesteryl

hemisuccinate (40 mg) and DCC (34 mg) were dissolved

in DMSO (2 mL), and then stirred for 4 h at 30 °C. Then,

HA (160 mg) and DMAP (4 mg) were added to the

mixture and reacted for 3d. Thereafter, the mixture was

dialyzed in DMSO three times and in water six times,

which was followed by lyophilizing. The yield was

90.3%. Moreover, the 1H NMR spectra of HA-CHEM

was recorded by UNITYINOVA. (D2O/DMSO-d6,

400MHz, δ): HA (1.76, 4.44, and 7.43) CHEMS (5.33).

The curcumin-loaded HA-CHEMS and TPGS mixed

nanoparticles (HA-CHEMS-Cur-TPGS NPs) were pre-

pared using the membrane dialysis method as previously

described. Briefly, HA-CHEMS (5 mg/mL, 200 μL), cur-

cumin (1 mg/mL, 100 μL), and TPGS (10 mg/mL, 10 μL)

were dissolved in DMSO, and then the mixed solution was

dropwise injected into a phosphate buffer solution (PBS,

10 mM, pH 7.4). After a half hour, the unloaded curcumin

and DMSO were removed using dialysis against the PBS

(10 mM) for 8 h. The same method was used for the

preparation of the HA-CHEMS nanoparticles, HA-

CHEMS-TPGS nanoparticles, and curcumin-loaded HA-

CHEMS (HA-CHEMS-Cur) nanoparticles.

The hydrodynamic size and zeta potential of the nano-

particles was measured using dynamic light scattering

Curcumin TPGS

+

SPECT Imaging Synergistic treatment

Solvent exchange method

Figure 1 Schematic illustration of the preparation of HA-CHEMS-Cur-TPGS NPs, SPECT imaging and synergistic treatment.
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(DLS). All experiments were conducted on a Malvern

Zetasizer Nano ZS90 (a solid-state He-Ne laser (λ=633
nm)) at 20 °C and repeated three times. To visualize the

morphology of HA-CHEMS-Cur-TPGS NPs, the nanopar-

ticle suspension was dropped on copper grids with films

and recorded by transmission electron microscopy (TEM,

FEI Tecnai F20). The colloidal stability of HA-CHEMS-

Cur-TPGS NPs was measured for 1 week.

For the measurement of entrapment efficiency (EE)

and drug loading (DL), 0.2 mL of nanoparticles suspen-

sion prepared as described above was mixed with 9.8 mL

of DMSO. This was followed by sonication disruption for

15 min and centrifugation for 10 min at 8000 rpm. The

Cur content in the supernatant was assayed by HPLC.

To investigate the release behavior of curcumin from

HA-CHEMS-Cur-TPGS NPs, HA-CHEMS-Cur-TPGS

NPs suspension (1 mg/mL, 1 mL) was dialyzed against

PBS (10 mM) at a pH of 5.0, 6.5 and 7.4.

99mTc Radiolabeling of Nanoparticles
Stannous chloride (10 μL, 1 mg/mL) was added to sodium

pertechnetate (Na99mTcO4
−, 200 μCi) solution and then

added to the HA-CHEMS-Cur-TPGS NPs (100 μL, 1

mg/mL). After 30 minutes, the reaction was stopped by

adding sodium disulfate (10 μL, 10 mg/mL). Finally, the

suspension was passed through a PD-10 desalting column

to isolate the spare 99mTc. The radiolabeling efficiency was

determined by the activity of nanoparticles fraction

divided the activity of all fractions. The radiostability

was examined using a gel chromatography assay using

the PBS as a mobile phase.

In vitro Cytotoxicity
The 4T1 mice mammary cancer cells were cultured in a

Dulbecco’s Modified Eagle’s medium (DMEM) supple-

mented with feta bovine serum (10%, FBS) in a humidi-

fied atmosphere of 5% CO2 at 37 °C. The previous study

demonstrated that the expression level of CD44 was high

on the surface of 4T1 cells.

The comparison of cytotoxicity of different HA nano-

particles was performed on 4T1 cells. The 4T1 cells were

seeded in a 96-well plate and cultured for 24 h at 37 °C

before treatment. Then, the medium was replaced by dif-

ferent nanoparticle suspensions at various curcumin con-

centrations for 24 h at 37 °C. Next, the cells were

incubated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide solution (100 μL, 0.5 mg/mL) for

another 4 h. After that, dimethyl sulfoxide (DMSO) was

added to dissolve the formazan crystals. The absorbance of

each well was measured using the microplate reader

(Thermo, Vrioskan Flash).

SPECT/CT Imaging and Biodistribution in

Tumor-Bearing Mice
In vivo imaging was conducted on a microSPECT/CTscanner

with an energywindow from 120 keV to 160 keV for all scans.

The 4T1 cell suspension (∼5 ×106cells) was subcutaneously

injected into the flank region on the right side of the mouse’s

back to establish the tumor model. When the average volume

of the tumor reached 40–50 mm3, the tumor-bearing mice

were intravenously injected with 99mTc-HA-CHEMS-Cur-

TPGS NPs (20 mg/kg, 500 μCi) via the tail vein. The scan

was performed at predetermined time intervals after adminis-

tration (0, 2, 4, 6, 8 and 24 h). As a control, 3 BALB/c mice

were injected with HA polymer (1 mg/mL) 1 hour before

injection of 99mTc-HA-CHEMS-Cur-TPGS NPs.

To study the in vivo plasma pharmacokinetic, blood

samples were collected from the retinal veins of healthy

BALB/c mice (n = 3) at 0, 1, 2, 4, 6, 8 and 24 h after

injection of the 99mTc-HA-CHEMS-Cur-TPGS NPs. The

radioactivity of blood samples was measured by a γ coun-
ter (Multi Crystal LB 2111 γ counter). The biodistribution

of the 99mTc-HA-CHEMS-Cur-TPGS NPs was studied by

measuring the radioactivity of major organs (heart, kid-

neys, liver, lungs, and spleen).

In vivo Antitumor Efficacy and Toxicity
The antitumor efficacy was evaluated by using the mouse

flank tumor model bearing murine breast 4T1 cells. When

the average volume of the tumor reached 40–50 mm3, the

mice were randomly divided into four groups (n=5),

receiving different injections as follows: (1) HA-

CHEMS NPs (the control group), (2) HA-CHEMS-Cur

NPs, (3) HA-CHEMS-TPGS NPs, and (4) HA-CHEMS-

Cur-TPGS NPs (50 mg/kg). The nanoparticles were given

every 2 days for a total of 5 times. The tumor volume

and body weight were measured every 2 days. The sur-

vival of mice was also recorded. At the end of the

experiment, the tumor and main organs of the mice

were sectioned into thin slices for H&E and TUNEL

staining.

Statistical Analysis
One-way analysis of variance (ANOVA) was carried out to

evaluate the significance between groups, and post-hoc
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tests with the Bonferroni correction were used for compar-

ison among individual groups. *p<0.05 was considered

significant, and **p<0.01 were considered highly signifi-

cant. All data were presented as mean ± standard

deviation.

Results and Discussion
Preparation and Characterization of HA-

CHEMS-Cur-TPGS Nanoparticles
HA-CHEMS was obtained by conjugating cholesteryl

hemisuccinate (CHEMS) with HA via an esterification

reaction in the presence of DCC, DMAP, and DMSO for

3 days according to our previous protocols (Figure 1). 43

As shown in Figure 2, the 1H-NMR spectrum of HA-

CHEMS showed clear peaks at 5.33 ppm that corre-

sponded to CHEMS, and the characteristic signals were

of HA (1.76, 4.44 and 7.43 ppm), indicating that HA-

CHEMS was successfully synthesized. HA-CHEMS nano-

particles were prepared using the solvent-exchange

method to dropwise the HA-CHEMS solution in DMSO

to PBS. HA-CHEMS-Cur, HA-CHEMS-TPGS and HA-

CHEMS-Cur-TPGS NPs were prepared using the same

method. In order to optimize the drug loading of HA-

CHEMS-Cur-TPGS NPs, we investigated the influence of

TPGS content on particle size (PS) and drug loading (DL),

with the results showing that the increased addition of

TPGS could correspondingly increase DL. However,

after a certain threshold, excess TPGS obviously increased

the particle size but decreased DL. According to the results

of the PS and DL of NPs, a HA-CHEMS copolymer and

TPGS conjugate ratio of 10:1 (w/w) were determined to be

optimal, leading to a DL rate of 8.2% and a corresponding

particle size of 144 nm.

As measured by a dynamic light scattering (DLS)

assay, the hydrodynamic diameter of HA-CHEMS-Cur-

TPGS nanoparticles was 144 nm, which was similar to

the size of HA-CHEMS NPs (Figure 3A). Moreover, the

hydrodynamic diameters of HA-CHEMS-Cur and HA-

CHEMS-TPGS NPs were slight larger than that of the

HA-CHEMS nanoparticles. The transmission electron

microscopy (TEM) picture showed that HA-CHEMS-

Cur-TPGS NPs had a spherical structure with an average

size of 98 nm, which was close to the DLS data

(Figure 3B). Moreover, the size estimated from TEM

was slightly smaller than that obtained from DLS in an

aqueous phase, which might be attributed to the shrinkage

of the hydrophilic shell during the air-drying process in

TEM sample preparation and the system error resulting

from the determination principles between DLS (hydrated

radius) and TEM.

Remarkably, HA-CHEMS-Cur-TPGS NPs also exhib-

ited good colloidal stability in the PBS with little size

change for over 1 week (Figure 3C), which probably was

a result of strong interaction between cholesterol mole-

cules and negative zeta potentials (−20.14±1.12 mV) from

the ionized carboxylic group of HA in the shell. In addi-

tion, the HA-CHEMS-Cur NPs also exhibited comparative

negative zeta potentials (−21.25±1.66 mV) with the HA-

CHEMS-Cur-TPGS NPs.

The entrapment efficiency and drug loading of HA-

CHEMS-Cur-TPGS NPs were determined using HPLC up

to 84.0±5.0% and 8.2%. To investigate the in vitro release

behavior of curcumin, HA-CHEMS-Cur-TPGS NPs were

dialyzed separately in the PBS at pH 5.0, 6.5, and 7.4. As

shown in Figure 3D, the 50.5±2.4% curcumin was released

from HA-CHEMS-Cur-TPGS NPs at pH 7.4 within 24 h,

showing a sustained release behavior. The accumulative

release at pH 7.4 was significantly lower than that at pH 6.5

(75.8±2.1%) and pH 5.0 (80.2±1.5%). The fast release of

curcumin at low pH is likely due to the pH sensitivity of

cholesteryl hemisuccinate in HA-CHEMS.45 Cholesteryl

hemisuccinate (CHEMS) synthesized by succinic acid ester-

ified to the L-hydroxyl group of cholesterol is an acidic cho-

lesterol ester that can self-assemble into bilayers in neutral or

basicmedium. In acidic condition, CHEMS undergoes a phase

8 7 6 5 4 3 2 1 0
Chemical shift (ppm)

D2O
b

c, d

H2O, HA, e
DMSO

a

a, g

h f

Figure 2 1H NMR spectrum (400 MHz, D2O/DMSO-d6) of HA-g-CHEMS.
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transformation from the stable lamellar phase at a neutral pH

to the unstable inverted hexagonal phase as a result of the

protonation of its acidic head group.45,46 This suggests that

once the HA-CHEMS-Cur-TPGS NPs internalized into tumor

cells, because of CHEMS, the HA-CHEMS would be hydro-

lyzed in a lower pH environment of lysosomes (pH5.0), result-

ing in rapid drug release. In contrast, under the physiological

condition (pH7.4), the drug was released slowly from the

stable NPs.

The radioactive metal 99mTc (t1/2=6 h, Eγ=173 keV)

emits gamma-rays, which can be detected by

microSPECT. Moreover, metal ions can bind to the car-

boxyl group of HA and form a stable compound, which

may be suitable for 99mTc radiolabeling. To radiolabel HA-

CHEMS-Cur-TPGS NPs, SnCl2 was used as a reducing

agent and added to 99mTcO4
−, which eluted from the

99Mo-99mTc generator. A radiolabeling efficiency up to

80.8±1.7% was achieved, as determined by ultrafiltration.

Besides the carboxyl group, two close ester groups also

could be used for 99mTc radiolabeling. Tesan et al reported

that 99mTc radiolabeled TPGS micelles and displayed

excellent radiostability in vivo.47 Hence, the radiolabeling

of HA-CHEMS-Cur-TPGS NPs could be explained by the

complexation of 99mTc and carboxyl group or two close

ester groups. The successful radiolabeling of 99mTc was

found to provide an opportunity for radionuclide 188Re to

be used as internal radionuclide therapy.48,49 To optimize

the 99mTc labeling, varied activity of 99mTc was radiola-

beled with a fixed HA-CHEMS-Cur-TPGS NPs concentra-

tion. The radiolabeling efficiency was similar when

varying the activity of 99mTc from 0.1 mCi to 1 mCi,

which meant that we could radiolabel enough 99mTc for

clinical application (Figure 3E). This potentially explains

the low chemical amount of 99mTc used for radiolabeling

(1 mCi corresponded to 1.9x10−11 mol) is sufficient.

Maintaining the drug within the nanoparticles for a long

time in blood is the prerequisite for drug accumulation in

tumor regions and antitumor efficiency. The stability of
99mTc radiolabeling HA-CHEMS-Cur-TPGS nanoparticles

in vitro was investigated by incubation 99mTc-HA-

CHEMS-Cur-TPGS NPs with the PBS and 10% FBS at

37 °C with 48 h, respectively. As shown in Figure 3F, less

than 10% freedom 99mTc was detected in the PBS and 10%

FBS solution by measuring the radioactivity of freedom
99mTc, suggesting a good radiostability for further in vivo

study.

In vitro Cytotoxicity Assay
The potential cytotoxicity of HA-CHEMS NPs, curcumin,

HA-CHEMS-Cur NPs, HA-CHEMS-TPGS NPs and HA-
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CHEMS-Cur-TPGS NPs was evaluated in 4T1 cells using

the methyl thiazolyl tetrazolium (MTT) assay. The results

showed that no obvious toxicity of HA-CHEMS NPs was

observed in 4T1 cells up to a concentration of 1 mg/mL

(Figure 4A). Figure 4B shows the toxic effect of free

curcumin, HA-CHEMS-Cur NPs, HA-CHEMS-TPGS

NPs and HA-CHEMS-Cur-TPGS NPs against 4T1 cells

for 24 h. All groups displayed a concentration-dependent

toxicity of curcumin and TPGS. Furthermore, the IC50

(concentrations of 50% 4T1 cells growth inhibition) values

of curcumin, HA-CHEMS-Cur NPs, HA-CHEMS-TPGS

NPs and HA-CHEMS-Cur-TPGS NPs were 77, 58, 103

and 38 μg/mL, respectively. Remarkably, HA-CHEMS-

Cur-TPGS NPs showed the highest toxicity for 4T1 cells

compared to free curcumin, HA-CHEMS-Cur NPs, and

HA-CHEMS-TPGS NPs, which might be because of the

elevated intracellular drug level caused by rapid drug

release from nanoparticles after the internalization of

HA-CHEMS-Cur-TPGS nanoparticles and the synergistic

effect between HA-CHEMS-Cur with TPGS. The combi-

nation index (CI) value of HA-CHEMS-Cur and TPGS

was calculated as 0.79. Drugs have moderate synergism

when the CI value is between 0.6 and 0.8. These results

indicated that curcumin, HA-CHEMS-Cur NPs and HA-

CHEMS-Cur-TPGS NPs can inhibit 4T1 cells, and TPGS

can enhance antitumor efficiency.

In vivo Imaging and Pharmacokinetics
MicroSPECT imaging of radiolabeled 99mTc was

employed to record the in vivo biodistribution and evalu-

ate the tumor-targeting ability of HA-CHEMS-Cur-TPGS

NPs in 4T1-tumor-bearing BALB/c mice. The mice that

injected free HA 1 h earlier and followed 99mTc-HA-

CHEMS-Cur-TPGS NP injection were regarded as the

control. MicroSPECT images showed the biodistribution

of 99mTc-HA-CHEMS-Cur-TPGS NPs and control group

in 4T1 tumor bearing mice within 24 h (Figure 5A and B).

The radioactive intensity at the tumor sites was obviously

higher in the 99mTc-HA-CHEMS-Cur-TPGS NPs group

than in the control. The tumor uptake of 99mTc-HA-

CHEMS-Cur-TPGS NPs peaked at 4 h post-injection,

indicating that HA can actively target to tumor tissue.

Meanwhile, no radioactive signal was found in the thyroid,

suggesting that the complexation of 99mTc and HA-

CHEMS-Cur-TPGS is stable in vivo, the conclusion

according to that free 99mTc can be oxidized to 99mTcO4
−

and accumulate in the thyroid.50,51 Quantitative analysis of

microSPECT images showed that the maximum radioac-

tivity intensity of tumor tissue was 4.85±0.24%ID/g at 4 h

post-injection but was less than 1%ID/g in the control

group (Figure 5C). Notably, there was more than 3%ID/g

of the radioactivity retained in tumor tissue at 8 h post-

injection. This result indicated that the nanoparticles can

accumulate in a tumor via the enhanced permeation reten-

tion (EPR) effect or nanomaterials-induced endothelial

leakiness (NanoEL).52–59 Moreover, a high concentration

with prolonged retention of the nanoparticles can provide

more drug release to tumor cells and potentially induce

more cell death.

In order to evaluate the plasma pharmacokinetics of

HA-CHEMS-Cur-TPGS NPs, healthy mice were intrave-

nously injected with 99mTc-HA-CHEMS-Cur-TPGS NPs.

The blood sample was collected from the retinal vein for

radioactivity assay by γ counter at different post-injection

times. The pharmacokinetic analyses demonstrated that
99mTc-HA-CHEMS-Cur-TPGS NPs exhibited a prolonged

blood circulation time (t1/2, β=7.8 h) (Figure 5D). Jin et al

found that the half-life of free curcumin was only
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8 minutes.60 Hence, the 99mTc-HA-CHEMS-Cur-TPGS

NPs apparently extended the circulation half-life of curcu-

min from several minutes to several hours. Further, we

studied the biodistribution of 99mTc-HA-CHEMS-Cur-

TPGS NPs in healthy mice. Major organs were excised at

24 h post-injection by intravenous injection via the tail vein.

Twenty-four hours post-injection, the main distribution of
99mTc-HA-CHEMS-Cur-TPGS NPs settled more in the

liver (19.21±8.6%ID/g) and spleen (16.24±7.4%ID/g) com-

pared to other organs such as the heart (0.42±0.25%ID/g),

lung (0.3±0.1%ID/g), and kidney (0.37±0.15%ID/g)

(Figure 5E). Generally, the nanoparticles were captured by

the reticuloendothelial systemwhich is concentrated mainly

in the liver and spleen.61,62 However, the total activity of
99mTc-HA-CHEMS-Cur-TPGS NPS decreased fast, and

there was only 20.5±3.1 ID% left in the mice 24 h post-
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Figure 7 H&E and TUNEL staining assays of tumor (A) and health organs (B) in different treatment groups. All the scale bars present 100 µm.
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injection, indicating that 99mTc-HA-CHEMS-Cur-TPGS

NPs excretes quickly in normal organs and that the rapid

metabolism of HA-CHEMS-Cur-TPGS NPs can decrease

cytotoxicity to the health tissue in vivo.

In vivo Antitumor Efficacy
After assessing the targeting ability of HA-CHEMS-Cur-

TPGS NPs, the in vivo antitumor efficiency and systemic

toxicity of HA-CHEMS-Cur-TPGS NPs were evaluated in

4T1-tumor-bearing mice. The tumor volumes and body

weights of 4T1- tumor-bearing mice were measured after

intravenous administration of HA-CHEMS NPs (control),

HA-CHEMS-TPGS NPs and two curcumin formulations at

a dose of 50 mg/kg. The HA-CHEMS group showed the

lowest tumor inhibition effect, with a mean tumor size of

996.8±262.3 mm3 at day 12. Unlike HA-CHEMS NPs, the

HA-CHEMS-TPGS NPs showed a relatively higher effect

of tumor reduction, with a mean tumor size of 619.5

±134.4 mm3 at day 12. Moreover, a recent study showed

that TPGS could reverse multidrug resistance by altering

the cell’s membrane and improving cellular uptake.63–65

HA-CHEMS-Cur-TPGS NPs exhibited the highest tumor

growth inhibition; the mean tumor size was only 435.5

±87.3 mm3 at day 12. After the 12th day, the growth of

tumors in all groups was faster than the growth during the

treatment since we stopped injection of nanoparticles on the

10th day. The biodistribution study demonstrated that the

retention of HA-CHEMS-Cur-TPGS NPs was only 0.88

±0.18 ID%/g in the tumor after 24 h. The uncontrolled

tumor growth could be due to the depletion of nanoparticles.

Hence, HA-CHEMS-Cur-TPGS NPs exhibited significant

inhibition of tumor growth compared to HA-CHEMS-Cur

NPs, and HA-CHEMS-TPGS NPs (Figure 6A). The anti-

tumor efficacy results indicated that TPGS can enhance the

curcumin antitumor efficacy in vivo. In addition, Kaplan-

Meier survival curves showed that the treatment of HA-

CHEMS-Cur-TPGS NPs resulted in a significantly longer

median survival time than the other three groups

(Figure 6B). Moreover, all treated groups of mice displayed

no severe weight loss, indicating that nanoparticles have

little systematic toxicity (Figure 6C). Figure 6D shows the

tumor blocks at 14 days after treatment, and the results

suggested that HA-CHEMS-Cur-TPGS NPs have better

antitumor efficiency than HA-CHEMS-Cur NPs.

To further evaluate antitumor efficiency and in vivo cyto-

toxicity, tumor and major organs were sliced for histological

analysis by using H&E and TUNEL staining. After staining

with H&E, the HA-CHEMS-Cur-TPGS NPs group showed

more necrosis in the tumor site compared to the HA-CHEMS

NPs, HA-CHEMS-Cur NPs and HA-CHEMS-TPGS NPs

groups (Figure 7A). Furthermore, the TUNEL assay revealed

that the HA-CHEMS-Cur-TPGS NPs group induced more

apoptosis of tumor cells (Figure 7A). All the groups showed

little damage in major organs (Figure 7B). Cumulatively, the

results indicated that HA-CHEMS-Cur-TPGS NPs are an

excellent antitumor nanomedicine for breast cancer with

enhanced tumor-specific accumulation, improved antitumor

efficiency, and low side effects.

Conclusion
In this study, we successfully prepared 99mTc-HA-CHEMS-

Cur-TPGS NPs for synergistic chemotherapy and con-

ducted nuclear imaging for breast cancer in mice. The

HA-CHEMS-Cur-TPGS NPs exhibited a uniform particle

size distribution, excellent in vitro stability and high radi-

olabeling efficiency with good radiostability. Furthermore,

the in vivo SPECT imaging demonstrated that 99mTc-HA-

CHEMS-Cur-TPGS NPs could actively target to breast

cancer in mice. The retention of 99mTc-HA-CHEMS-Cur-

TPGS NPs was higher than 3%ID/g until 8 h post-injection,

with fast total body excretion. The antitumor inhibition

results confirmed that the antitumor efficiency of curcumin

was elevated with the help of TPGS without obviously

toxicity compared with HA-CHEMS-Cur NPs. The findings

indicated that 99mTc-HA-CHEMS-Cur-TPGS NPs with

excellent CD44 active targeting, effective tumor inhibition,

and nuclear imaging can serve as a novel platform for breast

cancer theranostics.
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