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Introduction: Cancer stem cells (CSCs) drive the initiation, maintenance, and therapy

response of breast tumors. CD49f is expressed in breast CSCs and functions in the maintenance

of stemness. Thus, blockade of CD49f is a potential therapeutic approach for targeting breast

CSCs. In the present study, we aimed to repurpose drugs as CD49f antagonists.

Materials and Methods: We performed consensus molecular docking using a subdomain

of CD49f that is critical for heterodimerization and a collection of pharmochemicals clini-

cally tested. Molecular dynamics simulations were employed to further characterize drug-

target binding. Using MDA-MB-231 cells, we evaluated the effects of potential CD49f

antagonists on 1) cell adhesion to laminin; 2) mammosphere formation; and 3) cell viability.

We analyzed the effects of the drug with better CSC-selectivity on the activation of CD49f-

downstream signaling by Western blot (WB) and co-immunoprecipitation. Expressions of the

stem cell markers CD44 and SOX2 were analyzed by flow cytometry and WB, respectively.

Transactivation of SOX2 promoter was evaluated by luciferase reporter assays. Changes in

the number of CSCs were assessed by limiting-dilution xenotransplantation.

Results: Pranlukast, a drug used to treat asthma, bound to CD49f in silico and inhibited the

adhesion of CD49f+ MDA-MB-231 cells to laminin, indicating that it antagonizes CD49f-

containing integrins. Molecular dynamics analysis showed that pranlukast binding induces con-

formational changes inCD49f that affect its interactionwith β1-integrin subunit and constrained the

conformational dynamics of the heterodimer. Pranlukast decreased the clonogenicity of breast

cancer cells on mammosphere formation assay but had no impact on the viability of bulk tumor

cells. Brief exposure of MDA-MB-231 cells to pranlukast altered CD49f-dependent signaling,

reducing focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) activation. Further,

pranlukast-treated cells showed decreased CD44 and SOX2 expression, SOX2 promoter transacti-

vation, and in vivo tumorigenicity, supporting that this drug reduces the frequency of CSC.

Conclusion: Our results support the function of pranlukast as a CD49f antagonist that

reduces the CSC population in triple-negative breast cancer cells. The pharmacokinetics and

toxicology of this drug have already been established, rendering a potential adjuvant therapy

for breast cancer patients.

Keywords: CD49f, alpha6 integrin, breast cancer stem cells, pranlukast, drug repositioning,

triple-negative breast cancer cells

Introduction
Breast cancer has the highest global incidence in women.1 It is estimated that over

1,670,000 new breast cancer patients are diagnosed worldwide each year.2 Despite the

implementation of new targeted therapies and treatments, a high percentage of breast

cancer patients still die due to tumor resistance, recurrence, and metastasis.3 In vivo

data have demonstrated that cancer stem cells (CSCs), a small subset of tumor cells,
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have tumor-initiating and self-renewal capacities.

Accordingly, CSCs mediate the resistance to conventional

therapies, metastasis, and tumor recurrence,4 rendering them

excellent targets for new anticancer treatments.

CD49f (α6 integrin; ITGA6) is a cell surface protein

that forms heterodimers with β1 or β4 integrins, and the

resulting complexes act as laminin-binding receptors.5,6

Hence, CD49f-containing integrins regulate communica-

tion between cancer cells and the microenvironment.

CD49f expression in human breast tumors correlates with

reduced overall and recurrence-free survival rates.7

Accordingly, its inhibition reduces the migration, invasion,

and metastatic potential of breast cancer cells.8–10

CD49f plays a key role in stemness promotion and

maintenance in breast cancer.11,12 CD49f blockade with

antibodies or CD49f knockdown decreases the in vitro

clonogenicity13 and in vivo tumorigenicity12,14 of breast

cancer cells. On the other hand, CD49f is either not

expressed in non-stem breast cancer cells15–17 or expressed

but not essential for their survival.9,10

The key role of CD49f in stemness indicates that it can be

targeted to reduce the breast CSC pool and slow up breast

cancer progression. However, CD49f has not been clinically

targeted, despite the fact that integrin-blocking antibodies, pep-

tides, or small molecules are used to treat various pathologies,

such as thrombosis, osteoporosis, fibrosis, and cancer.18–21

To repurpose drugs as CD49f antagonists, herein we per-

formed consensus molecular docking between the β-subunit-

interacting domain of CD49f and a collection of structures that

are enriched in FDA-approved drugs.22 Five in silico-selected

drugs effectively blocked CD49f, inhibiting the adhesion of

breast cancer cells to laminin. Pranlukast, a reported cysteinyl

leukotriene receptor 1 (CysLTR) antagonist, decreased the clo-

nogenicity of breast cancer cells by mammosphere formation

assay but had no impact on the viability of bulk tumor cells.

Short exposure to pranlukast reduced CD49f-downstream sig-

naling, including Focal Adhesion Kinase (FAK) and phospha-

tidylinositol 3-kinase (PI3K) activation. Pranlukast-treated cells

showed reduced expression of CSC markers and impaired

tumorigenicity in vivo, indicating that this drug decreases the

number of CSCs. Thus, pranlukast antagonizes CD49f impair-

ing CSC-associated functions.

Materials and Methods
Molecular Docking
The primary sequences of CD49f and β1 integrin were obtained

from the Uniprot database (P23229 and P05556, respectively).

Human CD49f 3D model was generated by homology modeling

withModeller 9.1123 using crystallographydata fromProteinData

Bank 4G1M, 4WJK, 4WK0, and 3IJE as templates. The drugg-

ability of the protein pockets was assessed using the

DoGSiteScorer server tool (Hamburg University, Germany).24

A library of 11,421 molecules (FDA-approved, withdrawn, and

experimental drugs) were retrieved from the ZINC InMan subset

of the ZINC12 database (University of California, San

Francisco).22 Auto-DockTools was used to add Gasteiger charges

and polar hydrogens to CD49f and the drugs. Docking was

performed using AutoDock Vina 1.1.225 and AutoDock426 with

a grid box thatwas centered onMet262 in the targetmodel and set

to 17 x 17 x 17 number of points (npts)with 0.375-Å spacing. The

scores were re-evaluated with DSX_08927 to increase the relia-

bility and accuracy of the antagonist selection. The scores from

eachalgorithmwereused togenerateZ-scores, as described.28The

consensus score was the sum of Z-scores.

Compounds
Solutions of pranlukast hemihydrate (Sigma, catalog No P0080),

montelukast sodium hydrate (Sigma, catalog No SML0101), ima-

tinibmesylate (Selleckchem, catalogNoST1571), and bromocrip-

tine (Sigma, catalog No B2134)—dissolved in DMSO—and

zosuquidar (Selleckchem, catalog No S1481)—dissolved in PBS

—werefilter-sterilized and stored at 4°C (montelukast, bromocrip-

tine) or −20°C (pranlukast, imatinib, and zosuquidar) under light-

protected conditions until use.

Cell Culture
The MDA-MB-231 cell line was purchased from ATCC and

grown in Leibovitz’s L-15 medium (Gibco, catalog

Nº 41300021), supplemented with 10% fetal bovine serum

(FBS), in a carbon dioxide (CO2)-free system. We employed

cells from passage 8 to 14. Sublines that stably expressed firefly

luciferase (Luc) under the SOX2 promoter were generated by

cotransfection of SOX2-Luc plasmid29 (donated by Dr. Richard

Pestell, Baruch S. Blumberg Institute, PA, USA) and pNEG-

PG04. The sequence of the promoter was verified using

RVprimer3. Sublines were maintained in RPMI-1640 (Gibco,

catalog Nº 31800014) that was supplemented with 10% FBS

and 0.5 μg/mL puromycin. The MCF-7 cell line (passage 7–9),

obtained from ATCC, was grown in EMEM (ATCC, catalog Nº

302003), supplemented with 10% FBS and 0.01 mg/mL insulin

(Sigma-Aldrich, catalog I3536).

Immunophenotyping
Cells were harvested with TrypLETM Select Enzyme

(Gibco, catalog No 12563011), and 105 cells were stained
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with Alexa Fluor®-647 Rat IgG2a κ isotype control (BD

Pharmigen, catalog No 557857) or Alexa Fluor®-647 Rat

anti-human CD49f (BD Pharmigen, catalog No 562473).

CD44 staining was performed with Brilliant Violet 421

Mouse anti-human CD44 (BD Horizon, catalog No

5628790). Fluorescence was measured by flow cytometry

(Attune NxT, Life Technologies), and the data were ana-

lyzed with FlowJo, version 8.7 (Tree Star Inc.).

Cell Viability
The effects of the drugs on viability were determined in

cells that were in the exponential growth phase by MTS

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphe-

nyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay.

The amount of reduced tetrazolium salt was measured

spectrophotometrically at 490 nm (Epoch, Biotek).

Cell Adhesion
Cell adhesion assays were performed as reported.30,31

Briefly, 96-well microplates were coated with 20 μg/mL

cold natural mouse laminin (Invitrogen, catalog No 23017-

015) and incubated overnight at 4°C. The wells were

blocked with 10 mg/mL heat-denatured bovine serum

albumin (BSA) for 1 h at 37°C.

Next, 3 x 105 cells from cultures after 12 h of serum

starvation were preincubated with the selected drugs for 30

min at 37°C with shaking and then placed immediately

into the laminin-coated wells and incubated for 20 min at

37°C. The wells were rinsed with PBS to remove nonad-

herent cells, and the number of viable attached cells was

quantified by MTS reduction. As a control for the specifi-

city of the system, CD49 blocking antibody (clone GoH3;

BD Biosciences, catalog No 562473) was included. The

data were normalized to the signal that was obtained with

the corresponding vehicle-treated cells.

Mammosphere Formation
Mammosphere formation assay was performed as

reported.15,28,32 Briefly, the cells were plated at low density

(100 viable cells per well) on a 96-well ultra-low attachment

plate (Corning Costar) with MammoCult medium and growth

factors (StemCell Technologies, catalog No 05620). The

number of mammospheres with diameter >80 μm was quan-

tified at day 7 by taking micrographs (Eclipse Ti-U micro-

scopy, Nikon) and analyzing them in ImageJ.33 In some

experiments, the drugs were present during the

7-d incubation, whereas in other setups, the cells were pre-

treated for 24 h and the mammospheres were allowed to grow

in drug-free medium. The results are expressed as the percen-

tage of mammospheres with respect to the vehicle control.

Molecular Dynamics
MD simulations were performed with a heterodimeric model

containing the seven-bladed beta-propeller domain of

CD49f and the I-like and hybrid domains of β1 integrin,

using Amber ff99SB force fields and the Amber 12

package.34 The system was solvated using the TIP4P35

water model in a periodic box, followed by the addition of

Na+ and Cl− counterions to neutralize the systems. Ca2+ and

Mg2+ ions were also included in the simulation as they are

required for the proper function of this protein. The best

pranlukast pose on CD49f was selected by clustering analy-

sis of AutoDock4 data and used as a starting pose. Before

the MD simulations, energy minimization and equilibration

of the system were performed at constant temperature (300

K) and pressure (1 atm) using AmberTools. The MD simu-

lations proceeded for 500 ns at the specified pressures and

temperatures. Trajectory snapshots were taken every 10 ps

for analysis. Root-mean-square deviation (RMSD) and

Root-mean-square fluctuation (RMSF) of the backbone in

the docked complex were analyzed in AmberTools 12. The

hydrogen-bond formation between pranlukast and CD49f

residues was determined by the implementation of the

H-bond search module of Pytraj library (https://amber-md.

github.io/pytraj). Interacting residues of the interface

between α and β integrin subunits were determined by the

Residue Interaction Network Generator (RING) server.36

The binding-free energy (ΔG) was calculated on the last

40 ns of the MD simulation using the MM-GBSA method

as implemented in AmberTools 12.37 The calculation of

entropy was not included in our protocol because it is time-

consuming and exhibits a high degree of uncertainty.

Western Blot and

Co-Immunoprecipitation
Cells were lysed in RIPA buffer (50 mM Tris-HCl, 0.1%

SDS, 150 mM NaCl) supplemented with phosphatase inhi-

bitors (2 mM EDTA, 15 mM NaF, 5 mM Na3VO4) and

protease inhibitors (5 μg/mL leupeptin, 1 μg/mL pepstatin,

2 μg/mL aprotinin). Protein concentrations in the lysates

were determined using the Pierce BCA Protein Assay Kit

(Thermo Fisher Scientific, catalog No 23225). Samples

containing 30 µg of total protein were separated by SDS-

PAGE and electroblotted onto PVDF membranes. After

being blocked, the membranes were incubated with anti-
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phospho-FAK (Tyr397; Millipore, catalog No MAB1144),

anti-phospho-AKT (Cell Signaling, catalog No 92755), or

anti-SOX2 (Abcam, catalog No 97959), followed by an

HRP-conjugated secondary antibody. To correct for differ-

ences in the amount of total protein loaded, the same

membranes were stripped and reprobed with anti-FAK

(Santa Cruz Biotechnology, catalog No sc-1688), anti-

AKT (Cell Signaling, catalog No 92725), anti-β-actin
(Santa Cruz Biotechnology, catalog No sc-47778) or anti-

α-tubulin (Santa Cruz Biotechnology, catalog No sc-

398103).

For co-immunoprecipitation assays, samples containing

1mg of protein were incubated overnight at 4°C and constant

agitation with anti-FAK and Protein A-agarose. After rinsing,

the immune complexes were denatured with Laemmli buffer,

subjected to SDS-PAGE, and electroblotted. Membranes

were sequentially probed with anti-PI3K p110α (Santa Cruz

Biotechnology, catalog No SC-293172) and anti-FAK.

Protein bands were detected using SuperSignal West

Femto Maximum Sensitivity Substrate Pierce ECLWestern

Blotting Substrate (Thermo Fisher Scientific, catalog No

34095). Band intensities were measured in ImageJ33 and

data were normalized against the vehicle (DMSO).

SOX2 Promoter Transactivation
MDA-MB-231 cells that stably expressed Luc under the

SOX2 promoter were seeded into 24-well plates and incubated

with drugs for 24 h. Then, the medium was removed, and the

cells were lysed with 1% Triton X-100, 1 mM DTT in GME

buffer for 10 min (room temperature). The homogenates were

transferred to Eppendorf tubes, and 3 volumes of assay buffer

(17 mM K2PO4, 1 mM DTT, and 2 mMATP in GME buffer)

were added. After the addition of luciferin (GOLDBIO, cat-

alog No LUCK-100), Luc activity was quantified as

reported29 (GloMax® 20/20; Promega). Data were normalized

to the fraction of viable cells at each drug concentration.

Limiting-Dilution Xenotransplantation

(LDT)
MDA-MB-231 cells expressing Luc2-eGFP38 were treated

with pranlukast (50 μM) or the corresponding vehicle for 24

h. Cells were detached, suspended in Dulbecco’s PBS, mixed

1:1 with Matrigel® matrix (Corning, catalog No 35621), and

injected immediately into the thoracic mammary fat pad of

7–8-week-old female nu/nu mice (Cinvestav, Mexico). The

tumor formation was examined by palpation at the injection

site and by in vivo bioluminescence imaging as reported38 on

an IVIS XR system (Caliper Life Sciences). Bioluminescence

data were analyzed using Living Image 3.0 (Caliper Life

Sciences). At day 36 after injection, the mice were euthanized

and necropsied to corroborate the presence of tumors.

Animal procedures were performed per Mexican

guidelines for the production, care, and use of laboratory

animals (NOM-062-ZOO-1999) and the National

Institutes of Health Guide for the Care and Use of

Laboratory Animals. The animal experiments were

approved by the IACUC of the School of Medicine,

UNAM (FMED/CI/JMO/102/2012).

Statistical Analyses
Half-maximal inhibitory concentration (IC50) values were

calculated by non-linear regression. Statistical significance

was determined by one-way ANOVA or Kruskal–Wallis

test. P values ≤0.05 are reported. GraphPad Prism (v6.0)

was used to perform analyses. The estimation of CSC

frequency was performed using ELDA software.39

Results
In silico Selection of CD49f Antagonists
We performed molecular docking using the β1-interacting
domain of CD49f and 11,421 molecules from the InMan

subset of the ZINC12 database. The docking scores obtained

with AutoDock Vina (Suppl. Figure 1A), Autodock (Suppl.

Figure 1B), and their re-evaluation with DSX_089 (Suppl.

Figure 1C–D), were normalized and used to generate

a consensus Z-score (Suppl. Figure 1E). Of the compounds

with lower consensus Z-scores, we selected five drugs with

different reported targets (Suppl. Figure 1F): bromocriptine,

montelukast, pranlukast, zosuquidar, and imatinib.

CD49f Antagonists Decrease Cell

Adhesion to Laminin
For biological validation of our in silico findings, we ana-

lyzed the function of laminin receptors in breast cancer cells

exposed to the drugs. We employed the triple-negative

MDA-MB-231 cell line, which highly expresses CD49f

(Suppl. Figure 2) and can efficiently adhere to laminin.40

We found that >99% of MDA-MB-231 cells have high levels

of membrane CD49f (Figure 1A), as reported.41 We observed

that all selected drugs dose-dependently decreased the MDA-

MB-231 cell adhesion to laminin (Figure 1B–F).

Montelukast, zosuquidar, and pranlukast had IC50 values

between 10 and 30 μM, whereas those of imatinib and

bromocriptine exceeded 50 μM. In these experiments, the
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treatment of cells with a CD49f-blocking monoclonal anti-

body (clone GoH3) abolished cell adhesion (open circles in

Figure 1B– F), demonstrating that laminin adhesion of

MDA-MB-231 cells depends on CD49f-containing integrins.

Pranlukast Impairs Mammosphere

Formation Independently of Its Cytotoxic

Effect
To determine the impact of CD49f antagonists on the fraction

of stem/progenitor cells, we performed mammosphere assays.

Continuous exposure of cells to bromocriptine, montelukast,

pranlukast, zosuquidar, or imatinib significantly reduced the

number of mammospheres formed by MDA-MB-231 cells

(Figure 2A and Suppl. Figure 3). For comparison, we analyzed

the cytotoxic effect of the drugs on tumor-bulk cells by per-

forming cell viability assays in 2D cultures (Figure 2B). In

these assays, only zosuquidar had an IC50 < 10 μM, and thus,

only this drug should be classified as cytotoxic per NCI

guidelines.42

The best candidate for further analysis was chosen by

calculating a ratio between the IC50 values from both assays

(Table 1). The concentration of pranlukast that was required

to reduce the viability of 2D cultures was 10 times higher

than what was needed to reduce clonogenicity, suggesting

that this drug selectively affects breast CSCs.

Pranlukast Binding Induces Destabilization

of α6β1 Heterodimer
To analyze the mechanism involved in pranlukast effects, we

performedmolecular dynamics (MD) simulations studying the

drug´s interaction with a heterodimeric model composed of

the seven-bladed beta-propeller domain of CD49f and the

I-like and hybrid domains of β1 integrin. Root-mean-square

deviation (RMSD) analysis showed that the heterodimeric

complexes, with and without drug, reached equilibrium at

~150 ns (Figure 3A). Therefore, further analyses were per-

formed with the 150 to 500 ns time frame. Pranlukast binding

to CD49f was stable during the MD simulation. The drug–

CD49f interaction was mediated by hydrophobic contacts, pi-

pi stacking (Figure 3B), and hydrogen bonds (Figure 3C). We

identified up to two simultaneous hydrogen bonds that

involved Asn681, His702 or Ile703 in our model, which

correspond to Asn300, His321 and Ile322 in the primary

sequence of CD49f. The analysis of the root-mean-square

fluctuation (RMSF) of backbone alpha carbons showed that

pranlukast restricted the main backbone fluctuations of the

propeller domain of CD49f (Figure 3D). Pranlukast induced

conformational changes in the CD49f-binding site, reducing

the fluctuations of the loop connecting C and D sheets of blade

5, but also in other regions of the protein that participate in the

binding to the β subunit, such as in blades 2 and 3 (Figure 3E).
Analysis of the α/β interface showed changes in the contacting

Figure 1 Effects of CD49f antagonists on CD49f adhesion to laminin. (A) Expression of CD49f in MDA-MB-231 cell line (gray histogram), assessed by FACS, versus its

isotype control (white histogram). (B–F) Impact of selected compounds on MDA-MB-231 cell line adhesion to laminin. Graphs show the mean ± SEM of three independent

experiments for bromocriptine (B), montelukast (C), pranlukast (D), zosuquidar (E), and imatinib (F). Half-maximal inhibitory concentration (IC50) values were calculated

by nonlinear regression and reported in Table 1. Statistical significance was determined by Dunnett´s test; P value <0.05 (*), <0.01 (**), <0.0001 (****).
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residues. For example, the surface on the I-like domain of β1

integrin had a different pattern of contacting residues in the

presence of pranlukast (Figure 3F). Furthermore, the binding-

free energy between the propeller domain of CD49f and the β1

subunit increases in presence of pranlukast (Figure 3G), indi-

cating that the drug decreases the affinity between the sub-

units. This observation is consistent with the restricted

conformational dynamics of the complex induced by

pranlukast.

Pranlukast Effect on Other Laminin

Receptors
To assess the specificity of pranlukast on CD49f, we performed

laminin adhesion assays using MCF-7 breast cancer cells.

Despite their low CD49f expression,41 and Suppl. Figure 4A

the cells efficiently adhered to laminin (Suppl. Figure 4B) as

previously reported.43,44 The addition of pranlukast (50 μM)did

not affect the adhesion of MCF-7 cells to laminin (Suppl.

Figure 4C), suggesting that the drug does not change the

activity of other laminin receptors.

Pranlukast Affects CD49f-Downstream

Signaling
The effects of pranlukast on CD49f-mediated signaling were

evaluatedusingadherent culturesofMDA-MB-231cells exposed

for 24 h. Subtoxic concentrations of pranlukast (≤50 μM; Suppl.

Figure 5) decreased the integrin-dependent autophosphorylation

of FAK at Tyr397. Pranlukast 12.5 μM reduced FAK phosphor-

ylation without changes in total FAK, but 50 μM reduced both

FAK phosphorylation as well as FAK expression (Figure 4A).

Most importantly, blockage of CD49fwith a specificmonoclonal

antibody only decreased FAKphosphorylation to 40%of control,

indicating that in MDA-MB-231 cells, FAK activation is also

mediated by other integrins, as reported.45

CD49f enhances radioresistance in breast cancer cells

through the activation of the FAK-PI3K-AKT signaling

pathway.41 Thus, we studied the effect of pranlukast on the

activation of FAK-downstream effectors. Pranlukast impaired

the activity of PI3K, as demonstrated by the reduced phosphor-

ylation of the PI3K-target AKT in cells treated with the drug

(Figure 4B). The treatment also reduced the association of PI3K

with FAK in co-immunoprecipitation assays (Figure 4C).

Together, these results demonstrate that pranlukast affects the

FAK/PI3K signal transduction pathway, supporting the idea that

the drug impairs the function of CD49f-containing integrins.

Figure 2 Selection of drugs with the highest CSC selectivity. Effect of CD49f antagonists on MDA-MB-231 mammosphere formation (A) and cell viability at 48 h, assessed

by MTS assay (B). Graphs show mean ± SEM of three independent experiments. Half-maximal inhibitory concentration (IC50) values were calculated by nonlinear regression

and reported in Table 1. Statistical significance was determined by Dunnett´s test; P value <0.05 (*), <0.01 (**), <0.001 (***), <0.0001 (****).

Table 1 Calculated IC50 Values from Viability or Mammosphere

Assays and Ratio Between These Values

Compound IC50

Mammosphere

IC50

Cell Viability

IC50

Cell Viability/

IC50

Mammosphere

Bromocriptine 61.1 μM 34.9 μM 0.57

Montelukast 48.4 μM 52.6 μM 1.09

Pranlukast 9.5 μM >100 μM >10.53

Zosuquidar 4.7 μM 9.1 μM 1.96

Imatinib 7.5 μM 36.5 μM 4.86

Note: Drug with higher ratio (bold) was selected for further studies.
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Pranlukast Affects Stemness and Reduces

the CSC Frequency
The effects of pranlukast on stemness were evaluated after

exposing adherent cultures of MDA-MB-231 cells for 24

h to the drug (Figure 5A). Preincubation of MDA-MB-231

cells with 50 μM of pranlukast significantly reduced the

mammosphere-forming efficiency under drug-free condi-

tions (Figure 5B). Further, pranlukast significantly reduced

the expression of the CSC marker CD44 (Figure 5C) and

the pluripotency protein SOX2 (Figure 5D), as well as

SOX2 promoter transactivation (Figure 5E).

The effect of pranlukast on tumor onset was assessed

by limiting dilution xenotransplantation. We injected

groups of nu/nu mice with different numbers of vehicle-

or pranlukast-treated cells. The bioluminescence at time 0

showed that paired groups were homogeneously injected

with live cells (P>0.05; Student´s t-test). The fraction of

tumor-free mice in each group was quantified 5 weeks

later (Figure 5F). For example, the injection of 2000

pranlukast-treated cells generated tumors in 3 out of 8

mice, compared with 6 out of 8 tumors produced by

vehicle-treated cells (Figure 5G). The limiting dilution

Figure 3 Moleculardynamics analysis of pranlukast interactionwithα6β1 integrin. (A)Root-mean-squaredeviation (RMSD)versus timeplot for thebackboneatoms in theabsence (black line)or
in the presence (red line) of pranlukast. (B) 2D representation of pranlukast-CD49f interactions. Residues in the binding site are represented as follows: acidic residues in orange, basic residues in

violet, polar residues in blue, and hydrophobic residues in green. Green lines connecting residues to pranlukast indicate pi–pi stacking interactions and grey “clouds” on drug atoms indicate the

solvent-exposed surface area. (C) Time evolution of the number of intermolecular hydrogen bonds formed between CD49f and pranlukast. (D) Root-mean-square fluctuation (RMSF) versus

residueposition for thebackboneatomsof the targetheterodimer in the absence (black line)or in thepresenceofpranlukast (red line). (E)Overlapof3Dmodelsof thepropellerdomainofCD49f

withorwithoutpranlukast (in red spheres).Regionswithnochanges inbackboneatomsbetweenmodels are inblue,whereas regionswith significant changes are in green forpranlukast-boundand

orange for drug-free models, respectively. The number of the blades [B1–7] within the seven-bladed domain and the order of the beta-sheets [A–D] within blades is annotated. (F) Surface
representation of the interface of β1 integrin with or without pranlukast. Residues making hydrophobic contacts or hydrogen bonds with CD49f are shown in yellow and green, respectively. (G)

Binding-free energy calculated fromMDsimulation (ΔGbind, calc).ΔGbind, calc for the drug free- and pranlukast bound-complexes (bold values)were calculated considering the energy contributed by

electrostatic (ΔGele), van derWaals (ΔGvdw), hydrophobic (ΔGnonpol), and polar (ΔGpol) forces. The values in parenthesis correspond to the standard error of mean.
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analysis of pooled results showed a significant 3.7-fold

reduction in the frequency of tumor-initiating cells after

pranlukast treatment (Figure 5H). Thus, pranlukast

reduced stemness signaling and impaired cellular functions

that define CSC, demonstrating that it declines the CSC

population.

Discussion
Integrin dimerization is crucial for the generation of its

ligand-binding domain and, consequently, for integrin acti-

vation and clustering.20,21 Disruption of dimerization by

peptides or monoclonal antibodies blocks integrin cluster-

ing and integrin-mediated adhesion.46–48 Targeting pro-

tein–protein interactions (PPIs) with small compounds

has emerged as a novel and viable approach in modern

drug discovery.49 Thus, we hypothesized that altering PPIs

in CD49f-containing integrins by using pharmochemicals

would impair their activity.

By molecular docking, we identified 20 compounds

with high binding potential to a druggable pocket within

the seven-bladed beta-propeller domain of CD49f. Of

these potential antagonists, we focused on five drugs

with known pharmacokinetics and pharmacodynamics.

Analyzing new biological activities of drugs with reported

therapeutic use (drug repurposing) is a strategy that

reduces the time between the discovery of a new applica-

tion and clinical translation.50,51 Our team used a similar

strategy to identify etoposide as an antagonist of CD44.28

The five selected drugs – bromocriptine, montelukast,

pranlukast, zosuqidar, and imatinib – inhibited the adhe-

sion of CD49f+ breast cancer cells to laminin with various

potencies. Our data showed that the adhesion of MDA-MB

-231 cells highly depends on CD49f, as demonstrated by

the use of a monoclonal anti-CD49f. These results indicate

that the selected pocket has functional relevance and could

be used to design new antagonists for CD49f or other

homologous integrins.

CD49f is central in maintaining the stemness7,11,12,14,17

but is dispensable for the survival of non-CSCs in vitro.9,10

Consequently, CD49f blockade is expected to affect clo-

nogenicity with a minor impact on global cell viability.

Hence, our subsequent screening compared the effect of

Figure 4 Effect of pranlukast on FAK signaling. (A) Representative Western blot evaluating the Tyr397 phosphorylation of FAK (pFAK) and the corresponding analysis of the pFAK/

FAK ratio from three independent experiments. (B) Representative Western blot analyzing the phosphorylation of the PI3K substrate AKTand the densitometric analysis from four

independent experiments. The PI3K inhibitor LY294002 [LY; 5 μM] was employed as a control. (C) Western blot against PI3K or FAK in samples immunoprecipitated with anti-FAK.

Graph shows densitometric analysis from four independent experiments. All statistical analyses were performed using Dunnett’s test; P value <0.05 (*), <0.01 (**).

Abbreviation: AU, arbitrary units.
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Figure 5 Effect of pranlukast on breast cancer cell stemness. (A) Experimental strategy. (B) Viable MDA-MB-231 cells previously exposed to pranlukast for 24 h were seeded to test their

capacity to formmammospheres in the absence of the drug. Graphs show themean numberofmammospheres ± SD from three independent experiments. (C) Analysis of CD44 expression by
flow cytometry. The annotated percentages correspond to CD44hi population. A representative experiment from 2 is shown. (D) Representative Western blot analyzing SOX2 expression.

Graph represents the mean ± SEM from three independent experiments. (E) Analysis of SOX2 promoter transactivation by luciferase assay. Values are mean ± SEM from four independent

experiments. Scheme above graph shows the promoter size in the construct. Statistical significance in (B), (D), and (E) was determined by Dunnett´s test; P value <0.05 (*), <0.01 (**). AU:

arbitrary units. (F) Tumor formation in nude mice injected with 2000 cells in the vehicle (upper row) or pranlukast (lower row) groups. The presence of tumors was evaluated 36 days

postinjection by bioluminescence quantification and dissection. Insets show the dissected tumors; scale bar = 3 mm. (G) Tumor incidence in groups of mice xenotransplanted with vehicle- or

pranlukast-treated cells. (H) Log-fraction plot of the limiting dilutionmodel fitted to the data shown in (E). TheCSC frequency and the corresponding 95% confidence intervals (dotted lines and

fractions in parenthesis) were calculated using ELDA software. The CSC frequency was significantly different among treatments (P=0.0044; chi-square test).
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each drug on mammosphere formation, a functional esti-

mation of the number of CSCs,15,52 versus its effect on the

viability of adherent cultures, which are enriched in non-

stem cells.53,54 Pranlukast decreased the number of mam-

mospheres with limited cytotoxicity to adherent cultures,

supporting that it selectively targets the CSC pool.

Pranlukast binding mode to CD49f was further character-

ized by MD simulations. Those experiments were performed

with a heterodimeric model that included key domains for the

ligand-binding activity of integrins.21,46,55 Pranlukast stably

bound to CD49f in a region that includes residues that parti-

cipate in or lie near the reported β-subunit interaction site in

homologous proteins. In the αV integrin, the template used

for our CD49f model, the contacting residues with the β3
subunit reside primarily in blades 3–5 of the seven-bladed

beta-propeller domain.55 Accordingly, pranlukast binding to

CD49f reduced the affinity for the β subunit. Furthermore,

our results suggest that pranlukast constrains the conforma-

tional dynamics of the protein, which is crucial to regulate the

activation state of the heterodimer.46

We also analyzed the effect of pranlukast in CD49f-

downstream signaling using MDA-MB-231 cells. FAK,

a non-receptor tyrosine kinase, mediates signal transduction

by CD49f12 and has been associated with aggressiveness in

triple-negative breast tumors.56 FAK ablation in mammary

epithelial cells delays tumorigenesis and reduces the pool of

CSC in mammary tumors.57 Fittingly, FAK inhibition blocks

metastatic ability and stemness in triple-negative breast can-

cer cells.58 We found that pranlukast decreased the integrin-

dependent autophosphorylation of FAK at Tyr397, which is

a surrogate measurement of FAK activation.59 CD49f-FAK

activity stimulates the PI3K/AKT pathway leading to its

hyperactivation in triple-negative tumors60 and in breast

CSCs.61 We showed that pranlukast reduced FAK-PI3K

interaction and AKT phosphorylation, corroborating that

CD49f-activated signaling was impaired by the drug.

Previous studies have demonstrated that PI3K/AKT

blockage induces CSC-differentiation in breast cancer

cells.62 Thus, we studied whether pranlukast effects on

CSC were reversible using an experimental design reported

by Gupta and colleagues.63 Short-term exposure to pranlu-

kast reduced the fraction of mammosphere-initiating cells in

drug-free cultures as well as the number of tumor-initiating

cells in vivo. These changes in the CSC pool were corrobo-

rated by quantifying the expression of two proteins that

participate in the maintenance of stemness, expression of

EMT markers, invasiveness, and metastatic capability:

SOX264–66 and CD44.67 SOX2 is a target of CD49f-

activated signaling11 and its downregulation is sufficient to

diminish the pool of breast CSCs.66,68,69 Pranlukast reduced

SOX2 protein level with a modest decrease in SOX2 promo-

ter transactivation, suggesting that the drug affects the post-

translational modifications and the stability of the protein.

SOX2 expression positively correlates with that of CD44 in

clinical samples;70 accordingly, we found a reduction of the

CD44hi population in pranlukast-treated cells. Since SOX2

and CD44 expression induce chemoresistance in MDA-MB

-231 cells,71 future studies would analyze the effect of pran-

lukast in the response to cytotoxic drugs.

Pranlukast, like montelukast and zafirlukast, belongs to the

group of CysLTR antagonists, which are used to treat chronic

bronchial asthma.72 Although pranlukast and montelukast

were selected as potential CD49f antagonists by our in silico

screen, our results show that they have dissimilar pharmaco-

logical behaviors, as described.72 For example, both drugs

inhibit CysLTR1-mediated lung colonization by cancer cells,

but only pranlukast impairs capillary permeability and cancer

cell extravasation in the brain.73 Further, pranlukast was

recently reported to act as an agonist of Raf1 kinase inhibitory

protein,74 which is usually absent in metastatic cancer cells

and is considered a metastasis suppressor.75 These data sug-

gest that pranlukast can target multiple proteins, andwe hereby

report that CD49f should be considered one of such targets.

Conclusions
Our results identified pranlukast, a drug that is adminis-

tered to asthmatic patients, as a CD49f-blocking agent

with functional effects on the breast CSC pool, likely

caused by altered FAK- and SOX2-signaling. Because

the pharmacokinetics and toxicology of this drug are

known, we recommend evaluating pranlukast as an adju-

vant therapy for breast cancer patients to reduce drug

resistance and tumor recurrence.
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