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Abstract: While the pathogenesis of chronic obstructive pulmonary disease (COPD) is 

incompletely understood, chronic infl ammation is a major factor. In fact, the infl ammatory 

response is abnormal, with CD8+ T-cells, CD68+ macrophages, and neutrophils predominat-

ing in the conducting airways, lung parenchyma, and pulmonary vasculature. Elevated levels 

of the second messenger cAMP can inhibit some infl ammatory processes. Theophylline has 

long been used in treating asthma; it causes bronchodilation by inhibiting cyclic nucleotide 

phosphodiesterase (PDE), which inactivates cAMP. By inhibiting PDE, theophylline increases 

cAMP, inhibiting infl ammation and relaxing airway smooth muscle. Rather than one PDE, 

there are now known to be more than 50, with differing activities, substrate preferences, and 

tissue distributions. Thus, the possibility exists of selectively inhibiting only the enzyme(s) in 

the tissue(s) of interest. PDE 4 is the primary cAMP-hydrolyzing enzyme in infl ammatory and 

immune cells (macrophages, eosinophils, neutrophils). Inhibiting PDE 4 in these cells leads to 

increased cAMP levels, down-regulating the infl ammatory response. Because PDE 4 is also 

expressed in airway smooth muscle and, in vitro, PDE 4 inhibitors relax lung smooth muscle, 

selective PDE 4 inhibitors are being developed for treating COPD. Clinical studies have been 

conducted with PDE 4 inhibitors; this review concerns those reported to date.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a serious and increasing global 

public health problem; physiologically, it is characterized by progressive, irreversible 

airfl ow obstruction and pathologically, by an abnormal airway infl ammatory response 

to noxious particles or gases (MacNee 2005a). The COPD patient suffers a reduction 

in forced expiratory volume in 1 second (FEV
1
), a reduction in the ratio of FEV

1
 to 

forced vital capacity (FVC), compared with reference values, absolute reductions in 

expiratory airfl ow, and little improvement after treatment with an inhaled broncho-

dilator. Airfl ow limitation in COPD patients results from mucosal infl ammation and 

edema, bronchoconstriction, increased secretions in the airways, and loss of elastic 

recoil. Patients with COPD can experience ‘exacerbations,’ involving rapid and 

prolonged worsening of symptoms (Seneff et al 1995; Connors et al 1996; Dewan 

et al 2000; Rodriguez-Roisin 2006; Mohan et al 2006). Many are idiopathic, though 

they often involve bacteria; airway infl ammation in exacerbations can be caused or 

triggered by bacterial antigens (Murphy et al 2000; Blanchard 2002; Murphy 2006; 

Veeramachaneni and Sethi 2006). Increased IL-6, IL-1β, TNF-α, GRO-α, MCP-1, 

and IL-8 levels are found in COPD patient sputum; their levels increase further during 

exacerbations. COPD has many causes and signifi cant differences in prognosis exist, 

depending on the cause (Barnes 1998; Madison and Irwin 1998).

COPD is already the fourth leading cause of death worldwide, according to the 

World Health Organization (WHO); the WHO estimates that by the year 2020, 

COPD will be the third-leading cause of death and the fi fth-leading cause of disability 

worldwide (Murray and Lopez 1997). COPD is the fastest-growing cause of death 
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in developed nations and is responsible for over 2.7 million 

deaths per year worldwide. In the US, there are currently 

estimated to be 16 million people with COPD. There are 

estimated to be up to 20 million sufferers in Japan, which 

has the world’s highest per capita cigarette consumption and 

a further 8–12 million in Europe. In 2000, COPD accounted 

for over 20 million outpatient visits, 3.4 million emergency 

room visits, 6 million hospitalizations, and 116,500 deaths 

in the US (National Center for Health Statistics 2002). 

Factors associated with COPD, including immobility, 

often lead to secondary health consequences (Polkey and 

Moxham 2006).

Risk factors for the development of COPD include 

cigarette smoking, and occupational exposure to dust and 

chemicals (Senior and Anthonisen 1998; Anthonisen et al 

2002; Fabbri and Hurd 2003; Zaher et al 2004). Smoking 

is the most common cause of COPD and the underlying 

infl ammation typically persists in ex-smokers. Oxidative 

stress from cigarette smoke is also an issue in COPD (Domej 

et al 2006). Despite this, relatively few smokers ever develop 

COPD (Siafakas and Tzortzaki 2002).

While many details of the pathogenesis of COPD remain 

unclear, chronic infl ammation is now recognized as a major 

factor, predominantly in small airways and lung parenchyma, 

characterized by increased numbers of macrophages, neutro-

phils, and T-cells (Barnes 2000; Stockley 2002). As recently 

as 1995, the American Thoracic Society issued a statement 

defi ning COPD without mentioning the underlying infl am-

mation (American Thoracic Society 1995). Since then, the 

Global Initiative for Chronic Obstructive Lung Disease 

(GOLD) guidelines have made it clear that chronic infl am-

mation throughout the airways, parenchyma, and pulmonary 

vasculature plays a central role (Pauwels et al 2001; GOLD 

2003). The comparatively recent realization of the role of 

airway infl ammation in COPD has altered thinking with 

regard to potential therapies (Rogers and Giembycz 1998; 

Vignola 2004).

Most pharmacological therapies available for COPD, 

including bronchodilator and anti-infl ammatory agents, 

were fi rst developed for treating asthma. The mainstays of 

COPD treatment are inhaled corticosteroids (McEvoy and 

Niewoehner 1998; Borron and deBoisblanc 1998; Pauwels 

2002; Gartlehner et al 2006; D’Souza 2006), supplemen-

tal oxygen (Petty 1998; Austin and Wood-Baker 2006), 

inhaled bronchodilators (Costello 1998; Doherty and 

Briggs 2004), and antibiotics (Taylor 1998), especially in 

severely affected patients (Anthonisen et al 1987; Saint et al 

1995; Adams et al 2001; Miravitlles et al 2002; Donnelly 

and Rogers 2003; Sin et al 2003; Rabe 2006), though the 

use of antibiotics remains controversial (Ram et al 2006). 

Long-acting β
2
-agonists (LABAs) improve the mucociliary 

component of COPD. Combination therapy with LABAs 

and anticholinergic bronchodilators resulted in modest 

benefi ts and improved health-related quality of life (Buhl 

and Farmer 2005; Appleton et al 2006). Treatment with 

mucolytics reduced exacerbations and the number of days 

of disability (Poole and Black 2006). The combined use of 

inhaled corticosteroids and LABAs has been demonstrated 

to produce sustained improvements in FEV
1
 and positive 

effects on quality of life, number of hospitalizations, distance 

walked, and exacerbations (Mahler et al 2002; Szafranski et al 

2003; Sin et al 2004; Miller-Larsson and Selroos 2006; van 

Schayck and Reid 2006). However, all of these treatments are 

essentially palliative and do not impact COPD progression 

(Hay 2000; Gamble et al 2003; Antoniu 2006a).

A further complication in drug development and 

therapy is that it can be diffi cult to determine the effi cacy 

of therapy, because COPD has a long preclinical stage, 

is progressive, and patients generally do not present for 

treatment until their lung function is already seriously 

impaired. Moreover, because COPD involves irreversible 

loss of elasticity, destruction of the alveolar wall, and 

peribronchial fi brosis, there is often little room for clinical 

improvement.

Smoking cessation remains the most effective interven-

tion for COPD. Indeed, to date, it is the only intervention 

shown to stop the decline in lung function, but it does not 

resolve the underlying infl ammation, which persists even in 

ex-smokers. Smoking cessation is typically best achieved 

by a multifactor approach, including the use of bupropion, 

a nicotine replacement product, and behavior modifi cation 

(Richmond and Zwar 2003).

In COPD, there is an abnormal infl ammatory response, 

characterized by a predominance of CD8+ T-cells, CD68+  

macrophages, and neutrophils in the conducting airways, 

lung parenchyma, and pulmonary vasculature (Soto and 

Hanania 2005; O’Donnell et al 2006; Wright and Churg 

2006). Infl ammatory mediators involved in COPD include 

lipids, infl ammatory peptides, reactive oxygen and nitrogen 

species, chemokines, cytokines, and growth factors. COPD 

pathology also includes airway remodeling and muco-

ciliary dysfunction (mucus hypersecretion and decreased 

mucus transport). Corticosteroids reduce the number of 

mast cells, but CD8+ and CD68+ cells, and neutrophils, 

are little affected (Jeffery 2005). Infl ammation in COPD 

is not suppressed by corticosteroids, consistent with it 
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being neutrophil-, not eosinophil-mediated. Corticosteroids 

also do not inhibit the increased concentrations of IL-8 

and TNF-α (both neutrophil chemoattractants) found in 

induced sputum from COPD patients. Neutrophil-derived 

proteases, including neutrophil elastase and matrix metal-

loproteinases (MMPs), are involved in the infl ammatory 

process and are responsible for the destruction of elastin 

fi bers in the lung parenchyma (Mercer et al 2005; Gueders 

et al 2006). MMPs play important roles in the proteolytic 

degradation of extracellular matrix (ECM), in physiological 

and pathological processes (Corbel, Belleguic et al 2002). 

PDE 4 inhibitors can reduce MMP activity and the produc-

tion of MMPs in human lung fi broblasts stimulated with 

pro-infl ammatory cytokines (Lagente et al 2005). In COPD, 

abnormal remodeling results in increased deposition of ECM 

and collagen in lungs, because of an imbalance of MMPs 

and TIMPs (Jeffery 2001). Fibroblast/myofi broblast pro-

liferation and activation also occur, increasing production 

of ECM-degrading enzymes (Crouch 1990; Segura-Valdez 

et al 2000). Additionally, over-expression of cytokines and 

growth factors stimulates lung fi broblasts to synthesize 

increased amounts of collagen and MMPs, including MMP-1 

(collagenase-1) and MMP-2 and MMP-9 (gelatinases 

A and B) (Sasaki et al 2000; Zhu et al 2001).

It is now generally accepted that bronchial asthma is also 

a chronic infl ammatory disease (Barnes et al 1988; Barnes 

1995). The central role of infl ammation of the airways in 

asthma’s pathogenesis is consistent with the effi cacy of 

corticosteroids in controlling clinical symptoms. Eosinophils 

are important in initiating and continuing the infl ammatory 

state (Holgate et al 1987; Bruijnzeel 1989; Underwood et al 

1994; Teixeira et al 1997), while other infl ammatory cells, 

including lymphocytes, also infi ltrate the airways (Holgate 

et al 1987; Teixeira et al 1997). The familiar acute symptoms 

of asthma are the result of airway smooth muscle contraction. 

While recognition of the key role of infl ammation has led 

to an emphasis on anti-infl ammatory therapy in asthma, a 

signifi cant minority of patients remains poorly controlled and 

some exhibit accelerated declines in lung function, consistent 

with airway remodeling (Martin and Reid 2006). Reversal or 

prevention of structural changes in remodeling may require 

additional therapy (Burgess et al 2006).

There is currently no cure for asthma; treatment depends 

primarily on inhaled glucocorticoids to reduce infl ammation 

(Taylor 1998; Petty 1998), and inhaled bronchodilators to 

reduce symptoms (Torphy 1994; Costello 1998; Georgitis 

1999; DeKorte 2003). Such treatments, however, do not 

address disease progression.

COPD and asthma are both characterized by airfl ow obstruc-

tion, but they are distinct in terms of risk factors and clinical pre-

sentation. While both involve chronic infl ammation and cellular 

infi ltration and activation, different cell types are implicated 

and there are differences in the infl ammatory states (Giembycz 

2000; Fabbri and Hurd 2003; Barnes 2006). In COPD, neutro-

phil infi ltration into the airways and their activation appear to 

be key (Stockley 2002); in asthma, the infl ammatory response 

involves airway infi ltration by activated eosinophils and lym-

phocytes, and T-cell activation of the allergic response (Holgate 

et al 1987; Saetta et al 1998; Barnes 2006). While macrophages 

are present in both conditions, the major controller cells are 

CD8+ T-cells in COPD (O’Shaughnessy et al 1997; Saetta et al 

1998) and CD4+ T-cells in asthma. IL-1, IL-8, and TNF-α are 

the key cytokines in COPD, while in asthma, IL-4, IL-5, and 

IL-13 are more important. There are differences in histopatho-

logical features of lung biopsies between COPD patients and 

asthmatics; COPD patients have many fewer eosinophils in 

lung tissue than asthmatics.

While the early phases of COPD and asthma are dis-

tinguishable, there are common features, including airway 

hyper-responsiveness and mucus hypersecretion. MUC5AC 

is a major mucin gene expressed in the airways; its expres-

sion is increased in COPD and asthmatic patients. At least 

in vitro, epidermal growth factor stimulates MUC5AC 

mRNA and protein expression; this can be reversed by PDE 

4 inhibitors, which may contribute to their clinical effi cacy 

in COPD and asthma (Mata et al 2005). Similar structural 

and fi brotic changes make COPD and asthma much less 

distinguishable in extreme cases; the chronic phases of both 

involve infl ammatory responses, alveolar detachment, mucus 

hypersecretion, and subepithelial fi brosis. The two conditions 

have been linked epidemiologically; adults with asthma are 

up to 12 times more likely to develop COPD over time than 

those without (Guerra 2005).

Theophylline
Theophylline and related xanthine compounds have been 

used for decades to treat asthma (Weinberger 1988; Torphy 

and Undem 1991; Manganiello et al 1995; Dent and 

Giembycz 1996; Weinberger and Hendeles 1996; Torphy 

1998; Ram et al 2002; Barnes 2003; Barr et al 2003). The 

use of these drugs has been limited, however, by their side 

effects and modest effi cacy (Persson 1986; Rabe et al 1995). 

Additionally, theophylline is a diffi cult drug to use, requir-

ing titration and plasma monitoring, because of the risk of 

cardiovascular and CNS side effects, even at therapeutic 

doses (Boswell-Smith, Cazzola et al 2006).
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The second messenger cyclic 3′,5′-adenosine monophos-

phate (cAMP) controls many cellular functions and it is well 

established that an elevated cAMP level can inhibit some 

infl ammatory processes. Thus, inhibitors of enzymes that 

catalyze cAMP hydrolysis would seem to be good candidates 

to treat infl ammatory conditions.

Phosphodiesterase (PDE)
Theophylline is believed to cause bronchodilation by 

inhibiting cyclic nucleotide phosphodiesterase (PDE), 

an enzyme that catalyzes the hydrolysis of cAMP and 

cyclic 3′,5′-guanosine monophosphate (cGMP) to inactive 

5'-nucleotide products (Muller et al 1996), cAMP and cGMP 

exhibit many intracellular effects, mediated largely through 

their stimulatory effect on multisubstrate protein kinases 

(Torphy and Undem 1991; Montminy 1997; Daniel et al 

1998; Spina 2003). By inhibiting PDE, theophylline increases 

the level of cAMP and cGMP, resulting in relaxation of 

airway smooth muscle and inhibition of infl ammatory cell 

activation (Holgate et al 1987; Bryson and Rodger 1987; 

Schramm and Grunstein 1992; Cortijo et al 1993; Kotlikoff 

and Kamm 1996; Spina 2003).

Theophylline is now known to have many properties in 

addition to that of a bronchodilator (Persson 1986; Sullivan 

et al 1994; Rabe et al 1995; D’Alonzo 1996; Weinberger 

and Hendeles 1996; Vassallo and Lipsky 1998). Theophyl-

line also causes pulmonary arterial vasodilatation, enhances 

diaphragmatic contractility, and increases CNS respiratory 

drive. Theophylline is a cardiac ionotrope and chromotrope. 

It is also a weak diuretic and increases mucociliary sweep. 

Theophylline has anti-infl ammatory effects in COPD, reduc-

ing neutrophil counts, IL-8, and the total number infl amma-

tory cells in sputum. Theophylline is also subject to many 

drug interactions and has adenosine receptor antagonist 

activity (Barnes 2003).

Far from there being a single PDE, it is now clear that 

there are many with differing activities, substrate preferences, 

and tissue distributions (Nicholson et al 1991; Thompson 

1991; Lowe and Cheng 1992; Beavo et al 1994; Manganiello 

et al 1995; Torphy 1998; Silver et al 1988; Matsumoto et al 

2003); theophylline is actually a non-specifi c PDE inhibitor 

(Persson 1986; Rabe et al 1995; D’Alonzo 1996; Weinberger 

and Hendeles 1996; Vassallo and Lipsky 1998). Some of its 

various properties and side-effects have been attributed to 

non-selective inhibition of PDEs (Barnes 2003).

Indeed, there are believed to be at least 11 gene families of 

PDE enzymes in mammals, encoding more than 50 enzymes, 

because of alternative splicing and alternative transcriptional 

start sites (Bolger 1994; Lobban et al 1994; Horton et al 1995; 

Bushnik and Conti 1996; Jin et al 1998; Houslay et al 1998; 

Conti and Jin 1999; Giembycz 2000; Giembycz 2001; Scapin 

et al 2004; Giembycz 2005a; Bender and Beavo 2006). PDE 

enzymes share approximately 25% sequence identity over 

the conserved catalytic domain of about 300 amino acids 

(Ke 2004). While all PDEs catalyze the hydrolysis of cAMP 

and/or cGMP, the enzymes differ in their biochemical and 

pharmacological properties and exhibit different affi nities 

for various inhibitors (Silver et al 1988; Torphy and Undem 

1991; Manganiello et al 1995; Muller et al 1996; Torphy 

1998). PDE 4, PDE 7, and PDE 8 are specifi c for cAMP 

(Conti and Yin 1999; Soderling and Beavo 2000). This diver-

sity of enzyme type and tissue-specifi c expression raises the 

possibility of selectively inhibiting only the enzyme(s) in the 

tissue(s) of interest, if suffi ciently specifi c inhibitors can be 

found (Giembycz and Dent 1992; Card et al 2004).

PDE 4 in COPD
With regard to COPD, PDE 4 is the primary cAMP-

hydrolyzing enzyme in infl ammatory and immune cells, 

especially macrophages, eosinophils, and neutrophils, all of 

which are found in the lungs of COPD and asthma patients 

(Torphy et al 1992; Karlsson and Aldous 1997; De Brito 

et al 1997; Wang et al 1999; Torphy and Page 2000). Inhibi-

tion of PDE 4 leads to elevated cAMP levels in these cells, 

down-regulating the inflammatory response (Dyke and 

Montana 2002).

PDE 4 has also attracted much attention because it is 

expressed in airway smooth muscle (Ashton et al 1994; 

Undem et al 1994; Nicholson et al 1995; Kerstjens and 

Timens 2003; Mehats et al 2003; Lipworth 2005; Fan Chung 

2006). In vitro, PDE 4 inhibitors relax lung smooth muscle 

(Undem et al 1994; Dent and Giembycz 1995). In COPD and 

asthma, a selective PDE 4 inhibitor with combined bronchodi-

latory and anti-infl ammatory properties would seem desirable 

(Nicholson and Shahid 1994; Lombardo 1995; Palfreyman 

1995; Cavalia and Frith 1995; Palfreyman and Souness 1996; 

Karlsson and Aldous 1997; Compton et al 2001; Giembycz 

2002; Jacob et al 2002; Soto and Hanania 2005).

PDE 4 inhibitors in COPD
So, because PDE 4 inhibitors suppress infl ammatory func-

tions in several cell types involved in COPD and asthma 

(Huang and Mancini 2006) and because, at least in vitro, 

PDE 4 inhibitors relax lung smooth muscle, selective PDE 4 

inhibitors, originally intended for use in treating depression 

(Renau 2004), have been developed for the treatment of 
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COPD and asthma (Torphy et al 1999; Spina 2000; Huang 

et al 2001; Spina 2004; Giembycz 2005a, 2005b; Lagente et al 

2005; Boswell-Smith, Spina et al 2006). PDE 4 enzymes are 

strongly inhibited by the antidepressant drug rolipram (Pinto 

et al 1993), which decreases the infl ux of infl ammatory cells at 

sites of infl ammation (Lagente et al 1994; Lagente et al 1995; 

Alves et al 1996). PDE 4 inhibitors down-regulate cytokine 

production in infl ammatory cells, in vivo and in vitro (Undem 

et al 1994; Dent and Giembycz 1995). TNF-α is an important 

infl ammatory cytokine in COPD; its release is reduced by 

PDE 4 inhibitors (Souness et al 1996; Chambers et al 1997; 

Griswold et al 1998; Gonçalves de Moraes et al 1998; Corbel, 

Belleguic et al 2002). Some PDE 4 inhibitors, including cilo-

milast and AWD 12-281, can inhibit neutrophil degranulation, 

a property not shared by theophylline (Ezeamuzie 2001; Jones 

et al 2005). PDE 4 inhibitors reduce overproduction of other 

pro-infl ammatory mediators, including arachidonic acid and 

leukotrienes (Torphy 1998). PDE 4 inhibitors also inhibit 

cellular traffi cking and microvascular leakage, production of 

reactive oxygen species, and cell adhesion molecule expres-

sion in vitro and in vivo (Sanz et al 2005). PDE 4 inhibitors, 

including cilomilast and CI-1044, inhibit LPS-stimulated 

TNF-α production in whole blood from COPD patients 

(Burnouf et al 2000; Ouagued et al 2005).

There are now thought to be at least four PDE 4s, A, B, C, 

and D, derived from four genes (Lobbam et al 1994; Muller 

et al 1996; Torphy 1998; Conti and Jin 1999; Matsumoto 

et al 2003). Alternative splicing and alternative promoters 

add further complexity (Manganiello et al 1995; Horton et al 

1995; Torphy 1998). Indeed, the four genes encode more than 

16 PDE 4 isoforms, which can be divided into short (∼65–75 

kDa) and long forms (∼80–130 kDa); the difference between 

the short and long forms lies in the N-terminal region (Bolger 

et al 1997; Huston et al 2006). PDE 4 isoforms are regulated 

by extracellular signal-related protein kinase (ERK), which 

can phosphorylate PDE 4 (Houslay and Adams 2003).

The four PDE 4 genes are differentially expressed 

in various tissues (Silver et al 1988; Lobbam et al 1994; 

Manganiello et al 1995; Horton et al 1995; Muller et al 1996; 

Torphy 1998). PDE 4A is expressed in many tissues, but not 

in neutrophils (Wang et al 1999). PDE 4B is also widely 

expressed and is the predominant PDE 4 subtype in mono-

cytes and neutrophils (Wang et al 1999), but is not found in 

cortex or epithelial cells (Jin et al 1998). Upregulation of 

the PDE 4B enzyme in response to pro-infl ammatory agents 

suggest that it has a role in infl ammatory processes (Manning 

et al 1999). PDE 4C is expressed in lung and testis, but not 

in circulating infl ammatory cells, cortex, or hippocampus 

(Obernolte et al 1997; Manning et al 1999; Martin-Chouly 

et al 2004). PDE 4D is highly expressed in lung, cortex, 

cerebellum, and T-cells (Erdogan and Houslay 1997; Jin 

et al 1998). PDE 4D also plays an important role in airway 

smooth muscle contraction (Mehats et al 2003).

A major issue with early PDE 4 inhibitors was their side 

effect profi le; the signature side effects are largely gastroin-

testinal (nausea, vomiting, increased gastric acid secretion) 

and limited the therapeutic use of PDE 4 inhibitors (Dyke 

and Montana 2002). The second generation of more selective 

inhibitors, such as cilomilast and rofl umilast, have improved 

side effect profi les and have shown clinical effi cacy in COPD 

and asthma (Barnette 1999; Spina 2000; Lagente et al 2005). 

However, even cilomilast and rofl umilast, the most advanced 

clinical candidates, discussed below, cause some degree of 

emesis (Spina 2003).

It is now thought that the desirable anti-infl ammatory 

properties and unwanted side effects of nausea and emesis are 

associated with distinct biochemical activities (Torphy et al 

1992; Jacobitz et al 1996; Barnette et al 1996; Souness et al 

1997; Souness and Rao 1997). Specifi cally, the side effects 

are believed to be associated with the so-called ‘high-affi nity 

rolipram binding site’ (HARBS) (Barnette et al 1995; Muller 

et al 1996; Jacobitz et al 1996; Kelly et al 1996; Torphy 1998) 

and/or inhibition of the form of PDE 4 found in the CNS 

(Barnette et al 1996). The exact nature of HARBS remains 

unclear, although it has been described as a conformer of 

PDE 4 (Souness and Rao 1997; Barnette et al 1998). Using 

mice defi cient in PDE 4B or PDE 4D, it appears that emesis 

is the result of selective inhibition of PDE 4D (Robichaud 

et al 2002; Lipworth 2005), which is unfortunate, because 

the most clinically advanced PDE 4 inhibitors are selective 

for PDE 4D. Also, from animal studies, it appears that the 

nausea and vomiting are produced via the CNS, though there 

may also be direct effects on the gastrointestinal system 

(Barnette 1999).

While beyond the scope of this review, it has been 

proposed that PDE 4 inhibitors may be useful in treating 

infl ammatory bowel disease (Banner and Trevethick 2004), 

cystic fi brosis (Liu et al 2005), pulmonary arterial hyperten-

sion (Growcott et al 2006), myeloid and lymphoid malig-

nancies (Lerner and Epstein 2006), Alzheimer’s disease 

(Ghavami et al 2006), rheumatoid arthritis and multiple 

sclerosis (Dyke and Montana 2002), infection-induced 

preterm labor (Oger et al 2004), depression (Wong et al 

2006), and allergic disease (Crocker and Townley 1999). 

Varying degrees of in vitro, in vivo, and clinical data exist 

to support these claims.
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So, after that theoretical buildup, we reach the proof 

of the pudding; clinical studies have been conducted with 

PDE 4 inhibitors. A potent, but not-very-selective, PDE 4 

inhibitor is approved in Japan and is used clinically, includ-

ing for treating asthma. Another is awaiting approval in the 

US. One is in advanced clinical development and others are 

at earlier stages.

Ibudilast
The drug ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-a]

pyridine) is a nonselective PDE inhibitor. It is approved in 

Japan and has been widely used to treat bronchial asthma 

and ischemic stroke. Ibudilast preferentially inhibits PDE 

3A, PDE 4, PDE 10, and PDE 11. Ibudilast potently inhibits 

purifi ed human PDE 4A, 4B, 4C and 4D with IC
50

 values of 

54, 65, 239 and 166 nM, respectively (Huang et al 2006). 

It may be useful in treating a range of neurological condi-

tions, linked to its ability to elevate cellular cyclic nucleotide 

concentrations (Gibson et al 2006).

Cilomilast
Cilomilast is a second-generation PDE 4 inhibitor that was 

developed to separate activity at the HARBS and PDE 4 

(Christensen et al 1998; Barnette et al 1998; Griswold et al 

1998; Underwood et al 1998; Torphy et al 1999). Cilomilast 

is as strong an anti-infl ammatory as rolipram, but causes 

much less nausea and gastric acid secretion. Cilomilast is 

also negatively charged at physiological pH, limiting its 

penetration into the CNS.

Cilomilast is being developed as a treatment for COPD; 

the drug has been assessed in phase III trials (Norman 1999; 

Norman 2000; Barnette and Underwood 2000; Torphy 

and Page 2000; Martina et al 2006). The compound had 

previously been in development for asthma, and phase II 

trials were conducted in the US and Japan in 2001; however, 

development for asthma was apparently discontinued.

Cilomilast is a potent (K
i
 = 92 nM), selective PDE 

4 inhibitor (Christensen et al 1998; Barnette et al 1998; 

Griswold et al 1998; Underwood et al 1998). Cilomilast is 

considerably more selective for PDE 4D (IC
50

 = 12 nM) 

than 4A (IC
50

 = 115 nM), 4B (IC
50

 = 86 nM), or 4C 

(IC
50

 = 308 nM). The drug is essentially inactive against 

PDEs 1, 2, 3, 5, and 7 (Christensen et al 1998). Cilomi-

last inhibited human TNF-α production and PDE 4, and 

increased intracellular cAMP levels in both neutrophils 

and PBMCs (Chambers et al 1997). Cilomilast (10 µM) 

inhibited the degradation of three-dimensional collagen 

gel by fi broblasts (Kohyama et al 2002).

The anti-infl ammatory effects of cilomilast have been 

assessed in bronchial epithelial cells and sputum cells from 

smokers, COPD patients, and normal controls (Profi ta et al 

2003). TNF-α and IL-8 were released at a signifi cantly 

higher level in bronchial epithelial and sputum cells from 

patients with COPD than in controls or smokers. Cilomilast 

signifi cantly reduced TNF-α release by bronchial epithelial 

and sputum cells, and GM-CSF release by sputum cells; 

IL-8 release was not signifi cantly changed. Thus, cilomilast 

inhibited the production of some neutrophil chemoattractants 

by airway cells (Profi ta et al 2003). In bronchial biopsies 

from COPD patients, cilomilast treatment was associated 

with reductions in CD8+ and CD68+ cells; both cell types 

are increased in COPD and correlate with disease severity 

(Gamble et al 2003).

The cilomilast COPD clinical program included over 

4000 patients in phase II and III trials. Evidence of safety 

and effi cacy was based on four pivotal trials, involving 2883 

patients. In addition, two phase-III open-label extension 

studies followed 1069 cilomilast patients for as long as three 

years. Inclusion criteria for the pivotal studies were patients 

between the ages of 40 and 80-years, with a diagnosis of 

COPD. Two primary endpoints were used: FEV
1
 and total 

score on the St George’s respiratory questionnaire (SGRQ), 

a self-administered questionnaire intended to determine the 

impact of chronic respiratory disease on health-related quality 

of life and well-being.

To date, four clinical trials have evaluated the effi cacy of 

cilomilast and demonstrated improvement in lung function 

(FEV
1
) and quality of life and reduction in the occurrence of 

COPD exacerbations, compared with placebo. Cilomilast was 

generally well tolerated, with adverse effects being overall 

mild and self-limiting.

The phase I and phase II studies demonstrated that cilo-

milast signifi cantly improved lung function and quality of 

life to a clinically meaningful extent. A phase III program 

followed, to evaluate effi cacy, safety, and mechanism of 

action.

By late 2003, GSK had performed four pivotal studies of 

cilomilast in a total of 2883 patients (n = 647 (study 039), 700 

(study 042), 711 (study 091) and 825 (study 156)), compar-

ing cilomilast (15 mg bid) with placebo over 24-weeks. Data 

from these trials, relating to various combinations of patients, 

have now been reported in several publications.

Phase III results in 2058 stable COPD patients were 

reported comparing cilomilast (15 mg bid for 6-months) with 

placebo. Cilomilast caused a sustained improvement in lung 

function and a reduction in the risk of exacerbation. Using 
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the SGRQ to assess quality of life, there was an improvement 

in health status in the cilomilast-treated group.

In a 6-month study, involving 647 patients with stable 

COPD (431 received 15 mg cilomilast bid and 216 received 

placebo), the cilomilast-treated patients exhibited an 

improved health status (assessed by SGRQ). These patients 

also demonstrated improved lung function (FEV
1
: 40 mL 

improvement over placebo), reduced healthcare resources 

utilization (physician visits, emergency room visits, 

hospitalization), and a lower rate of COPD exacerbation 

(39% lower than placebo).

After a 4-week, single-blind, run-in phase, 1411 patients 

with stable COPD received placebo or cilomilast (15 mg bid) 

for 24-weeks. FEV
1
 was maintained in patients receiving 

cilomilast versus placebo, with a treatment difference of 

300 mL. Cilomilast achieved a clinically signifi cant reduction 

(26%) in the risk of moderate-to-severe COPD exacerbations, 

compared with placebo.

Thus, two of the four pivotal studies (studies 039 

and 156) reached clinical significance and two (042 and 

091) did not. There was a mean change in FEV
1
 of 10 mL 

from baseline following cilomilast treatment in the two 

positive trials, compared with 20 and 30 mL reductions, 

for placebo in these trials (for studies 156 and 039, 

respectively).

Side effects and contraindications
GI-related side effects, including nausea, diarrhea, dyspepsia, 

vomiting, and abdominal pain, have been observed; they are 

believed to be dose-related and were monitored specifi cally 

because of preclinical studies fi nding vasculitis in cilomilast-

treated mice and rats. Ischemic colitis (a consequence of 

mesenteric arteritis) was a monitored adverse event in the 

clinical program; it was observed in three patients receiving 

cilomilast and in two receiving placebo, a low rate consistent 

with the normal incidence in the general population. The 

frequency of GI symptoms that concerned the patients or 

interfered with daily activities was 3-fold higher in patients 

receiving cilomilast than placebo.

Rofl umilast
Roflumilast (3-cyclopropylmethoxy-4-difluoromethoxy-

N-[3,5-dichloropyrid-4-yl]-benzamide) is a potent and selec-

tive PDE 4 inhibitor. It is being developed as an oral therapy 

for COPD and asthma (Reid 2002; Christie 2005; Cowan 

2005; Antoniu 2006b; Boswell-Smith and Page 2006). It is 

an effective anti-infl ammatory agent in COPD and asthma. 

Animal data and clinical trials to date have demonstrated 

favorable effi cacy and safety, and no documented drug 

interactions (Hatzelmann and Schudt 2001).

Rofl umilast inhibits PDE 4 activity in human neutrophils 

(IC
50

 = 0.8 nM), without affecting PDE 1, 2, 3, or 5, even 

at 10,000-fold higher concentrations. Rofl umilast has good 

bioavailability following oral administration, a long half-life 

(∼10 h), and an active metabolite (rofl umilast-N-oxide, with 

a half-life of ∼20 h). Rofl umilast is approximately equipotent 

with its major in vivo metabolite (rofl umilast-N-oxide).

It can be given once a day; it has been studied as an 

oral tablet at doses of 250 or 500 µg/day. Rofl umilast is 

thus convenient to administer and has a favorable side 

effect profi le in clinical studies reported to date (Karish and 

Gagnon 2006).

Rofl umilast has a range of anti-infl ammatory proper-

ties and has potential for treating infl ammatory diseases. 

Rofl umilast increases levels of cellular cAMP and inhib-

its microvascular leakage, trafficking, and the release 

of cytokines and chemokines from inflammatory cells 

(Christie et al 2005). Roflumilast apparently mediates 

some of its anti-infl ammatory effects by inducing heme 

oxygenase-1 expression in macrophages (Kwak et al 2005). 

The anti-infl ammatory and immunomodulatory potential of 

rofl umilast has been assessed in human leukocytes. Regard-

less of cell type and the response investigated, the IC
50

 values 

were in a narrow range (2–21 nM), similar to that of rofl umi-

last N-oxide (3–40 nM) (Hatzelmann and Schudt 2001).

Rofl umilast has shown encouraging effi cacy in patients 

with COPD, with signifi cant improvements observed in 

FEV
1
 and PEFR versus baseline (Cowan 2005). COPD 

patients receiving rofl umilast experienced fewer exacerba-

tions. The most common adverse effects reported in clini-

cal trials were diarrhea, nausea, headache, and abdominal 

pain (Cowan 2005). In a biopsy study of COPD patients, 

roflumilast significantly reduced the numbers of CD8+ 

T-cells and caused lesser reductions in the numbers of CD4+ 

T-cells and neutrophils, and no changes in the expression of 

IL-8 or TNF-α.

A 6-month dose ranging study of rofl umilast in COPD 

patients has been reported. Patients receiving rofl umilast 

exhibited a signifi cant, although modest, improvement in 

FEV
1
. Patients in the rofl umilast group had a 48% reduction 

in the number of exacerbations, as compared with an 8% 

reduction in the placebo group.

In a phase III, multicenter, double-blind, randomized, 

placebo-controlled study undertaken in an outpatient setting, 

1411 patients with moderate-to-severe COPD were randomly 

assigned to receive rofl umilast 250 µg (n = 576), rofl umilast 
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500 µg (n = 555), or placebo (n = 280) given orally once daily 

for 24-weeks. Primary outcomes were post-bronchodilator 

FEV
1
 and health-related quality of life. Secondary outcomes 

included exacerbations. 1157 (82%) patients completed 

the study. Post-bronchodilator FEV
1
 at the end of treat-

ment signifi cantly improved with rofl umilast 250 µg and 

500 µg, compared with placebo. Most adverse events were 

mild-to-moderate in intensity and resolved during the study. 

Rofl umilast improved lung function and reduced exacerba-

tions compared with placebo (Rabe et al 2005).

Rofl umilast has also been assessed in several clinical 

studies of asthma. In a double-blind, randomized study, 

rofl umilast was compared with inhaled beclomethasone 

dipropionate. 499 patients (FEV
1
 = 50%–85% predicted) 

received rofl umilast 500 µg once daily or beclomethasone 

dipropionate 200 µg twice daily for 12 weeks. Rofl umilast 

and beclomethasone dipropionate signifi cantly improved 

FEV
1
 and FVC. Once daily rofl umilast (500 µg oral) was 

comparable with inhaled twice-daily beclomethasone 

dipropionate (400 µg/d) in improving pulmonary function 

and asthma symptoms and reducing rescue medication use 

(Bousquet et al 2006). In a dose-ranging study of rofl umilast 

in patients with mild-to-moderate asthma, patients (n = 693) 

were randomized in a double-blind, parallel-group manner. 

After a 1–3-week placebo run-in period, patients (mean FEV
1
 

73% of predicted) were randomized to receive rofl umilast 

100, 250, or 500 µg once daily for 12-week. The primary 

end point was change in FEV
1 

from baseline. Secondary 

end points included change in morning and evening peak 

expiratory fl ow from baseline. Rofl umilast signifi cantly 

increased FEV
1
 (improvements from baseline at the last 

visit were 260, 320, and 400 mL for the 100, 250, and 500 

µg doses, respectively). Rofl umilast was well tolerated at 

all doses tested; most adverse events were mild to moderate 

in intensity and transient (Bateman et al 2006). Rofl umilast 

was assessed in a placebo-controlled, randomized, double-

blind, crossover study in 16 patients with exercise-induced 

asthma. Patients received placebo or rofl umilast (500 µg/d) 

for 28 d. Exercise challenge was performed 1 h after dosing 

on days 1, 14, and 28. FEV
1
 was measured before exercise 

challenge, immediately after the end of exercise, and then 

1, 3, 5, 7, 9, and 12 min later. The mean percentage fall in 

FEV
1
 after exercise was reduced by 41%, compared with 

placebo. The median TNF-α level decreased by 21% during 

rofl umilast treatment, but remained constant with the placebo. 

Rofl umilast was effective in treating exercise-induced asthma 

and there was a signifi cant reduction of TNF-α levels ex vivo 

(Timmer et al 2002).

Rofl umilast’s anti-allergy properties have been assessed 

in several clinical studies. The effi cacy of oral rofl umilast 

(500 µg/day) has been investigated in allergic rhinitis, in a 

randomized, placebo-controlled, double-blind, crossover 

study. Twenty fi ve people (16 male, 9 female; median age, 

28 years) with histories of allergic rhinitis, but who were 

asymptomatic at screening, received rofl umilast (500 µg 

once daily) and placebo for 9 d each with a washout period 

of at least 14 d between treatments. Controlled intranasal 

allergen provocation with pollen extracts was performed 

daily beginning on the third day of treatment, ∼2 h after drug 

administration. After allergen provocation, rhinal airfl ow was 

measured and subjective symptoms (obstruction, itching, 

rhinorrhea) were assessed. Rhinal airfl ow improved during 

rofl umilast treatment and was signifi cantly higher at study 

day 9 than with placebo. Thus, rofl umilast, effectively con-

trolled symptoms of allergic rhinitis (Schmidt et al 2001).

The effects of repeated doses of rofl umilast (250 or 

500 µg oral) on asthmatic airway responses to allergen 

were examined in a randomized, double-blind, placebo-

controlled, crossover study. Patients (n = 23) with mild 

asthma (FEV
1
 � 70% of predicted value) participated in 3 

treatment periods (7–10 d), separated by washout periods 

(2–5-week). Patients received rofl umilast (250 µg or 500 

µg oral) or placebo once daily. Allergen challenge was per-

formed at the end of each treatment period, followed by FEV
1
 

measurements over the next 24 h. Once-daily oral rofl umilast 

attenuated late asthmatic reactions and, to a lesser degree, 

early asthmatic reactions to allergen in patients with mild 

allergic asthma (van Schalkwyk et al 2005).

Several studies on rofl umilast’s pharmacokinetic prop-

erties and metabolism have been reported. In an open, 

randomized, single-dose crossover study, the effects of a 

high-fat meal on the pharmacokinetics of rofl umilast and 

its N-oxide metabolite were investigated. Twelve healthy 

subjects received rofl umilast (2 × 250 µg orally) after an 

overnight fast and after breakfast. Blood was sampled up 

to 54 h for pharmacokinetic profi ling of rofl umilast and 

its N-oxide. After the meal, rofl umilast C
max 

was modestly 

reduced and the N-oxide C
max

 was unchanged. Rofl umilast 

t
max

 was delayed in the fed (2 h) versus the fasted state (1 h), 

while the N-oxide t
max

 was unchanged. No signifi cant food 

effect was seen on rofl umilast or the N-oxide AUC
0–last

 or 

AUC
0–8. Thus, rofl umilast can be taken with or without food 

(Hauns et al 2006).

Rofl umilast is partly metabolized by cytochrome P450 

(CYP) 3A4, and may inhibit its activity. Therapeutic 

steady-state concentrations of rofl umilast and its active 
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metabolite rofl umilast N-oxide did not alter the metabolism 

of the CYP3A substrate midazolam in healthy adult male 

subjects, suggesting that rofl umilast is not likely to affect 

the clearance of drugs that are metabolized by CYP3A4 

(Nassr et al 2006).

BAY 19-8004
The effects of a 1-week treatment with BAY 19-8004 (5 mg 

once per day) have been examined on trough FEV
1
 and 

markers of infl ammation in induced sputum in patients with 

COPD or asthma. Eleven patients with COPD (FEV
1
 ∼60% 

predicted, all smokers) and 7 patients with asthma (FEV
1
 

∼70% predicted, all non-smokers) took part in a randomized, 

double-blind, placebo-controlled trial. FEV
1
 was measured 

before and after 1 week of treatment; sputum was induced by 

4.5% saline inhalation on the last day of treatment. FEV
1
 did 

not improve during either treatment in either patient group. 

Sputum cell counts were not different following placebo 

and BAY 19-8004 treatment in COPD and asthma patients. 

In patients with COPD, small but signifi cant reductions in 

sputum levels of albumin and eosinophil cationic protein 

were observed. Thus, a 1-week treatment with BAY 19-8004 

did not affect FEV
1
 or sputum cell numbers in patients with 

COPD or asthma. However, such treatment did reduce levels 

of albumin and eosinophil cationic protein in sputum samples 

obtained from patients with COPD (Grootendorst, Gauw, 

Benschop et al 2003).

Other PDE 4 inhibitors for COPD 
in development
CC3
CC3 is another PDE 4 inhibitor with low affi nity for the 

HARBS. Its airway-relaxing properties were analyzed using 

rat precision-cut lung slices (PCLS) in which airways were 

contracted by methacholine or in passively sensitized PCLS 

exposed to ovalbumin. The anti-infl ammatory properties 

were investigated by measuring the release of TNF from 

endotoxin-treated human monocytes. CC3 in combination 

with motapizone, attenuated methacholine-induced 

bronchoconstriction in a concentration-dependent manner. 

CC3 has bronchospasmolytic and anti-infl ammatory proper-

ties (Martin et al 2002).

AWD 12-281
AWD 12-281 (N-(3,5-dichloro-4-pyridinyl)-2-[1-(4-

fl uorobenzyl)-5-hydroxy-1H-indol-3-yl]-2-oxoacetamide), is 

a potent (IC
50

 = 9.7 nM) and selective inhibitor of PDE 4, with 

a low affi nity for the HARBS (Kuss et al 2003; Gutke et al 

2005). The compound was optimized for topical treatment of 

COPD, asthma, and allergic rhinitis. The compound has a low 

oral bioavailability and a low solubility. It exerts long-lasting 

pharmacological effects after intratracheal administration, 

indicating persistence in lung tissue in various animal models. 

It has high plasma-protein binding and hepatic metabolism 

(primarily glucuronidation); both contribute to low systemic 

exposure after intratracheal dosing. The drug has a large dif-

ference between emetic and anti-infl ammatory dose levels 

(a factor of more than 100 in ferrets) (Kuss et al 2003).

SCH 351591
SCH 351591 (N-(3,5-dichloro-1-oxido-4-pyridinyl)-

8-methoxy-2-(trifl uoromethyl)-5-quinoline carboxamide) 

has been identifi ed as a potent (IC
50

 = 58 nM) and highly 

selective PDE 4 inhibitor with oral bioactivity in several 

animal models of lung infl ammation and is being investigated 

as a potential therapeutic for COPD and asthma.

Ciclamilast
Ciclamilast is a piclamilast (RP 73-401) analog, though is 

a more potent inhibitor of PDE 4 and airway infl ammation 

and has a more favorable side-effect profi le than piclamilast 

(Deng et al 2006). In a murine model, oral administration 

of ciclamilast dose-dependently inhibited changes in lung 

resistance and lung dynamic compliance, up-regulated 

cAMP-PDE activity, and increased PDE 4D, but not PDE 

4B, mRNA expression in lung tissue. Ciclamilast also dose-

dependently reduced mRNA expression of eotaxin, TNF-α 

and IL-4, but increased mRNA expression of IFN-γ in lung 

tissue. There was a correlation between increases in PDE 

4D mRNA expression and airway hyper-responsiveness 

(Deng et al 2006).

Piclamilast
Piclamilast (RP 73-401) reduced antigen challenge induced-

cell recruitment in airways of sensitized mice, and reduced 

gelatinase B (MMP-9) (Belleguic et al 2000). Piclamilast 

also reduced MMP-9 activity and TGF-β1 release during 

acute lung injury in mice, suggesting that PDE 4 inhibitors 

might modulate tissue remodeling in lung injury (Corbel, 

Germain et al 2002). Fibroblasts cultured with PMA or 

TNF-α released increased amounts of pro-MMP-1, whereas 

TGF-β1 had no effect (Martin-Chouly et al 2004). Incuba-

tion with CI-1044 or cilomilast signifi cantly prevented the 

TNF-α increase in pro-MMP-1. These results suggest that 

PDE 4 inhibitors are effective in inhibiting the pro-MMP-2 

and pro-MMP-1 secretion induced by TNF-α and might 
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indicate the potential therapeutic benefi t of selective PDE 4 

inhibitors in lung diseases associated with abnormal tissue 

remodeling (Martin-Chouly et al 2004).

CGH2466
CGH2466 resulted from a study to identify a theophylline-

like compound with improved effectiveness. CGH2466 

antagonized the adenosine A1, A2b and A3 receptors and 

inhibited the p38 mitogen-activated protein (MAP) kinases 

α and β and PDE 4D. CGH2466 inhibited the production of 

cytokines and oxygen radicals by human peripheral blood leu-

cocytes in vitro. When given orally or locally into the lungs, 

CGH2466 potently inhibited the ovalbumin- or LPS-induced 

airway infl ammation in mice (Trifi lieff et al 2005).

The in vitro activity of CI-1044 has been compared with 

that of rolipram and cilomilast and to the glucocorticoid 

dexamethasone in reducing LPS-induced TNF-α release 

in whole blood from COPD patients. In whole blood from 

COPD patients, pre-incubation with PDE 4 inhibitors or 

dexamethasone resulted in a dose-dependent inhibition of 

LPS-induced TNF-α release. There was a similar inhibition 

using whole blood from healthy volunteers, however, at 

higher IC
50

 values. Thus, CI-1044 inhibited in vitro LPS-

induced TNF-α release in whole blood from COPD patients 

(Ouagued et al 2005).

Other treatments for COPD 
in development
Many other treatments for COPD and asthma are in various 

stages of development (Donnelly and Rogers 2003; Buhl 

and Farmer 2004; Buhl and Farmer 2005; Malhotra et al 

2006). They include aids to smoking cessation (Richmond 

and Zwar 2003), antiproteases, including inhibitors of 

neutrophil elastase (Ohbayashi 2002), matrix metalloprote-

ase inhibitors (Owen 2005; Gueders et al 2006), cathepsin 

inhibitors (de Garavilla et al 2005), selectin antagonists 

(Romano 2005), inhibitors of TNF-α (Spond et al 2003), 

adenosine A2a receptor agonists (Bonneau et al 2005), ω-3 

polyunsaturated fatty acids (Matsuyama et al 2005), inhibi-

tors of mucus hypersecretion (Knight 2004; Rogers and 

Barnes 2006), purinoceptor P2Y
2
 receptor agonists to 

increase mucus clearance (Kellerman 2002), inhibitors of 

p38 mitogen-activated protein (MAP) kinase (Adcock et al 

2006), inhibitors of NF-κB kinase-2 (IKK2) (Caramori et al 

2004), leukotriene (LT) blockers (Riccioni et al 2004), anti-

chemokine therapy (Panina et al 2006; Hardaker et al 2004), 

anti-cytokine therapy (Chung 2006), statins, angiotensin-

converting enzyme inhibitors, and angiotensin receptor 

blockers (Mancini et al 2006), antioxidant therapy (Bowler 

et al 2004; Owen 2005; MacNee 2005b; Rahman and Kilty 

2006; Hanta et al 2006; Sadowska et al 2006; Rahman and 

Adcock 2006), and activators of histone deacetylase (Adcock 

et al 2005; Antoniu 2006; Kirkham and Rahman 2006; Barnes 

2006; Ito et al 2006).

Conclusion
The concept of PDE 4 inhibitors as treatments for COPD, 

asthma, and other infl ammatory airway conditions has been 

widely discussed in the literature in recent years and may 

soon come to fruition. Taking one step back, PDE inhibitors 

have proven to be successful drugs. Today, the fi rst-line oral 

pharmacotherapy for most patients with erectile dysfunction 

is a PDE 5 inhibitor: sildenafi l (Viagra), tadalafi l (Cialis), 

or vardenafi l (Levitra) (Briganti et al 2005; Boswell-Smith, 

Spina, et al 2006). Furthermore, ibudilast, a drug that does 

inhibit PDE 4, is marketed in Japan and is used to treat 

asthma.

There is much preclinical data supporting the use of PDE 

4 inhibitors in treating COPD. In vitro, PDE 4 inhibitors relax 

lung smooth muscle and decrease the production of cytokines 

from infl ammatory cells (Torphy and Undem 1991; Undem 

et al 1994; Dent and Giembycz 1995; Teixeira et al 1997). 

PDE 4 inhibitors also reduce TNF-α release (Profi ta et al 

2003). Furthermore, some PDE 4 inhibitors inhibit neutro-

phil degranulation (Jones et al 2005). These inhibitors also 

suppress the activity of many pro-infl ammatory and immune 

cells (Lipworth 2005).

To date, only limited clinical data is available to assess 

PDE 4 inhibitors. Results from large, phase III COPD 

studies of cilomilast have been reported; cilomilast was 

well-tolerated, improved health status, and lung function, and 

reduced the utilization of healthcare resources and incidence 

of COPD exacerbations. However, the results of these phase 

III trials were somewhat unremarkable and disappointing 

(Giembycz 2006).

Questions remain about both the effi cacy and safety of 

cilomilast, the one PDE 4 inhibitor to have undergone a full 

clinical program to date. Its effi cacy has been somewhat 

limited and, furthermore, somewhat inconsistent results 

have been reported; indeed, the FDA has yet to approve 

the drug, apparently because of its limited effi cacy. In two 

of the four pivotal phase III trials, cilomilast did not reach 

statistical signifi cance over the placebo. In a 6-week phase 

II study in 424 patients with moderate COPD, signifi cant 

improvements in lung function were seen in patients receiv-

ing cilomilast. Administered at 15 mg bid, it resulted in 
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signifi cant improvements in FEV
1
 compared with placebo 

(130 mL versus –30 mL at week 6); FVC and peak expira-

tory fl ow rate also improved. However, no improvement in 

quality of life (SGRQ) was found. The observed difference 

in FEV
1
 compared with placebo after 12-weeks was 70 mL 

(10 mL versus -60 mL at week 12; statistically insignifi cant). 

This was compared with 160 mL (130 mL versus –30 mL at 

week 6) in the larger study, despite patients having similar 

levels of baseline function (Compton et al 1991). In a smaller 

(59-patient) phase II study, no signifi cant change in FEV
1
 

was found (Gamble et al 2003).

The FDA expressed concern about cilomilast’s toxicity 

and side effects. Vasculitis was seen in rats at doses lower 

than those used in the phase III studies and GI-related side 

effects were seen in patients receiving cilomilast at three 

times the frequency seen in those taking placebo.

It remains unclear whether the effects of cilomilast on 

lung function are the result of bronchodilator activity or of 

an anti-infl ammatory effect; the relatively slow improvement 

in FEV
1
 suggests an anti-infl ammatory action, not bron-

chodilation. The acute bronchodilating effects of a single 

dose of cilomilast have been assessed in COPD patients. 

FEV
1
 was measured before and at up to 8 h intervals after 

patients received placebo, cilomilast, or cilomilast and 

inhaled salbutamol (400 µg) and/or ipratropium bromide 

(80 µg). A single dose of cilomilast did not cause acute 

bronchodilation in COPD patients who were responsive to 

inhaled bronchodilators (Grootendorst, Gauw, Baan et al 

2003). Anti-infl ammatory properties of cilomilast have been 

assessed in several studies. In one, patients with COPD 

received cilomilast (15 mg bid) or placebo for 12-weeks. In 

bronchial biopsies, cilomilast treatment was associated with 

reductions in CD8+ and CD68+ cells; this was the fi rst report 

of a reduction in airway tissue infl ammatory cells character-

istic of COPD by any agent (Gamble et al 2003).

While the FDA issued an ‘approvable’ letter for cilomilast 

to treat CODP, signifi cant safety and effi cacy issues remain. 

In two of four pivotal phase III studies, the drug failed to 

reach statistical signifi cance in FEV
1
 change, the co-primary 

endpoint. Indeed, in the two studies that did, this was largely 

the result of decreases in FEV
1
 in the placebo group, not 

increases in those receiving cilomilast (FEV
1
 remained close 

to baseline, even after 6-months of treatment, in all four 

studies). The FEV
1
 changes seen were small and there is a 

question as to whether even statistically signifi cant results 

would be of much clinical signifi cance. For comparison, the 

changes were smaller than those reported in a meta-analysis 

of theophylline studies (Ram et al 2002). Three of the four 

phase III studies failed to reach statistical signifi cance in 

SGRQ, the other primary endpoint. However, cilomilast did 

reduce the incidence of exacerbations.

In rat studies, cilomilast was associated with vasculitis 

and death at doses lower than the human dose, although there 

is some reason to believe that rats may be more sensitive to 

PDE inhibitor toxicity (Bian et al 2004). Vasculitis has been 

seen with other PDE inhibitors (Larson et al 1996; Slim et al 

2003). The FDA was apparently not satisfi ed with the inves-

tigation by GSK of patients with GI-related side effects.

Cilomilast seems unlikely to be a replacement for 

existing COPD therapies (supplemental oxygen, inhaled 

bronchodilators, corticosteroids and antibiotics (Sin et al 

2003)). Cilomilast, however, may be a useful additional 

drug (for example, in combination with corticosteroids), 

especially if it can be shown in longer-term studies that the 

increases in FEV
1
 are more substantial. Cilomilast has other 

anti-infl ammatory properties, which may also be of clinical 

signifi cance (Gamble et al 2003).

The concept of using PDE 4 inhibitors to treat COPD 

may well be sound, but the fi rst drug in the class may be 

rofl umilast (Antoniu 2006b), not cilomilast. The comple-

tion and publication of its clinical development is awaited 

with interest.
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