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Purpose: Risk stratification in patients with multiple myeloma (MM) remains a challenge.

As clinicopathological characteristics have been demonstrated insufficient for exactly defin-

ing MM risk, and molecular biomarkers have become the focuses of interests. Prognostic

predictions based on gene expression profiles (GEPs) have been the most accurate to this day.

The purpose of our study was to construct a risk score based on stemness genes to evaluate

the prognosis in MM.

Materials and Methods: Bioinformatics studies by ingenuity pathway analyses in side

population (SP) and non-SP (MP) cells of MM patients were performed. Firstly, co-expression

network was built to confirm hub genes associated with the top five Kyoto Encyclopedia of

Genes and Genomes pathways. Functional analyses of hub genes were used to confirm the

biologic functions. Next, these selective genes were utilized for construction of prognostic

model, and this model was validated in independent testing sets. Finally, five stemness genes

(ROCK1, GSK3B, BRAF, MAPK1 and MAPK14) were used to build a MM side population 5

(MMSP5) gene model, which was demonstrated to be forcefully prognostic compared to usual

clinical prognostic parameters by multivariate cox analysis. MM patients in MMSP5 low-risk

group were significantly related to better prognosis than those in high-risk group in independent

testing sets.

Conclusion: Our study provided proof-of-concept that MMSP5 model can be adopted to

evaluate recurrence risk and clinical outcome for MM. The MMSP5 model evaluated in

different databases clearly indicated novel risk stratification for personalized anti-MM

treatments.

Keywords: multiple myeloma, gene expression profiling, side population, risk score,

prognosis

Introduction
Multiple myeloma (MM), originated from malignant plasma cells, represents the

most second common hematological malignancies. These malignant plasma cells

are characterized with recurrent gene gains, deletions or translocations.1–3 Gene

expression signature made it possible to confirm gene expression of myeloma cells

associated with overall and event-free survival (OS/EFS) of newly diagnosed MM

patients. Zhan et al identified 8 genetic subgroups of MM.4 Subsequently,

Shaughnessy et al established a 70-gene risk-scoring system able to divide 13%

of MM cases into high-risk group.5 Later, Decaux et al developed IFM15 risk

stratification, which classify 25% of MM cases as high-risk.6 These risk-scoring

systems mostly include genes coding for proteins involved in cell communication,

cell cycle and metabolism. Although the incorporation of prognostic evaluation and
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novel agents has significantly improved the response rate

to chemotherapy and prognosis of patients,7,8 almost MM

patients will ultimately suffer from relapse. In those

relapsed MM patients, a group of clonal myeloma stem

cell might be responsible for the accumulation of myeloma

cell after complete remission (CR).9,10 Thus, it is an urgent

demand to explore the prognostic markers able to identify

MM patients with high recurrence in order to schedule

personalized anti-MM treatment.11,12 Unfortunately, none

of these studies focused on myeloma stem cell.

Our purpose is that identifying genes whose expression

is over-expressed in myeloma stem cell and could predict

risk stratification in newly diagnosed MM patients.

Especially, it is of interest to confirm whether myeloma

stem cell could aberrantly express genes shared by bone

marrow microenvironment, which confer to myeloma

metastasize.13 Although previous researches have identi-

fied myeloma stem cell phenotypes,14–16 the individual

myeloma stem cell marker is still under dispute. Side

population (SP) cells, explained by Goodell et al,17 are

a group of enriched tumor-initiating cells with low

Hoechst 33342 staining, and SP cells were characterized

with stem cell-like features including clonogenicity, self-

renewal, differentiation and repopulation.14–16,18,19 MM

side population (MMSP) cells, which are considered

a functional surrogate marker for cancer stem cells, gen-

erate more colonies when compared with mature MM cells

and may lack CD138 expression.18,20 Defining gene

expression of SP cells is as important as defining high-

risk MM for setting up appropriate risk stratification.

On the above bases, we investigated a stemness gene

signature able to distinguish the different stages of mye-

loma progression, and evaluated the prognostic associa-

tions of MMSP5 in SP cells by analyzing gene expression

profiles (GEPs) datasets. As a result, MMSP5 was demon-

strated to be an efficient model in different datasets and be

helpful in the prediction of clinical outcome.

Materials and Methods
Data Source and Microarray Analysis
The GEP of GSE109651 was obtained from Gene

Expression Omnibus (GEO) datasets. Zhan et al submitted

GSE109651, which was based on Agilent GPL570 plat-

form. GSE109651 dataset contained 14 samples, including

7 Side-population/light chain+ (SP/LC) samples and 7

CD138+ (MP) samples. Flow SP cells were enumerated

and flow-sorted as described by our previous

publications.21 Briefly, 1 × 106 cells were suspended in

1 mL RPMI1640 media with 10% FBS and 5 μg/mL

Hoechst 33342, and incubated in 37°C water bath for 90

minutes. Cells treated with 100 μmol/L verapamil were

used as negative control. After incubation, cells were

stained with CD138-FITC, κ-APC or λ-PE antibodies

and resuspended in ice-cold RPMI1640 media with propi-

dium iodide (2 μg/mL) for flow analysis or sorting. Cell

death assays were performed using Annexin V Apoptosis

Detection Kit APC. SP cells were analyzed on a LSR flow

cytometer equipped with 424/44 nm band pass and 670 nm

long pass optical filters.

GEO datasets were also carried out to evaluate

MMSP5 in MM patient cohorts (GSE5900,22 GSE2658,4

GSE24080,23 GSE31161,24 GSE978225 and GSE5731726).

Data acquisition and normalization methods in the above

datasets have been described previously.23 The gene

expression in plasma cells was determined using the

Affymetrix U133Plus2.0 microarray, which was performed

as previously described.4

Data Preprocessing and Differentially

Expressed Genes (DEGs) Screening
RMA algorithm in affy package was utilized to preprocess

the raw expression data in R package.27,28 Then, The

limma package in R package was used to identify DEGs

between SP and MP samples,29 with the fold change >2

and the statistical significance of P < 0.05. The Benjamin

and Hochberg’s method was used to control the false

discovery rate.

Gene Ontology (GO) and Pathway

Enrichment Analysis of DEGs
To confirm the main functional pathways of SP cells,

Database for Annotation, Visualization and Integrated

Discovery (DAVID) was applied to perform the Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis and GO analysis of DEGs.30 P < 0.05 was defined

as the cut-off value for enriched pathways and functions.

Quantitative Real-Time PCR (qRT-PCR)

Analysis
Total RNA fromMM sorted cells was isolated and supplied to

reverse transcription; qRT-PCRwas done using a StepOnePlus

RT-PCR System (Applied Biosystems, USA). GAPDH levels

were used to normalize all genes expression levels. Primers

were listed in Supplemental Materials. These clinical samples
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were collected from The Affiliated Drum Tower Hospital of

Nanjing University Medical School, written informed consent

was obtained from all of the patients. This study was approved

by the Ethics Committee on Human Research of The

Affiliated Drum Tower Hospital of Nanjing University

Medical School.

Statistical Analysis
Various statistical analyses were utilized to evaluate the

impact of 5 genes expression on clinical outcome of MM

patients. Two-tailed Student’s t-test and one-way analysis

of variance were used to compare two or multiple experi-

mental groups. The Chi-square test was used to compare

clinical features between high-risk (HR) and low-risk (LR)

groups. Survival curves for OS/EFS were hatched accord-

ing to Kaplan–Meier method, and the Log-rank test was

used to analyze statistical differences between different

curves. The effect of MMSP5 on outcome was analyzed

using univariate and multivariate Cox proportional hazard

models. GraphPad Prism 6 software was employed for our

analyses and *P < 0.05 was considered significant.

Results
DEGs Between the SP and MP Groups
In total, 988 genes were identified to be DEGs, including 393

up-regulated genes and 595 down-regulated genes in SP sam-

ples. As shown in the heatmap and giant network (Figure 1A

and B), DEGs were divided into 2 clusters according to the

clustering analysis result. Meanwhile, SP and CD138+ (MP)

specimens were also classified into 2 different groups. To

explore the specific function pattern of DEGs, DAVID was

employed for functional enrichment analysis. GO analysis

revealed that up-regulated genes were enriched in several

biological processes (BP), including inflammatory response,

lipopolysaccharide-mediated signaling pathway and

Figure 1 Functional enrichment analysis of hub genes. (A) Heat map and clustering analysis of DEGs. Red: high expression level; Blue: low expression level. (B) The giant

network was extracted from the whole PPI network. Key nodes in the giant network are highlighted in different colors: red corresponds to the up-regulated gene and green

corresponds to the down-regulated gene in SP cells. (C) Significant Enriched Go Terms of up-regulated DEGs in SP cells based on their functions. (D) Identification of 8

commonly changes DEGs from top five KEGG pathways in up-regulated DEGs, using Venn diagram, different color areas represented different KEGG pathway. The cross

areas denote overlapping DEGs.

Abbreviations: PPI, protein and protein interaction; DEGs, differentially expressed genes; SP, side population; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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movement of cell or subcellular component; For molecular

function (MF), those up-regulated geneswere enriched protein

binding, guanosine diphosphate (GDP) and protein phospha-

tase binding; Additionally, cell component (CC) analysis dis-

played that the up-regulated genes weremainly enriched in the

cytosol, extracellular exosome and membrane raft

(Figure 1C).

Moreover, the KEGG pathway enrichment analysis

was also performed in up-regulated DEGs. Among them,

the top five KEGG pathways in up-regulated DEGs were

enriched in Chemokine signaling pathway, Osteoclast dif-

ferentiation, FoxO pathway, Regulation of actin cytoske-

leton and Insulin signaling pathway (Figure 1C).

Construction of a Stemness Prognostic

Score
We used the Venn diagram to construct co-expression network

in the top five KEGG pathways, and identified 8 hub genes as

the stemness genes (Figure 1D). Firstly, in order to acquire the

ideal feature genes for diagnosing MM, we examined gene

expression in normal plasma (NP), monoclonal gammopathy

of undetermined significance (MGUS), smoldering multiple

myeloma (SMM) and MM cells using GEO database.

Notably, 5 genes (ROCK1, GSK3B, BRAF, MAPK1 and

MAPK14) expression increased significantly from NP to

MM samples (Figure 2A–E). We also compared these 5

genes expression in LC/SP and CD138+ MM cells, and

Figure 2 Five selected genes levels are correlated with poor survival in newly diagnosed myeloma patients. (A–E) Gene expression of NP (n = 22), MGUS (n = 44), SMM (n = 12)

andMM (n = 559) in GSE5900 and GSE2658 datasets (upper row). Kaplan–Meier analysis on the overall survival of MMpatients in TT2 cohorts based on the gene expression (lower

row). (F) 5 selected gene mRNA expression fromMM patients with paired SP/LC and CD138+ MM cells were detected by qRT-PCR. (G) The protein network was constructed by

online STRING software.

Abbreviations: NP, normal plasma; MGUS, monoclonal gammopathy of undetermined significance; SMM, smoldering multiple myeloma; qRT-PCR, quantitative real-time

PCR; TT2. Total therapy 2.

Bai and Chen Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:134342

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


increased ROCK1, GSK3B, BRAF, MAPK1 and MAPK14

expression was confirmed in SP/LC MM cells by qRT-PCR

(Figure 2F). Using the STRING online database, these 5

DEGs were filtered into the DEGs protein and protein inter-

action (PPI) network complex (Figure 2G).31 Then, each of the

8 chosen genes was divided into two categories according to

gene expression (low and high, using the 50th percentile as

cut-offs) and validated in Kaplan-Meier analysis and multi-

variate cox models for their relation to OS. Subsequently, only

5 genes resulted independently associated with survival (P <

0.05, Figure 2A–E, Supplemental materials) were further uti-

lized to construct MMSP5 model (the mean ratios of 5 over-

expressed genes). We assessed a score to each gene (low

expression = 0 and high expression = 1) and then constructed

a prognostic risk score (RS) as follows: ROCK1+GSK3B

+BRAF+MAPK1+MAPK14. The RS could present 6 differ-

ent values, and patients were divided into two groups: low-risk

(LR) = RS 0–2 and high-risk (HR) = RS 3–5 according to 50th

percentile of the RS (Figure 3A). Then, we calculated the RS

of each patient in the UAMS cohort. MM patients were

divided into HR group (n = 175) and LR group (n = 176)

according to their risk fraction (Figure 3A). As a result,

MMSP5 model was significantly associated with survival,

and patients in HR group having more dead cases and mean

survival in UAMS cohort (mean survival: 36.81 ± 1.084 vs

33.80 ± 1.202, P = 0.0643, Figure 3A; P = 0.0180, Figure 3B).

MMSP5 Model and Disease Progression
Applying the 8-subgroup model (CD1, CD2, LB, HY, MF,

MS, MY and PR) to MMSP5 model, Figure 3C presents

the values of MMSP5 risk score in 8 subgroups, showing

that elevated RS was particularly prevalent in 3 known to

confer high-risk in terms of clinical outcome and course:

MAF/MAFB (MF), MMSET/FGGR3 (MS) and

Proliferation (PR). In sync with that, we observed

a significantly increasing between the Zhan et al defined

two different risk groups (low-risk group: CD1 + CD2 +

LB + MY + HY and high-risk group: MF + MS + PR,

2.354 ± 0.071 vs 2.936 ± 0.123, P < 0.0001, Figure 3C).

To validate our findings, we also evaluated the effi-

ciency of MMSP5 model in proliferation. Risk scores were

positively correlated (r = 0.1852, P = 0.0036, Figure 3D)

with myeloma cell proliferation in 246 Bortezomib-treated

MM patients available at GSE9782 dataset, using the

Figure 3 The correlation between MMSP5 model and disease progression. (A) Heat map (upper row) reporting probe fluorescence intensity of 5 selected genes for each

patient evaluated in accordance with its survival, MMSP5 risk score (lower row). (B) The HR group identified MM patients with the lowest OS in GSE2658. (C) A scatter-plot

showed MMSP5 risk scores in 8 MM subgroups (CD1 and CD2 subgroups with spiked expression of CCND1 and CCND3, PR, MY, LB, HY, MS and MF). (D) Scatter plot

demonstrating positive correlation of MMSP5 risk scores and myeloma proliferation in 246 Bortezomib-treated patients from the Mayo Clinic. Tumor cell proliferation was

scored with the assistance of GPI. (E) The MMSP5 risk scores were significantly up-regulated in relapsed patients from TT2 cohort compared to baseline patients (***p < 0.001).

Abbreviations: MMSP5, MM side population 5 gene model; PR, proliferation; MY, myeloid-like group; LB, low-bone disease; HY, hyperdiploid; MS, MMSET; MF, MAFB; TT2,

total therapy 2; HR, high-risk; LR, low-risk; GPI, gene expression-based proliferation index.
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global gene expression-based proliferation index (GPI) of

MM originated by Mayo Clinic as proxy of actual mye-

loma cell proliferation.32 In addition, risk scores signifi-

cantly increased in the relapsed MM patients compared to

baseline patients in GSE31161 (2.006 ± 0.054 vs 2.882 ±

0.111, P < 0.0001, Figure 3E). These data strongly sug-

gested that MMSP5 model could be adopted in the evolu-

tion of myeloma progression and disease relapse.

Evaluation of the Prognostic Role of

MMSP5 Model
To confirm the robustness of MMSP5, we evaluated the

MMSP5 model in predicted clinicopathological para-

meters distribution. Using 11 clinicopathological para-

meters, we identified different distribution among risk

subgroups in 559 patients. Lactate dehydrogenase (LDH)

and number of bone lesions were significantly increased in

the HR group compared with the LR group by unpaired

t test (162.1 ± 3.149 vs 181.8 ± 4.529, P = 0.0004, Figure

4A; 9.678 ± 0.8324 vs 12.39 ± 0.9564, P = 0.0326, Figure

4B). Respectively, Albumin (ALB) and Haemoglobin

(HB) were significantly decreased in the HR group

(11.41 ± 0.107 vs 11.10 ± 0.109, P = 0.0399, Figure 4C;

4.104 ± 0.030 vs 3.994 ± 0.038, P = 0.0263, Figure 4D).

The remaining clinicopathological parameters were

equally distributed between two risk groups. As shown in

Table 1, LDH and β2-Microglobulin (β2-MG) were also

significantly more distributed in HR group compared to

LR group.

We applied the Kaplan-Meier analysis to validated

MMSP5 model in two independent datasets: UAMS

cohort and GSE57317, and survival curves indicated that

LR group had better OS and EFS compared to HR group

in the UAMS cohort (P = 0.0132, Figure 4E; P = 0.0500,

Figure 4F). Similarly, LR group also had better OS com-

pared to HR group in transplant-treated MM patients

Figure 4 Evaluation of the prognostic role of the MMSP5 model. (A, B) The expression of LDH and MRI focal lesions in different subgroups of MMSP5 model. LDH and MRI

focal lesions expressed highest in HR group, while lowest in LR group. (C, D) The expression of HB and ALB in different subgroups of MMSP5 model. HB and ALB

expressed highest in LR group, while lowest in HR group. (E) The HR group identified MM patients with the lowest OS in UAMS cohort. (F) The HR group identified MM

patients with the lowest EFS in UAMS cohort. (G) The HR group identified MM patients with the lowest OS in GSE57317. (H, I) The LR group had better OS and EFS

compared to HR group in MM patients of ISS I stage (*p < 0.05, ***p < 0.001).

Abbreviations: MMSP5, MM side population 5 gene model; HR, high risk; LR, low risk; LDH, lactate dehydrogenase; ALB, albumin; HB, haemoglobin; OS, overall survival;

EFS, event-free survival; ISS, International Staging System.
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(GSE58317, P = 0.0418, Figure 4G). Based on the results

of univariate Cox regression analysis, β2-MG, C-reactive

protein (CRP), Creatinine (Creat), ALB, HB and MMSP5

model were further included for multivariable Cox regres-

sion analysis. As shown in Table 2, MMSP5 model was

still an independent prognostic factor in terms of OS (HR

= 1.380, 95% CI: 1.016–1.875, P = 0.039).

Furthermore, MMSP5 risk score was able to divide ISS

I stage patients (low-risk patients in ISS system) into HR

and LR groups, and survival curves indicated that LR

group had better OS and EFS compared to HR group in

ISS I stage patients (P = 0.0472, Figure 4H; P = 0.0249,

Figure 4I). Although the incorporation of ISS/ISS-R has

significantly improved the accuracy rate to prognosis of

patients, almost ISS I stage patients will ultimately suffer

from relapse. In MMSP5 scoring system, evaluation of

myeloma stem cell might improve the effectiveness of

risk stratification. Thus, the MMSP5 model clearly indi-

cates more effectiveness and possibilities of prognosis

compared to ISS/ISS-R stages.

Discussion
Myeloma stem cell, a rare population of myeloma cells

with the capacity for drug resistance and self-renewal, is

considered to lead to myeloma relapse.9,10 The identifica-

tion of the myeloma stem cell should rely on cell pheno-

types. Unfortunately, the myeloma stem cell phenotypes

had not been appropriately defined yet. All these led to the

investigation that prognostic markers in myeloma stem

cell could reflect the clinical outcome of MM patients.

In this research, a total of 988 DEGs (393 up-regulated

genes and 595 down-regulated genes) were identified

between the SP and MP groups. These up-regulated

DEGs were mostly enriched in KEGG pathways such as

Chemokine signaling pathway, Osteoclast differentiation,

FoxO signaling, Regulation of actin cytoskeleton and

Insulin signaling pathway. As we all know, chemokine is

widely expressed in cancer stem cell niche and modulates

the cancer stem cell self-renewal;33,34 Osteoclast differen-

tiation is an important mechanism for myeloma bone

lesions and regulated the bone homeostasis and

Table 1 Relation of the Characteristics 559 MM Patients

Characteristic No. of

Patients

(%)

LR (n

= 279)

HR (n

= 280)

p value

Age ≥ 65 yr 136/559 (24) 67/279

(24)

69/280

(24)

0.862†

Male sex 337/559 (60) 177/279

(63)

160/

280(57)

0.128†

β2-MG ≥ 3.5

(mg/L)

239/559 (42) 107/279

(38)

132/

280(47)

0.035†

CRP ≥ 4 (mg/L) 292/559 (52) 136/279

(48)

156/280

(55)

0.107*

Creat ≥ 1.2

(mg/dL)

182/559 (32) 85/279

(30)

97/280

(34)

0.321*

LDH ≥ 170 (U/L) 231/559 (41) 96/279

(34)

135/280

(48)

0.001*

ALB ≥ 3.5 (g/dL) 482/559 (86) 247/279

(88)

235/280

(83)

0.140*

HB ≥ 11 (g/dL) 312/559 (55) 172/279

(61)

140/

280(50)

0.079*

ASPC ≥ 40% 272/559 (48) 132/279

(47)

140/

280(50)

0.554*

BMPC ≥ 50% 269/559 (48) 131/279

(46)

138/

280(49)

0.611*

MRI ≥ 3 lesions 305/559 (54) 144/279

(51)

161/

280(57)

0.174*

Notes: * Fisher’s exact test was used. †The chi-square test was used.

Abbreviations: Creat, serum creatinine; CRP, C-reactive protein; ALB, serum

albumin; β2-MG, β2-microglobulin; LDH, lactate dehydrogenase; HB, haemoglobin;

ASPC, aspirate plasma cells; BMPC, bone marrow biopsy plasma cells.

Table 2 Univariate and Multivariate Cox Regression Analyses for OS in 559 MM Patients

Variables Univariate Model Multivariate Model

HR 95%CI p HR 95%CI p

Age ≥ 65 yr 1.206 0.855-1.700 0.286

Male sex 0.968 0.714-1.313 0.835

β2-MG ≥ 3.5 mg/L 2.185 1.613-2.985 0.000 1.851 1.259-2.720 0.002

Creat ≥ 1.2 mg/dL 1.731 1.278-2.345 0.000 1.215 0.867-1.703 0.259

CRP ≥ 4 mg/L 1.539 1.132-2.092 0.006 1.381 1.007-1.896 0.045

HB ≥ 11 g/dL 0.629 0.466-0.848 0.002 1.015 0.710-1.450 0.935

ALB ≥ 3.5 g/dL 0.521 0.360-0.756 0.001 0.683 0.469-1.017 0.056

HR 1.477 1.092-1.998 0.011 1.380 1.016-1.875 0.039

Abbreviations: Creat, serum creatinine; CRP, C-reactive protein; ALB, serum albumin; β2-MG, β2-microglobulin; HB, haemoglobin; HR,

high risk.
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hematopoietic stem cells niche;2,35 FoxO proteins conduce

to the metabolism of cancer stem cells as well as to the

initiation, maintenance and progression of cancer;36 The

cytoskeleton activities are coordinated with formation/dis-

assembly of cancer stem cell–ECM adhesions;37,38 Insulin

signaling directly controls germline stem cells cell divi-

sion, indicating that this signaling acts both extrinsically

and intrinsically to control cancer stem cells.39 Functional

enrichment analyses indicated that hub genes were mostly

enriched in cancer stem cell-related GO terms, which were

in accordance with the stemness value of hub genes. Based

on the above results, we selected 5 hub genes for our

model. MM patients in this 5-gene (ROCK1, GSK3B,

BRAF, MAPK1 and MAPK14) low expression group were

related to better OS compared to high expression group,

respectively.

Actually, these selected hub genes in our signature have

been experimentally demonstrated to be related to cancer

stem cell as following: inactivation of ROCK1 decreased

the self-renewal and OCT4 transcription activity, and rescued

glioma stem cells tumorigenic potential;40 Inhibition of

GSK3B abolished the expression of all mesenchymal and

stemness markers and altered the dynamics of tumour sphere

formation and cell plasticity in cancer stem cell;41 BRAF

inhibitors synergize with cetuximab to weaken metastatic

and stemness capacities of cancer stem cell;42 MAPK1,

MAPK14 were the FoxO proteins and p38α (MAPK14)

regulates osteoclastogenesis, p38α ablation could regulate

bone formation and bone marrow mesenchymal stem cells,

due to decreased expression of BMP2 and PDGF-AA;43

Above literatures provided stable support for the 5-gene

signature in the biologic function of cancer stem cell. We

constructed a prognostic risk score withMMpatients divided

into two risk groups. Firstly, we evaluated our prognostic

score in 8-subgroup model. The scatter plot showed that

distribution of MMSP5 model was similar to 8-subgroup

model. Aggressive subgroups of myeloma (chiefly sub-

groups: MF, MS and PR), which are characterized by high-

risk myeloma and associated with an adverse prognosis,4,44

had significantly higher MMSP5 risk scores compared to

other molecular subgroups.

MMSP5 model was more comprehensively estimated

the efficiency in proliferation and recurrence. Analyzing

GEO datasets along with MMSP5 model. In the GSE9782

dataset, MMSP5 risk scores in 246 Bortezomib-treated

patients paralleled the myeloma proliferation score,

which was scored with the boost of GPI.45 In the

GSE31161 dataset, we found a significant increase of

MMSP5 risk scores in relapsed patients compared to base-

line patients. A high MMSP5 risk score possibly reflected

biological capabilities of MM cells that confer resistance

to Bortezomib-based regimes. Therefore, MMSP5 model

might allow rapid risk determination at diagnosis, enabling

suggestions of more intensified investigational treatments

to be directed to high-risk MM patients.

We also analyzed the prognostic significance of

MMSP5 model in MM patients, high-risk groups corre-

lated with markers of myeloma activity, such as lower

levels of ALB and HB, higher levels of LDH, number of

lesions on MRI and β2-MG. Among them, International

Staging System (ISS) has been constructed, which com-

bines clinicopathological parameters of tumor burden

(ALB and β2-MG) with parameters of aggressive tumor

biology (bone lesions and LDH).46,47 Whether the ISS is

used, ALB and renal function have been considered easy

and good indicators of survival.48 The serum level of

β2-MG was one of the most important independent pre-

dictors of survival and considered an indicator of tumor

burden.49 High levels of circulating LDH enhanced mye-

loma cell proliferation and drug resistance under stressed

conditions, and correlated with poor prognosis in

myeloma.50–52 More importantly, HR group correlated

significantly to all the aforementioned parameters of dis-

ease activity, which support the fact that MMSP5 model

might have prognostic value.

At last, we evaluated the prognostic value of MMSP5

model with independent datasets. Our results indicated that

survival conditions were significantly different in HR and

LR patients (divided by MMSP5 model). Univariate and

multivariate Cox regression analysis were then performed

to verify the association of clinicopathological parameters

and MMSP5 model with survival. Our results further

proved that MMSP5 HR group was an independent prog-

nostic factor.

Conclusion
To sum up, incorporation of MMSP5 into risk determina-

tion algorithms for newly diagnosed MM patients will

facilitate the development of anti-MM treatments in the

ongoing effort to decrease recurrence risk and prolong

survival.
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