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Introduction: The efficacy of several antimicrobial agents has been hindered due to the

increasing frequency of multidrug-resistant (MDR) Pseudomonas aeruginosa strains. So, the

need for new antibacterial drugs or drug combinations is urgent. Recently, desirable antibac-

terial effects were reported for many metals nanoparticles such as TiO2 nanoparticles (TDNs).

Purpose: This study aims to investigate the prevalence of MDR P. aeruginosa and assess

the efficiency of TDN in the treatment of MDR P. aeruginosa-associated infections.

Materials and Methods: The synthesis of TDN by the sol-gel method was carried out.

Particle size measurements and morphology were done using dynamic light scattering (DLS)

and high-resolution transmission electron microscopy (HR-TEM). To investigate the physical

and chemical changes of drugs due to the combination, the tested drugs, both alone and in

combination with TDN, were subjected to differential scanning calorimetry (DSC), infrared

(IR) spectroscopy, and X-ray diffraction studies. Antimicrobial susceptibility was detected by

agar disc-diffusion assay. The minimum inhibitory concentration (MIC) of TDN and the

tested antibiotics were assessed by the agar dilution method. Checkerboard analysis was

performed to determine the combined effect of TDN and the tested antibiotics against 25

MDR P. aeruginosa strains.

Results: TDNs were prepared with an average particle size of 64.77 ± 0.14 nm with an

accepted polydispersity index (PDI) value of 0.274 ± 0.004. TEM showed that the particles

were shaped into irregular spheres. Twenty-five P. aeruginosa isolates that were absolutely

resistant to cefepime (100%), highly resistant to ceftriaxone (96%), amikacin (80%), and

ciprofloxacin (76%) were selected. Superior antibacterial activity of TDN was observed

against the selected 25 MDR P. aeruginosa isolates. The combination of TDN and cefepime

were found to show synergistic activity against all tested isolates followed by ceftriaxone

(96%), amikacin (88%), and ciprofloxacin (80%).

Conclusion: Using TDN in combination with antibiotics can help in the treatment of MDR P.

aeruginosa-associated infections. So, preparation of topical pharmaceutical dosage forms con-

taining a combination of these antibiotics and TDN can be useful against MDR P. aeruginosa.

Keywords: MDR P. aeruginosa, titanium dioxide nanoparticle, checkerboard assay

Introduction
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of diseases

ranging from mild to severe life-threatening infections and considered as one of the

main causes of nosocomial or hospital-acquired infections.1–3 P. aeruginosa infections
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are difficult to eradicate by many antimicrobial agents due to

its intrinsic resistance (low outer membrane permeability,

efflux mechanisms, and inactivity of the antibiotics by

enzymes), acquired resistance (mutations in genes targeted

by the antibiotics), adaptive resistance (biofilm formation),4

and various virulence factors (extracellular proteases,

toxins).5 Treatment of these infections has become a great

challenge because of the ability of this bacterium to resist a

variety of antibiotics, including aminoglycosides, quino-

lones, and β-lactams. So, combination therapy may help in

the reduction of the mortality rate of patients with severe P.

aeruginosa infections.4

The emergence of multidrug-resistant (MDR), Extensive

Drug-Resistant (XDR), and pandrug-resistant bacteria

increased the need for the development of alternative strate-

gies to treat bacterial diseases. One of these strategies is the

use of nanoscale materials.6 The nanoparticles used as anti-

microbial agents due to its ability to penetrate bacterial

membranes, disrupt biofilm formation, and be good carriers

of antibiotics.4 Metallic nanoparticles are attracting a great

deal of attention because of their selectivity and potential

success in the biological and pharmaceutical applications.7,8

Many metal oxides nanoparticles showed good antimicrobial

activity such as the following: TiO2, ZnO, MgO, CuO, SiO2,

and CoO. They are less toxic and heat resistant and exhibit

marked effectiveness against resistant strains of some micro-

organisms. Besides, they may act as mineral elements sup-

plement that is essential to human cells.9 Titanium oxide

nanoparticles showed good inhibitory activity against bacter-

ial growth due to its small nanometer scale and potent oxidiz-

ing power.3 This study was conducted to determine the

prevalence of MDR P. aeruginosa that causes many diseases

and to assess the efficiency of TDN alone and in combination

with different antibiotics in the treatment of MDR

P. aeruginosa.

Materials and Methods
Reagents
Titanium Tetrachloride (TiCl4, 99.5%) was obtained from

Loba chemie, India.

Ceftriaxone sodium, amikacin sulfate, cefepime hydro-

chloride, and ciprofloxacin were obtained from Pharco B

company, Egypt.

Synthesis of TiO2 Nanoparticles (TDN)
TDN was prepared by the sol-gel method. The procedures

were carried out according to the previously described

method with slight modifications.10 Briefly, 5 mL of tita-

nium tetrachloride were added to 50 mL of absolute

Ethanol; the mixture was stirred for 30 min using a mag-

netic stirrer till a yellow sol phase was formed. While

stirring, 200 mL of distilled water were added until the

solution became colorless and clear. The solution was

further stirred for 45 min while the temperature was kept

at 25–30°C. The formed TDN was collected by centrifuga-

tion at 10,000 rpm for 15 min, washed by distilled water

several times, and then dried at 50°C for 30 h.

Characterizations of TiO2 Nanoparticles

(TDN)
Dynamic Light Scattering (DLS) Analysis and Zeta

Potential Measurement

A liquid sample was diluted several times using Milli-Q

water purifier and analyzed using DLS (Zetasizer Nano-ZS

instrument, Worcestershire, United Kingdom). By placing

samples in the cuvette, both particle sizes and the zeta

potentials of the synthesized nanoparticles were deter-

mined. The samples were prepared for analysis at room

temperature (25°C) and measured at 37°C in triplicates.

Results were presented as mean ± SD (standard deviation).

Transmission Electron Microscopy

The morphological characteristics of TDN were investi-

gated by a transmission electron microscope (TEM, Model

100 CX II, Tokyo, Japan).

Compatibility Study
Preparation of Physical Mixtures (PM)

Physical mixtures of each of the tested drugs with TDN at

weight ratio 1:1 were prepared by gentle mixing in a mortar

using a pestle.

Differential Scanning Calorimetry (DSC) Study

The DSC patterns were obtained by heating the samples from

30–600°C at a scanning rate of 10°C/min under a stream of

nitrogen gas at a flow rate of 40 mL/min using SDT (simul-

taneous DSC\TGA) Q600, USA. Samples of 4 mg were

accurately weighed and encapsulated into flat-bottomed alu-

minum pans with crimped-on lids. The procedures involved

heating of the sample contained in the aluminum pan and a

similar empty reference pan at the predetermined heating

rate. The differential heat flow between the sample and the

reference was recorded and presented graphically.
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Infrared (IR) Spectroscopy Study

IR spectroscopy was used to detect chemical interactions

between TDN and the tested drugs using FTIR Perkin

Elmer Spectrum One, UK. It was carried out using the

potassium bromide disk method. Samples, 1–2 mg each,

were mixed with potassium bromide, compressed at a

pressure of 6 ton/cm2 into discs, and scanned over the

range of 400–4000 cm-1 using a blank pellet of potassium

bromide as a reference.

X-Ray Diffraction Study

Powdered samples of TDN, tested drugs, and physical

mixtures were analyzed using X-ray. The X-ray diffracto-

grams were obtained using Panalytical X’PERT PRO,

Holland. A single-crystal graphite monochromator was

employed. The target was CuK∝ radiation, operating at

a current of 40 mA and 40 kV. Diffractograms were

obtained using continuous scan mode with 2 θ values

ranging from 5 to 80 degrees at a rate of 2 degrees/minute.

Isolation and Identification of
Pseudomonas aeruginosa Isolates
One hundred clinical specimens were examined for P. aerugi-

nosa (50 urine and 30 wound exudate specimens and, five

sputa, ear discharge, burn swab, and eye discharge specimens).

All specimens were collected from different hospitals inMinia

governorate, Egypt. All specimens were examined for the

presence of P. aeruginosa by the conventional microbiological

procedures11 and confirmed by biochemical reactions.

Antimicrobial Susceptibility Testing
Pseudomonas aeruginosa isolates underwent antimicrobial

susceptibility test in six antibiotic discs using the Kirby-

Bauer disc diffusion method.12 The antibiotics tested were

ciprofloxacin (CIP, 5 μg), amikacin (AK, 30 μg), ceftriaxone
(CRO, 30 μg), levofloxacin (LEV,10 μg), imipenem (IPM,

10 μg), and cefepime (FEP, 30 μg) discs (Oxoid, England).

Determination of Minimum Inhibitory

Concentrations (MICs) of the Tested

Antibiotics and TND
Minimum Inhibitory Concentrations (MIC) were expressed as

the lowest antibacterial agent concentrations that caused a total

inhibition of bacterial growth for 24 hours. The MICs of

cefepime, ceftriaxone, amikacin, ciprofloxacin, and TDN

were determined for 25 MDR P. aeruginosa isolates using

the agar dilution method. Overnight cultures of the tested

isolates in a Mueller-Hinton Broth (MHB) were adjusted to a

cell density of 107 CFU/mL. Then, the bacterial culture spots

were applied to the surface of a dry Muller-Hinton Agar

(MHA) containing the tested antibiotics and TDN of concen-

trations ranged from 1 to 1024 μg/mL using amulti-inoculator.

Plates were incubated at 37 °C for 18–24 h and examined for

growth. Spots showing no growth were defined as MIC.13

Determination of the Synergistic Effect of

TDN with Antibiotics by Checkerboard

Assay
The effect of combinations of TDNwith the tested antibiotics

at sub-MIC values was examined by checkerboard titration

tests. The MICs of antibiotics and TDN in combination were

determined by the agar dilution method against 25 MDR

strains, and the fractional inhibitory concentration index

(FICI) was determined as described before.14

Results and Discussion
Characterizations of TDN
In this study, TDNwas prepared using the sol-gel method. The

average particle size determined byDLSwas 64.77 ± 0.14 nm.

This small size of nanoparticles provides a large surface area

that enhances the interactions with the microbes and increases

the range of antimicrobial activities.15 The poly dispersive

index (PDI) was 0.274 ± 0.004, which is lower than 0.3,

indicating the homogenous population of the particle size16

as shown in Figure 1. According to literature, this value

suggests the stability of the prepared TDN with storage as

zeta potential value was 23.8 mV. As TDN suspension has

large positive or negative zeta potential, particles in suspension

will tend to repel from each other which prevents aggregation

and agglomeration of the particles.17 The morphology was

investigated by a high-resolution transmission electron micro-

scope (Figure 2). Images showed that the prepared nanoparti-

cles were nearly spherical in shape of irregular edges with little

aggregations at different magnifications (Figure 2A, C, and

D). Particle size histogram showed that the maximum distri-

bution of particle sizes was in the range of 60–80 nm

(Figure 2B), and that agrees with DLS results. Many nanopar-

ticle shapes with nonuniform size and superficial agglomera-

tion were reported for TiO2, which appeared to be a normal

reaction during the sol-gel method synthesis.18,19

Diffraction Scanning Calorimetry Studies
DSC is a significant tool to predict the physicochemical

changes associated with drug interactions of the tested

Dovepress Ahmed et al

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
3395

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


antibacterial agents and TDN. Drug interactions may be

detected through shifts in peaks onset, area, or even

disappearance of peaks. Sometimes the appearance of

new peaks can be considered evidence of an interaction.

All tested drugs and TDN showed dehydration peaks at

different temperatures that appeared also in their

Figure 1 Particle size distribution of the formed titanium dioxide nanoparticles measured by dynamic light scattering analysis.
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Figure 2 High-resolution transmission electron microscopy images at different magnifications (A: ×5000, C: ×15,000 D: ×100,000) showing the prepared titanium dioxide

nanoparticles as spherical shape with an irregular edges. (B) Particle size distribution of it.
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corresponding Physical Mixtures (PM) (usually below

100°C) as shown in Figure 3.

The DSC thermogram of TDN showed a broad

endothermic peak around 80°C to120°C due to dehydra-

tion. Besides, a second small broad endothermic peak

appeared on the curve at 330°C which may have occurred

due to the crystallization of the amorphous TiO2.
20

Concerning the amikacin system, the drug showed its

melting point endothermic peak at 256°C, per other reports

mentioned elsewhere.21 There were no significant changes

in the Physical Mixture (PM) suggesting the absence of a

physicochemical interaction between the drug and the

prepared TDN (Figure 3A). For the ciprofloxacin system,

the drug showed its melting point endothermic peak at its

proper position at 315°C, very close to the reported value-
22–24 without any considerable changes in peak position in

Figure 3B.

Figure 3C shows the DSC thermograms of the cef-

triaxone system. The drug produced its melting point

endothermic peak at 181°C,25 identical to the DSC
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Figure 3 Diffraction scanning calorimetry analysis of (A) TDN, amikacin and its physical mixture; (B) TDN, ciprofloxacin and its physical mixture; (C) TDN, ceftriaxone and

its physical mixture; (D) TDN, cefpime and its physical mixture.

Abbreviations: TDN, titanium dioxide nanoparticles; AK, amikacin; CP, ciprofloxacin; CT, ceftriaxone; CF, cefpime; PM, physical mixture.
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thermogram of the PM. Cefepime produced its charac-

teristic peak at 185°C which is corresponding to its

melting point. The peak appeared nearly in the same

position in PM without any considerable changes26

(Figure 3D).

Infrared (IR) Spectroscopy Studies
FTIR was applied to assess the chemical composition and

quality of the synthesized TDN as shown in Figure 4.

FTIR spectrum of the synthesized TDN showed a small

band in 1624 cm−1 which is characteristic to o-Ti-o bond,

PM
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Figure 4 Fourier transform infrared spectra of (A) TDN, amikacin and its physical mixture; (B) TDN, ciprofloxacin and its physical mixture; (C) TDN, ceftriaxone and its

physical mixture; (D) TDN, cefpime and its physical mixture.

Abbreviations: TDN, titanium dioxide nanoparticles; AK, amikacin; CP, ciprofloxacin; CT, ceftriaxone; CF, cefpime; PM, physical mixture.
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a broadband at 3385 cm−1, which is related to O-H

stretching in agreement with previous studies27,28 that

confirm the formation of TDN. To estimate the funda-

mental interactions of TDN and the tested drugs, Physical

Mixtures (PM) were examined employing the FTIR spec-

trophotometer for detecting typical absorption bands.

Figure 4A shows the broadband at 1638 cm−1 corre-

sponding to N–H bending vibration of primary aromatic

amines of amikacin sulfate. This band appeared in PM in

the same position, suggesting the absence of interaction

between drugs and TDN.29

For ciprofloxacin, the major character bands in the IR

spectrum included sharp and small bands at 1624 cm−1 and

1668 cm−1 respectively (corresponding to the vibration

absorption of CH2 on benzene ring), a sharp band at

1710 cm−1 (due to stretching vibration attributed to a

carbonyl group), and small bands at 1399 and 944 cm−1

(corresponding to O-H).30 Nearly all the previous bands

appeared in the PM (Figure 4B). The FT-IR spectrum of

ceftriaxone (Figure 4C) showed characteristic bands at

3429 cm−1 (N–H) stretching of the H-bonded amide

group, 1742 cm−1 β-lactam C=O stretching vibrations,

and 1610 cm−1 oxime C=N stretching vibrations. All

bands appeared very close to the reported data.25

Characteristic bands of ceftriaxone appeared in the same

position in the PM. Cefepime showed main characteristic

bands at 2935 cm−1, 1773.29 cm-1, and 1655 cm−1 corre-

sponding to O-H stretching, β-lactam C=O stretching, and

amide C=O, respectively. That is close to the reported

value.26 Bands appeared in the PM in their proper posi-

tions without any significant shift (Figure 4D). Data of IR

and DSC supported the absence of interaction between

tested drugs and TDN.

X-Ray Diffraction Studies
The X-ray diffractogram of TDN, the tested drugs, and

their combinations in the PM are shown in Figure 5.

TDN showed less crystalline or amorphous structure

which is somewhat similar to a brookite polymorph.

Growth of brookite under acidic conditions has been

consistently reported when the water-soluble Ti com-

plexes are replaced by TiCl4. Also, for most of the

reported work, it was noticed that the use of a water-

based growth environment has been a common denomi-

nator on the growth of brookite nanostructures.31

Regarding amikacin, the X-ray diffractogram revealed a

crystalline structure of the drug with major diffraction

peaks at 2 θ values of 17.57°, 18.08°, and 33.84°. The

drug retained its crystalline structure in the PM without

detectable changes in its characteristic peaks (Figure 5A).

The same results were observed in ciprofloxacin PM. The

major diffraction peaks at 2 θ values of the drug appeared

at 19.18°, 26.4°, 18.8°, 29°, 25.66°, 23°, and 19.7° without

significant changes (Figure 5B). Concerning ceftriaxone,

the X-ray diffractogram showed major diffraction peaks

at 2 θ values 21.09°, 22.66°, 23.67°, 18.80°, and 18.28°

which revealed the high crystallinity of the drug.

The diffractogram of the PM with TDN showed that

all characteristic peaks of the drug appeared at the same

two theta values without any considerable changes

(Figure 5C). Concerning cefepime, the X-ray diffracto-

gram of the drug revealed a high degree of crystallinity

with major diffraction peaks at 2 θ values of 27.72°,

23.18°, 19.37°, 16.7°, and 22.63°. No detectable changes

were observed in the position of peaks in the PM

(Figure 5D).

From the previous data, it could be concluded that

the four above mentioned drugs kept their crystalline

structure in the PM with TND, which confirms the

DSC and FTIR. The physicochemical compatibility

between the investigated drugs and the prepared TDN

allows for the combination and preparation of pharma-

ceutical dosage forms containing each drug with nano-

particles to get the benefits of adding TDN to the

antibiotics to overcome the big problem of MDR bac-

teria such as P. aeruginosa.

Prevalence of Pseudomonas aeruginosa in

Clinical Specimens
In this study, 67 P. aeruginosa strains were isolated from

100 different clinical specimens.

This result was similar to other results reported from

Iraq (69%)32 and lower than others.13,33,34 Geographic

climatic and hygienic factors may play important roles in

the relative variability of the incidence rate. Prevalence of

Pseudomonas aeruginosa isolates according to the type of

clinical specimen were 39 (78%) from urine, 20 (66.7%)

from wound exudate, 5 (100%) from ear discharge,

2 (40%) from eye discharge, and 1 (20%) from sputum

specimens. P. aeruginosa had the highest incidence rate in

ear infections (100%). No P. aeruginosa were isolated

from burn specimens. Appiah-Korang et al (2014) showed

that Pseudomonas species were the most common bacter-

iologic cause of ear discharge since it is a widespread
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environmental organism that is usually found in warm and

humid environments and is known to colonize the external

auditory channel which is consistent with our findings.35

In contrast, Mahmoud et al36 and Abed Al-Azzawi et al32

found that P. aeruginosa was mostly isolated from burn

specimens (32.3%, 65%, respectively).

Antibiotic Susceptibility of P. aeruginosa
Isolates
Recently, Egypt has been considered among the countries

that suffer from high rates of antimicrobial resistance. The

present study showed a high resistance for the tested anti-

biotics. Sixty strains (89.5%) were found to be resistant to

A C

B D

Figure 5 X-ray diffraction pattern of (A) TDN, amikacin and its physical mixture; (B) TDN, ciprofloxacin and its physical mixture; (C) TDN, ceftriaxone and its physical

mixture; (D) TDN, cefpime and its physical mixture.

Abbreviations: TDN, titanium dioxide nanoparticles; AK, amikacin; CP, ciprofloxacin; CT, ceftriaxone; CF, cefpime; PM, physical mixture.
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ceftriaxone, 40 (59.7%) to cefepime, 21 (31.34%) to ami-

kacin, 20 (29.8%) to imipenem, 17 (25.4%) to ciproflox-

acin, and 8 (12%) levofloxacin.

A similarly high rate of resistance has been reported in

many previous studies in Egypt.37–39

The rate of resistance to the third and fourth generation

cephalosporins indicates the limited treatment choices in

the hospitals of our area and the wide misuse of bactericidal

antibiotics in the treatment of any infection. This leads to

the accumulation of antibiotic resistance and cross-resis-

tance between antibiotics and the appearance of multidrug-

resistant (MDR) forms of P. aeruginosa.40,41 However,

Diab et al (2013) reported the lowest resistant rate to cefta-

zidime (46%) in comparison to other used antibiotics.42

Minimum Inhibitory Concentrations (MICs) values of

ceftriaxone, cefepime, amikacin, and ciprofloxacin were

detected against selected 25 MDR P. aeruginosa strains.

The selected 25 P. aeruginosa strains showed high resis-

tance for the tested antibiotics (resist to three or more anti-

biotics) with different antibiotic resistance patterns and

clinical specimens (13 urine,9 wound exudate, and three ear

discharge specimens) as shown in Table 1. P. aeruginosa

strains isolated from eye discharge and sputum specimens

(2 and 1, respectively) were more susceptible to the tested

antibiotics.

Determined Minimum Inhibitory Concentrations MICs

of the studied antibiotics were compared to breakpoint values

reported by CLSI as the basis for calculating the response.

Tables 1 and 2 represent MICs of different antibiotics and

antibiotic susceptibilities of the 25 MDR P. aeruginosa iso-

lates. Results showed that all 25 MDR P. aeruginosa isolates

were resistant to cefepime (100%) with MICs ranging from

32 to 512μg /mL. Ninety-six percent of strains were resistant

to ceftriaxone with MICs ranging from16 to >1024 μg/mL.

Eighty percent were resistant to amikacin with MICs of 16 to

>1024 μg/mL, and 76% were resistant to ciprofloxacin with

MICs 4 to 32 μg/mL. Our results showed a spread of multi-

drug-resistant strains due to indiscriminate use of antibiotics,

lack of awareness, patient noncompliance, and nonavailabil-

ity of antimicrobial testing facilities.43

Susceptibility of P. aeruginosa Isolates to

TDN
Antimicrobial NPs offer many distinctive advantages in

reducing acute toxicity, overcoming resistance and low-

ering cost when compared to conventional antibiotics.

Titanium dioxide nanoparticles have received considerable

attention as effective antimicrobial agents. The antimicro-

bial activity of TDN alone was tested at different concen-

trations against 25 MDR P. aeruginosa strains. Depending

on the isolates’ sensitivity, the MICs of TDN were ranged

from 8 to 64 μg/mL. Where three strains (12%) had MIC

less than 1 μg/mL (Table 1).

Table 1 Minimum Inhibitory Concentrations of Titanium

Dioxide Nanoparticles and Different Antibiotics Against 25

Pseudomonas aeruginosa Isolates

No.** Type* CP CF CT AK TDN

1 W 8 256 32 512 8

2 W 32 512 1024 512 64

3 W 32 32 512 128 64

4 U 32 512 >1024 >1024 64

5 ER 32 512 >1024 128 64

6 U 8 256 64 512 64

7 U 4 256 128 512 64

8 U 4 128 256 64 16

9 U 32 64 256 64 64

10 U <1 512 256 16 64

11 U 8 256 128 512 <1

12 W 16 256 64 128 64

13 W 32 512 >1024 1024 16

14 W 4 512 256 128 16

15 U <1 64 256 16 <1

16 U 8 256 32 512 16

17 U 8 256 256 512 64

18 W <1 64 16 512 16

19 W 4 32 32 32 32

20 U 4 32 32 16 <1

21 ER 4 32 32 64 64

22 W 4 32 32 512 64

23 U <1 256 64 64 64

24 U <1 256 64 64 64

25 ER <1 64 256 16 16

Notes: Type*, type of clinical specimen of isolate; No.**, serial number of

specimens.

Abbreviations: U, urine specimen; W, wound exudate; ER, ear discharge; CP,

ciprofloxacin; CF, cefpime; CT, ceftriaxone; AK, amikacin; TDN, titanium dioxide

nanoparticles.

Table 2 Antibiotic Susceptibility of Pseudomonas aeruginosa
Isolates

Antibiotic Sensitive Intermediate Resistant

no** %* no** %* no** %*

Ceftriaxone 0 0 1 4 24 96

Cefepime 0 0 0 0 100 100

Amikacin 4 16 1 4 20 80

Ciprofloxacin 6 24 0 0 19 76

Notes: no**, number of Pseudomonas aeruginosa isolates; *Percentages were cor-

related with total number of the selected Pseudomonas aeruginosa isolates (25).
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The mechanism by which the tested nanoparticles and

the bacterial cells interact depends on the interaction

between the negative charges of the bacterial cells and

the positive charge of metal oxides. As a result, electro-

magnetic skirmishes were created between bacterial cells

and metal oxide surfaces. Furthermore, nanoparticles

release ions that can react with the –SH group of proteins

that control the transporting of material, reducing their

permeability.7,9,44

Many studies detected antifungal and antibacterial activ-

ities of TDN as Duymaz et al45 and Alhadrami et al.46

Thomas (2016) showed that antimicrobial activity of tooth-

pastes and mouthwashes against dental plaque-causing

organisms were enhanced by adding TDN.47 Recently

many studies reported that the wound dressing with TDN

enhanced wound healing due to its antimicrobial and cell

growth stimulation features.48–52

In contrast to our findings, Kotlhao et al (2017)

reported that TDN had no antibacterial activity against

Pseudomonas aeruginosa53 which may be due to the

reduction in porosity of Gram-negative cell wall or exis-

tence of efflux pump that causes a decrease in intracellular

concentrations of these compounds, resulting in a drastic

reduction of biocidal activity.54

The Effect of TDN and Antibiotics on

MDR P. aeruginosa Isolates
The antimicrobial resistance of the 25 MDR P. aeruginosa

against various antibiotics was found to be reduced in the

presence of TDN. The checkerboard titration method

revealed that there was a marked decrease in MICs of

commercial antibiotics in combination with TDN nanopar-

ticles. This case was called the synergistic effect. The

synergistic effect between TDN and the antibiotics was

evaluated by calculating the FIC index. The effect of TDN

in combination was found to be synergistic.

Present results showed that using antibiotics in combina-

tion with nanoparticles increases the therapeutic activity

against the resistant strains. The presence of antibiotics

with TDN increases the concentration of antibiotics at the

site of infection and the binding of bacteria to antibiotics.55

Many studies have shown that combining TDN

potentiate the antimicrobial action of different classes

of antibiotics.2,7-9 FICI is an indicator of the degree of

interaction between TDN with commercial antibiotics for

the 25 MDR P. aeruginosa strains. The FICI of the

combination of TDN plus cefepime shows synergistic

effect to all isolates (100%), ceftriaxone; showing syner-

gistic effect against 24 strains (96%) and additive effect

against one strain (4%); ciprofloxacin showing synergis-

tic effect against 20 strains (80%) and additive effect

against three (12%) and two strains were not evaluated

using the combination of TDN and ciprofloxacin as both

were sensitive to ciprofloxacin; amikacin, showing

synergistic effect against 22 strains (88%) and additive

effect against three (12%) isolates as shown in Table 3.

Masoumi et al (2018) reported the additive effect of

nano-TiO2 and nano-ZnO combinations (FIC = 0.95)

against both Acentobacte baumannii and K. pneumoniae

strains; whereas, this combination showed an indifferent

effect against P. aeruginosa isolates (FIC > 2).54

Conclusion
The addition of TDN to the tested antibiotics enhances the

therapeutic activity of these antibiotics. So, the preparation

of topical pharmaceutical dosage forms containing a com-

bination of antibiotics and TDN will help in the eradica-

tion of MDR P. aeruginosa.
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