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Background: Lidocaine has cardiovascular and neurologic toxicity, which is dose-

dependent. Due to CYP3A4-involved metabolism, lidocaine may be prone to drug–drug

interactions.

Materials and Methods: Given statins have the possibility of combination with lidocaine

in the clinic, we established in vitro models to assess the effect of statins on the metabolism

of lidocaine. Further pharmacokinetic alterations of lidocaine and its main metabolite,

monoethylglycinexylidide in rats influenced by simvastatin, were investigated.

Results: In vitro study revealed that simvastatin, among the statins, had the most significant

inhibitory effect on lidocaine metabolism with IC50 of 39.31 µM, 50 µM and 15.77 µM for

RLM, HLM and CYP3A4.1, respectively. Consistent with in vitro results, lidocaine con-

comitantly used with simvastatin in rats was associated with 1.2-fold AUC(0-t), 1.2-fold

AUC(0-∞), and 20%-decreased clearance for lidocaine, and 1.4-fold Cmax for MEGX com-

pared with lidocaine alone.

Conclusion: Collectively, these results implied that simvastatin could evidently inhibit the

metabolism of lidocaine both in vivo and in vitro. Accordingly, more attention and necessary

therapeutic drug monitoring should be paid to patients with the concomitant coadministration

of lidocaine and simvastatin so as to avoid unexpected toxicity.
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Introduction
Lidocaine, an antiarrhythmic drug, is widely used to treat ventricular arrhythmias,

especially in patients with acute myocardial infarction or cardiac surgery.1–5

Lidocaine is accompanied by serious adverse effects, which are primarily divided

into two categories, cardiovascular and neurologic.1 Compared to cardiovascular

toxicity, the occurrence of neurologic toxicity is more frequent and significant,

which is dose-dependent.1 Patients may experience numbness, dizziness and light-

headedness even when lidocaine is administrated at a therapeutic dose, while

seizures, muscular spasms, visual disturbances, hallucinations, confusion and agita-

tion may occur when the lidocaine plasma concentration is above the normal

level.1,6 Consequently, therapeutic drug monitoring may be recommended when

lidocaine is applied in the clinic.

Previous studies have revealed that lidocaine is primarily metabolized by

CYP3A4 to form monoethylglycinexylidide (MEGX), whose potency is lower than

lidocaine but cardiovascular and neurologic toxicity is parallel to lidocaine.7–15
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Because of CYP-based metabolism, lidocaine may be prone

to drug–drug interactions, which means its pharmacokinetic

and pharmacodynamic response would be altered when co-

administrated with CYP3A4 modulators.

In patients with hyperlipemia, the accumulation of fatty

in the intima of arteries would increase the risk of coronary

atherosclerosis, and the latter is highly associated with ven-

tricular arrhythmias, which indicates patients may take sta-

tins (such as simvastatin) and lidocaine simultaneously.16–19

It’s reported that simvastatin is mainly metabolized by

CYP3A4/5 and can inhibit CYP3A activity.20 An in vitro

study exhibited that simvastatin could competitively inhibit

the metabolism of midazolam (a CYP3A4 substrate) with Ki

at 10μM, and an in vivo study showed that co-administration

with simvastatin resulted in 1.42-fold increment of AUC(0-t)

and 1.96-fold prolongation of t1/2 for sinomenine (a CYP3A4

substrate).20,21 Therefore, there may be a drug–drug interac-

tion between lidocaine and simvastatin.

In this study, we established several in vitro models to

assess the effects of other statins on the metabolism of

lidocaine compared with that of simvastatin, and further

investigated the potential drug–drug interaction between

lidocaine and simvastatin in rats. Moreover, the impacts of

simvastatin on lidocaine metabolism in rat/human liver

microsome and recombinant human CYP3A4.1 micro-

some were identified.

Materials and Methods
Chemical and Reagents
Lidocaine, simvastatin and bupivacaine (served as internal

standard, IS) were purchased from Beijing Sunflower and

Technology Development Co., Ltd (Beijing, China) and

MEGX was from Toronto Research Chemicals Inc (Toronto,

Ontario, Canada). Lidocaine hydrochloride for subcutaneous

administration to rats was purchased from Shandong Hualu

Pharmaceutical Co., Ltd (Shandong, China). Phosphate buffer

saline (PBS) and the reduced nicotinamide adenine dinucleo-

tide phosphate (NADPH) were bought from Beyotime

Biotechnology (Shanghai, China) and Roche Pharmaceutical

Ltd. (Basel, Switzerland), respectively. Pooled rat/human liver

microsome (RLM/HLM) were from Corning Life Sciences

Co., Ltd (Wujiang, China), while recombinant human

CYP3A4.1 protein and cytochrome b5 were kind gifts from

Beijing Hospital (Beijing, China).22 Acetonitrile was pur-

chased from Merck (Darmstadt, Germany) and formic acid

was from Sigma-Aldrich Co. (St. Louis, MO, USA), both of

which were of analytical grade.

Equipment and Operation Conditions
An Acquity UPLC-MS/MS system (Waters Corp.,

Milford, MA, USA) was employed for the isolation of

lidocaine, MEGX and bupivacaine. These analytes were

chromatographed on an Acquity BEH C18 column

(2.1 mm×50 mm, 1.7 μm) at 40°C using a mobile phase

consisting of acetonitrile and water (0.1% formic acid)

with a gradient elution program at a flow rate of 0.4 mL/

min (Table 1). The multiple-reaction-monitoring (MRM)

transitions in a positive mode were used to quantify these

analytes and their corresponding monitored transitions and

parameters are displayed in Table 2.

In vitro Kinetic Parameters for Lidocaine

in RLM/HLM
The in vitro models selected in our study included RLM

and HLM. The 200-μL RLM/HLM incubation system

consisted of lidocaine, 0.5mg/mL RLM or 0.2mg/mL

HLM, 100 mmol PBS (pH 7.4) and 1 mM NADPH. To

confirm the Km value, the concentrations of lidocaine were

designed at 10-1000μM for RLM and 100–3000μM for

HLM. After 5-min preincubation at 37°C, 1 mM NADPH

was added to initiate the reaction. After 40-min incubation,

Table 1 The Developed Gradient Elution Program for the

Isolation of Lidocaine, Monoethylglycinexylidide (MEGX) and

Bupivacaine

Time

(min)

Flow Rate

(mL/min)

Mobile Phase

Water (0.1%

Formic acid)

Acetonitrile

0 0.4 90% 10%

0.5 0.4 90% 10%

1.0 0.4 10% 90%

2.0 0.4 10% 90%

2.1 0.4 90% 10%

3.0 0.4 90% 10%

Table 2 Mass-to-Charge (m/z) Values for the Protonated

Lidocaine, Monoethylglycinexylidide (MEGX) and Bupivacaine

Obtained by ESI+ and Mass Transitions Used for Quantification

in the Multiple-Reaction-Monitoring Mode

Analytes Mass Transition

(m/z to m/z)

Cone

Voltage

(V)

Collision

Energy (V)

Lidocaine 235→86 25 27

MEGX 207.2→58 30 10

Bupivacaine 289.11→140.41 25 20
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the incubation system was frozen at −80°C to stop the

reaction. After the addition of 400μL of acetonitrile and

20μL of bupivacaine (50μg/mL), the incubation system

was suffered from 2-min vortex and 10-min centrifugation

at 13,000 rpm, and a 20μL aliquot of the supernatant was

diluted with 1 mL ultra-pure water then for UPLC-MS/MS

analysis. All samples were performed in triplicate.

Comparison of Inhibitory Effects

Between Simvastatin and Other Statins in

RLM/HLM
The in vitro models selected in our study included RLM

and HLM. The 200-μL incubation system contained lido-

caine (250 µM for RLM and 1000 µM for HLM, based on

their own Km values), RLM (0.5mg/mL) or HLM (0.2mg/

mL), and 1 mM NADPH in 100 mmol PBS (pH 7.4) with/

without the presence of statins (100μM). The following

processing steps were the same as the above experiments.

Inhibitory Effect of Simvastatin on

Lidocaine in RLM, HLM and CYP3A4.1
The in vitromodels selected in our study included RLM,HLM

and recombinant CYP3A4 enzyme. The CYP3A4.1 incuba-

tion system referred to our previous study.23 The 200-μL
incubation system contained lidocaine (250 µM for RLM,

1000 µM for HLM and 500 µM for CYP3A4.1, based on

their own Km values), RLM (0.5mg/mL) or HLM (0.2mg/

mL) or CYP3A4.1 (5pmol) coupled with b5 (5pmol), and 1

mMNADPH in 100 mmol PBS (pH 7.4) with the presence of

simvastatin (0, 0.01, 0.1, 1, 10, 25, 50 and 100μM). The

following processing steps were the same as the above

experiments.

Inhibitory Effect of Simvastatin on

Lidocaine in Rats
Male Sprague–Dawley rats (180–200 g) were obtained from

Shanghai Laboratory Animal Center and maintained in the

Laboratory Animal Center of Wenzhou Medical University

in a temperature-controlled environment with a 12 h light-

dark cycle. Animals had free access to standard laboratory

food and tap water. All experiments were performed after the

approval of the Animal Care and Use Committee of Wenzhou

Medical University (Wenzhou, China, License No. WYDW

[ZJ] 2019–0002) and followed the Guide for the Care and Use

of Laboratory Animal.

Before the experiments, rats were fasted for 12 h but free to

water. 8mg/mL lidocaine hydrochloridewas diluted by 20mg/

mL lidocaine hydrochloride with normal saline. Simvastatin

was dissolved in 0.5% Carboxymethylcellulose sodium salt

solution to achieve a concentration at 20 mg/mL. Twelve rats

were randomly divided into two groups (n=6): control group

(groupA, lidocaine alone) and study group (groupB, lidocaine

and simvastatin). 40mg/kg simvastatinwas orally pretreated to

group B and an equivalent volume of 0.5% CMC-Na solution

was orally pretreated to group A. 30 minutes later, 10 mg/kg

lidocaine was administrated subcutaneously to the two groups.

Simvastatin has been reported to have an inhibitory effect on

CYP3A4 and lidocaine has been identified as a substrate of

CYP3A4, which means simvastatin may be a mechanism-

based inhibitor for lidocaine. Therefore, it is recommended

that the administration of simvastatin was half an hour earlier

than that of lidocaine to maximize the effect of the potential

interaction.24–28 Subsequently, the blood samples (ca. 0.3 mL)

were collected from the tail vein into tubes containing sodium

heparin at 0.083, 0.167, 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12 and 24

h after the administration of lidocaine. The collected sample

was processed by centrifugation (13,000 rpm for 10 min), the

100-μL plasma was mixed with 20μL of bupivacaine (100 ng/

mL) and 400μL of acetonitrile, the mixture was stirred for 2

min and centrifuged at 13,000 rpm for 15 min, and a 50μL
aliquot of the supernatant was diluted with 200μL of ultra-pure

water then for UPLC-MS/MS analysis.

Statistical Analysis
The in vitro kinetic parameters and the IC50 values were

calculated with GraphPad Prism 5.0 (Graphpad Software

Inc., San Diego, CA, USA) by Michaelis-Menten analysis

and log(inhibitor) vs normalized response analysis, respec-

tively. Pharmacokinetic profiles in rats were analyzed by

noncompartmental methods using DAS software (Version

3.0, Bontz Inc., Beijing, China) and the concentration–time

curves were depicted using Origin 8.0 (Originlab Company,

Northampton, MA, USA). The main pharmacokinetic pro-

files between group A and group B were statistically ana-

lyzed by unpaired t-test analysis using GraphPad Prism 5.0.

P<0.05 meant statistical significance.

Results
UPLC-MS/MS
The representative chromatograms of lidocaine, MEGX and

bupivacaine in blank plasma (A), blank plasma spiked with

analytes (B), and plasma at 2 h after the administration of

lidocaine (C) are displayed in Figure 1. Although some

interfering peaks are observed at the elution time of the
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Figure 1 UPLC -MS/MS chromatographs of lidocaine, monoethylglycinexylidide (MEGX) and bupivacaine. (A) Blank plasma sample. (B) Blank plasma spiked with 200 ng/mL

lidocaine, 0.5 ng/mL MEGX and 100 ng/mL bupivacaine. (C) Simvastatin-treated rat plasma sample at 2 h after the administration of lidocaine.
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two analytes and bupivacaine in a blank plasma sample,

their responses were less than 20% of the responses of the

LLOQ sample for lidocaine and MEGX, and 5% for bupi-

vacaine. Bupivacaine did not affect the measurement of the

two analytes. Additionally, there was no carry-over effect.

The concentrations of calibration curves were set at 10–2000

ng/mL for lidocaine and 0.1–50 ng/mL for MEGX, respec-

tively. The concentrations of quality control samples were

set at 10, 20, 800 and 1600 ng/mL for lidocaine, and 0.1, 0.2,

20 and 40ng/mL for MEGX, respectively, all of which were

validated according to FDA and EMEA guidelines for bioa-

nalytical validation.29,30 They were within the acceptable

limits and their corresponding data about accuracy, preci-

sion, recovery, matrix effect and stability are presented in

supplementary Tables 1–3.

In vitro Kinetic Parameters for Lidocaine

in RLM/HLM
In RLM, the Michaelis-Menten curve of lidocaine is

plotted in Figure 2(A) and its kinetic parameters were

calculated, in which Vmax value was 8.858 ± 0.037 nmol/

min/mg and Km value was 216.750 ± 1.344 µM. In HLM,

the Michaelis-Menten curve is depicted in Figure 2(B),

and Vmax and Km values were calculated at 5.21 ± 0.04

nmol/min/mg and 1027.50 ± 16.26 µM, respectively.

Effects of Simvastatin and Other Statins

on the Metabolism of Lidocaine in vitro
The results of the comparison of inhibitory effects on lido-

caine between simvastatin and other statins (lovastatin, rosu-

vastatin and atorvastatin) are exhibited in Figure 3.

Simvastatin inhibited the metabolism of lidocaine to 21.97%

in RLM and 16.58% in HLM, while lovastatin, rosuvastatin

and atorvastatin inhibited to 54.42%, 93.91% and 89.74% in

RLM, and 56.05%, 96.33% and 97.96% in HLM, respec-

tively. These results manifested that the inhibition by simvas-

tatin wasmost significant and the outcomes in RLMandHLM

were consistent, indicating the combination of lidocaine and

simvastatin might have a high likelihood of drug–drug

interaction.

The IC50 curves of simvastatin on the metabolism of

lidocaine in RLM, HLM and CYP3A4.1 are displayed in

Figure 4 and the corresponding IC50 values were 39.31 µM,

50 µM, and 15.77 µM, respectively. When the concentration

of simvastatin was 100 µM, lidocaine metabolism was inhib-

ited by 78.03%, 83.42% and 74% in RLM, HLM and

CYP3A4.1, respectively.

Effects of Simvastatin on the Metabolism

of Lidocaine in vivo
The concentration–time curves of lidocaine and MEGX

are shown in Figure 5 and their corresponding pharmaco-

kinetic parameters were shown in Tables 3 and 4. In

comparison with the control group, lidocaine exposure in

the study group was enhanced with 1.2-fold AUC(0-t)

(P<0.05) and 1.2-fold AUC(0-∞) (P<0.05), and its clearance

was decreased with CLz/F value from 4.143 ± 0.715 L/h/kg

to 3.370 ± 0.419 L/h/kg (P<0.05). MEGX exposure was

also increased with Cmax value from 25.032 ± 6.101 ng/

mL to 33.799 ± 6.788 ng/mL, approximately 1.4-fold

increment. Besides, there is no significant difference

among other pharmacokinetic parameters between the con-

trol group and the study group (P>0.05).

Figure 2 Michaelis-Menten curves for lidocaine in rat liver microsome (RLM), (A) and human liver microsome (HLM). (B) Values are the mean ± SD, N=3.
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Discussion
The clinical use of lidocaine may result in cardiotoxicity and

neurotoxicity, and the latter is related to dose, which implies

the higher lidocaine plasma concentration would be more

likely to induce neurotoxicity.1,6 As the involvement of

CYP3A4, the metabolism of lidocaine is susceptible to

other drugs, with a high risk of potential interactions and

adverse reactions.

Several in vitro models are usually employed for meta-

bolic researches, including liver slices, liver microsomes,

hepatocyte and recombinant enzyme.31,32 It is higher-

throughput, more rapid and sensitive with less interference

factors compared with in vivo models.21 Accordingly, we

established RLM and HLM incubation systems to obtain the

in vitro kinetic parameters for lidocaine and to study the

combination of lidocaine with statins that may be co-

administrated with lidocaine in the clinic. The in vitro results

showed that simvastatin could significantly inhibit lidocaine

metabolism with IC50 of 39.31 µM in RLM, which underlay

the potential interaction between lidocaine and simvastatin in

rats. The IC50 value of 50 µM in HLM meant the results

obtained in rats might be extrapolated to human to some

extent. Further inhibition in CYP3A4.1 with IC50 of 15.77

µM elucidated lidocaine metabolism inhibited by simvastatin

was mainly via CYP3A4.

Consistent with in vitro results, the metabolism of lido-

caine inhibited by simvastatin also occurred in rats.

Lidocaine plasma concentrations were obviously increased

and the clearance was evidently decreased, which may be

explained by the inhibition of CYP3A4 activity. It is reported

Figure 3 Inhibitory comparison of statins on the metabolism of lidocaine in rat

liver microsome (RLM) and human liver microsome (HLM). Values are the mean ±

SD, N=3.

Notes: Significant difference between statins and the control was analyzed by one-

way ANOVA with Dunnett’s test. *P<0.05, **P<0.01

Figure 4 Simvastatin with various concentrations on the metabolism of lidocaine

for half-maximal inhibitory concentration (IC50) in the activity of RLM, HLM and

CYP3A4.1. Values are the mean ± SD, N=3.

Figure 5 Mean concentration–time curves of lidocaine (A) and monoethylglycinexylidide (MEGX), (B) in the control group (lidocaine alone) and the study group (lidocaine

with simvastatin). Values are the mean ± SD, N=6.
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that simvastatin could competitively inhibit the metabolism

of midazolam (a CYP3A4 substrate) with Ki at 10μM.20

Besides, when co-administrated with simvastatin, sinome-

nine (a CYP3A4 substrate) experienced 1.42-fold increment

of AUC(0-t) and 1.96-fold prolongation of t1/2, while apatinib

(a CYP3A4 substrate) achieved 2.4-fold increment of

AUC(0-t) and 73.9% decrement of CLz/F.20,33 Therefore,

simvastatin could inhibit the activity of CYP3A4 enzyme,

impairing the metabolism and excretion of lidocaine in rats,

thereby resulting in pharmacokinetic alterations in terms of

AUC(0-t), AUC(0-∞) and CLz/F. Additionally, the absorption

of lidocaine was not affected by simvastatin as evidenced by

Cmax value of lidocaine presenting no remarkable difference,

which may be due to lidocaine administrated by subcuta-

neous injection rather than gavage.

Apart from CYP3A4, CYP1A2 also played an indispen-

sable role in lidocaine metabolism.34 However, CYP1A2

may have no responsibility for the interaction between lido-

caine and simvastatin. Simvastatin was metabolized by

CYP3A4/5 (≥80%) and CYP2C8 (≤20%), while CYP1A2,

CYP2D6, CYP2C19, CYP2C9 and other CYP isoforms

were not involved, which implied that simvastatin had no

affinity for CYP1A2 and thereby had no inhibitory effect on

CYP1A2 activity.35Meanwhile, there had been no researches

ever reported about the inhibition of simvastatin on CYP1A2

other than CYP3A4. Thus, the drug–drug interaction

between lidocaine and simvastatin may involve CYP3A4

only without the participation of CYP1A2.

MEGX, formed by lidocaine N-dealkylation in human

liver, also possessed the potential of antiarrhythmic and

local anesthesia lower than lidocaine as well as the risk of

cardiovascular and neurologic toxicity parallel to

lidocaine.13–15 Therefore, MEGX pharmacokinetics was

also studied. After the administration of simvastatin,

Cmax value of MEGX exhibited a 1.4-fold increment com-

pared with lidocaine administrated alone. This increment

was most likely due to that lidocaine metabolism and

execration, affected by simvastatin, were impaired, thereby

leading to enhanced lidocaine exposure and prolonged

retention time, which inferred lidocaine had more chances

to form MEGX. Additionally, MEGX could be further

metabolized to glycinexylidide, which may be inhibited

by simvastatin and then caused the increased Cmax value.
36

In conclusion, simvastatin can inhibit the metabolism

of lidocaine both in vitro and in vivo, affect the pharma-

cokinetics of lidocaine and MEGX in rats, and may trigger

pharmacodynamic alteration and side effects. Lidocaine

neurotoxicity is dose-dependent, meaning the higher lido-

caine plasma concentration could increase the risk of neu-

rotoxicity. Thus, this study is full of clinically guiding

significance to the concomitant use of lidocaine and sim-

vastatin. When these two drugs are taken concurrently,

more attention and necessary therapeutic drug monitoring

should be paid in order to reduce the lidocaine-related side

events.
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