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Purpose: Arsenic trioxide (ATO) has been shown to induce hepatic injury. Crocetin is

a primary constituent of saffron, which has been verified to have antioxidant and anti-

inflammatory effects. In the current experiment, we evaluated the efficacy of crocetin against

ATO-induced hepatic injury and explored the potential molecular mechanisms in rats.

Methods: Rats were pretreated with 25 or 50 mg/kg crocetin 6 h prior to treating with 5 mg/

kg ATO to induce hepatic injury daily for 7 days.

Results: Treatment with crocetin attenuated ATO-induced body weight loss, decreases in

food and water consumption, and improved ATO-induced hepatic pathological damage.

Crocetin significantly inhibited ATO-induced alanine aminotransferase (ALT), aspartate

aminotransferase (AST), and alkaline phosphatase (ALP) increases. Crocetin prevented

ATO-induced liver malondialdehyde (MDA) and reactive oxygen species (ROS) levels.

Crocetin abrogated the ATO-induced decrease of catalase (CAT) and superoxide dismutase

(SOD) activity. Crocetin was found to significantly restore the protein levels of interleukin 6

(IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-alpha (TNF-α). Furthermore, cro-

cetin promoted the expression of nuclear factor erythroid 2 related factor 2 (Nrf2), heme

oxygenase-1 (HO-1), and NADP(H): quinone oxidoreductase 1 (NQO1).

Conclusion: These findings suggest that crocetin ameliorates ATO-induced hepatic injury in

rats. In addition, the effect of crocetin might be related to its role in antioxidant stress, as an

anti-inflammatory agent, and in regulating the Nrf2 signaling pathway.

Keywords: crocetin, arsenic trioxide, hepatotoxicity, oxidative stress, inflammation, Nrf2

signaling pathway

Introduction
Arsenic trioxide (ATO) is widely used as an effective component of traditional

Chinese medicine that produces significant remission in individuals with refractory

or relapsed acute promyelocytic leukemia (APL).1 The United States (US) Food

and Drug Administration approved ATO for APL in September 2000.2 However,

ATO is a known environmental toxicant that has become a widespread health

concern because of its toxicity.3,4 Epidemiological studies have also confirmed an

obvious association between the excess intake of inorganic arsenic and various
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hazardous effects in humans, including hepatotoxicity,

nephrotoxicity, neurotoxicity, as well as dermatosis,

which limit its clinical application.3,5,6

As the main organ for the metabolism of poisonous

substances, the liver is the primary target for ATO.7

Arsenic is absorbed into the body and distributed to tissues

and viscera, especially into the liver.5 In experimental

research, arsenic induces liver injuries that result in

changes in the biochemical indexes of liver functions,

such as elevations of serum enzymes.7 Many investigators

have also confirmed that ATO was able to cause serious

histopathological changes in the liver.8

Hepatic injury induced by arsenicals is closely related

to oxidative stress by triggering the production of intracel-

lular reactive oxygen species (ROS), which can play a key

role in the toxic effect of arsenic and its compounds.9,10

Oxidative stress is a state of an imbalance between oxida-

tion and antioxidation involved in cellular damage.11,12

Excessive accumulation of ROS leads to cellular injuries,

such as lipid peroxidation, DNA oxidative disruption, and

enzyme inactivation.13,14 Synthetic or natural scavengers

of ROS and antioxidants could attenuate ATO-induced

toxicity, thereby enabling full exploitation of the therapeu-

tic potential of ATO.15 The imbalance between the gen-

eration of ROS and the antioxidant systems is usually

maintained by critical enzymes, for example, superoxide

dismutase (SOD) and catalase (CAT).13

Exposure of arsenic to individuals involved in the

production of pro-inflammatory cytokines.16,17

Interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor

necrosis factor-alpha (TNF-α) are important mediators of

the inflammatory response and are involved with many

early systemic inflammation events.18

Nuclear factor erythroid 2 related factor 2 (Nrf2) plays

a dominant role as a central transcription factor in protect-

ing against increased oxidative damage and toxic injury.19

Nrf2 is located in the cytoplasm of the resting cells.19,20

Upon stimulation, Nrf2 translocates to the nucleus and

initiates transcription of its target genes, for instance,

heme oxygenase-1 (HO-1) and NADP(H): quinone oxidor-

eductase 1 (NQO1).21,22 The activation of these proteins is

now recognized as a strategy for cellular defense against

the adverse effects of excessive ROS generation.22

A variation in the redox state means a variation in ROS

production or metabolism.23 Furthermore, ATO produces

excess ROS by combining with nearby mercaptans, causes

lipid peroxidation, and promotes apoptosis.24 Nrf2 confers

a protective effect against ROS and xenobiotics in healthy

cells.25

Crocetin (CRO) (C20H24O4; molecular weight 328.4g/

mol, Figure 1) is a primary constituent of saffron, which

has been known to exert many kinds of pharmacological

effects, including antioxidative stress,26 anti-

inflammatory,27 anti-cancer, anti-apoptotic,28,29 heart dis-

ease preventive,30 and neuroprotective effects.31,32 These

properties of CRO, especially its ability to reduce oxida-

tive stress and inflammation, propose that it might be

a significant candidate to attenuate liver injury.

Accordingly, we supposed that CRO could effectively

block hepatotoxicity induced by ATO. To test this predic-

tion, we investigated the effects of CRO on ATO-induced

hepatic injuries and explored the potential mechanisms of

oxidative stress and inflammation through activation of the

Nrf2 signaling pathway in rats. Thus, safe and effective

drugs for decreasing ATO-induced hepatotoxicity will pro-

vide novel opportunities for the clinical use of ATO.

Materials and Methods
Materials
Crocetin with HPLC purity of ≥ 98% and arsenic triox-

ide (ATO, MW:197.84) were procured from Shanghai

Yuanye Biotechnology Co., Ltd. (Shanghai, China).

Alanine aminotransferase (ALT), aspartate aminotrans-

ferase (AST), alkaline phosphatase (ALP), malondialde-

hyde (MDA), glutathione (GSH), catalase (CAT), and

superoxide dismutase (SOD) detection kits were pro-

cured from Jiancheng Bioengineering Institute of

Nanjing (Nanjing, Jiangsu, China). The ROS detection

Figure 1 Chemical structure of crocetin.

Liu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2020:141922

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


kit was procured from Wuhan Servicebio Technology,

Co., Ltd (Wuhan, China). Antibodies specific for Nrf2

and NQO1 were procured from Bioworld Technology,

Co., Ltd. (Nanjing, Jiangsu, China). HO-1 antibodies

were obtained from Wuhan Sanying Biotechnology Co.,

Ltd (Wuhan, China). β-actin was procured from Beijing

Zhongshan Jinqiao Biotechnology Co., Ltd (Beijing,

China). The IL-6, IL-1β, and TNF-α enzyme-linked

immunosorbent assay (ELISA) kits were obtained from

Wuhan Servicebio Technology CO., Ltd (Wuhan, China).

Experimental Animals
Forty healthy male Sprague Dawley rats (weighing 180–

220g, 7–8 weeks old) were provided by the Center for

Experimental Animals at Hebei Medical University

(Shijiazhuang, China). The rats were maintained in cages

under standard laboratory conditions (indoor temperature:

25±2°C; humidity: 50±10%, 12/12h dark/light cycle). Rats

were offered food pellets and tap water freely. All rats

were allowed to adapt to the environment for 7 days before

the experiment. All experimental and animal handling

procedures were approved by the Ethics Committee for

Animal Experiments of Hebei University of Chinese

Medicine (DWLL2019011) and conformed to the

National Institutes of Health Guidelines for the Care and

Use of Laboratory Animals.

Experimental Design
Forty rats were randomly and evenly divided into five

treatment groups, with eight rats in each group, and were

processed as follows:

Group I (Con): control rats were intraperitoneally

injected with 0.9% normal saline (5 mg/kg) once per day

for 7 days.

Group II (Cro): rats received crocetin (50 mg/kg) orally

by gastric intubation once per day for 7 days.

Group III (ATO): rats were intraperitoneally injected

with ATO (5 mg/kg) once per day for 7 days.

Group IV (L-Cro): rats pretreated with crocetin

(25 mg/kg) orally by gastric intubation 6 h prior to treating

with ATO (as in group III) for 7 days.

Group V (H-Cro): rats pretreated with crocetin (50 mg/

kg) orally by gastric intubation 6 h prior to treating with

ATO (as in group III) for 7 days.

The applied doses for ATO and CRO were performed

according to the method of previous experiments,33,34 as

well as our preliminary studies.

Sample Preparations
During the period of feeding, body weights were recorded

at the beginning and end of the experiment, food and water

consumption were recorded daily in the morning before

supplemental diet.

On the 8th day, rats were starved overnight and sacri-

ficed under 10% urethane solution anesthesia; the blood

samples were collected through arteria femoralis into

heparinized vials and centrifuged (1000×g, 4°C) for 10

min to obtain the serum. The liver was carefully removed

immediately in ice-cold media. Partial liver specimens

were fixed for histochemistry, and the remaining tissues

were frozen in −196°C liquid nitrogen until further

analysis.

Preparation of Liver Homogenates
The isolated liver tissue was homogenized in ice cold

phosphate buffered saline at pH 7.4 and centrifuged at

3000 g for 10 min at 4°C. The supernatant was harvested

for further experiments.11

Histopathological Examinations
To assess the changes in the liver, a portion of the liver tissues

was placed in a 4% paraformaldehyde solution overnight,

dehydrated in an ethanol series, embedded in paraffin, cut

into 5-μm thick sections, and stained with hematoxylin-eosin.

Finally, sections were observed under a light microscope.

Assessment of Biochemical Indices
Serum ALT, AST, and ALP activity were assayed spectro-

photometrically according to the instructions using com-

mercially available diagnostic kits to assess hepatotoxicity.

Detection of Oxidative and Antioxidant

Indicators
The levels of MDA, GSH, CAT, and SOD in hepatic tissue

supernatants obtained from liver tissue homogenization

were detected by commercial kits according to each man-

ufacturer’s instruction.

ROS Detection by Fluorescence

Microscopy
Rat liver tissue was embedded in OCT (optimal cutting

temperature compound) buffer, frozen in liquid nitrogen,

and cut into 10-μm thick sections.35 Frozen sections of rat

liver were incubated in 2ʹ,7ʹ-dichlorofluorescein diacetate

(DCFH-DA) solution at room temperature for 20min under
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dark conditions. DCFH-DA is rapidly turned into fluorescent

compound 2,7-dichlorofluorescein (DCF) by ROS.36 The

fluorescence intensity was measured at 488 nm of excitation

wavelength and 525 nm of emission wavelength after wash-

ing with phosphate buffer solution. Sections were observed

under a fluorescence microscope, and images were collected.

Inflammatory Cytokine Measurements by

ELISA
IL-6, IL-1β, and TNF-α expression in hepatic tissue were

measured to justify the inflammatory status in rats of the

different groups using ELISA kits in accordance with the

manufacturer’s instructions. Briefly, 80 μL of test buffer and

20 μL of the sample were added to the sample hole and then

50 μL diluted detection antibody (1:100 diluted) was added

to each well. Reagents were washed gently six times with

washing buffer after incubation for 2 h at room temperature.

Termination fluid (100 μL) was added to each well after the

100 μL chromogen reagent was added. The optical density

was detected at 450 and 570 nm. Finally, the concentrations

of IL-6, IL-1β, and TNF-α were expressed as pg/mL.

Protein Expression Analysis of Nrf2,

HO-1, and NQO1 by Western Blotting
Liver samples were homogenized in precooled protein extrac-

tion buffer and centrifuged at 12,000×g at 4°C for 30 min to

obtain protein. The total protein content was quantified using

a Coomassie brilliant blue reagent kit (Jiancheng

Bioengineering Institute of Nanjing, China). Total protein

was separated by electrophoresis and transferred onto poly-

vinylidene fluoride membrane (Millipore, American) and

blocked in TBS-T buffer with 5% skimmed dry milk for 1

h at room temperature. Subsequently, the membranes were

incubated overnight in specific diluted antibodies of anti-Nrf2

(1:1000), anti-HO-1 (1:1000), and anti-NQO1 (1:500) at 4°C.

Anti-β-actin (1:5000) was used as the internal standard. The

next day, the blots were washed with PBS-T and incubated in

respective secondary diluted antibodies (1:10,000) for 1

h. The membrane was visualized using chemiluminescence

detection reagent and exposed onto an X-ray film. The density

of the protein signals was analyzed using the Image J system.

Statistical Analysis
The data analyses were performed with the Statistical

Package for Social Sciences (SPSS) 20.0 software. All

values were presented as the mean ± standard deviation

(SD). Differences among groups were determined by one-

way analysis of variation (ANOVA). P-values of less than

0.05 were considered statistically significant.

Results
Body Weight, Food and Water

Consumption
As shown in Table 1, after 7 days feeding, final body

weight, food and water consumption in ATO group were

significantly lower than that of control, these parameters

were elevated with crocetin treatment. On the other hand,

no rat deaths occurred in any of the treatment groups.

Effects of CRO on Liver Histopathology
To assess the protection of crocetin against liver damage

induced by ATO, pathologic changes in the liver were

detected in this experiment. As shown in Figure 2, livers

from the control group and crocetin alone group displayed

regular cell distribution and lobular architecture. The liver

tissues from ATO-treated rats showed obvious pathologi-

cal changes, including hepatocyte steatosis, apoptosis, dis-

organization of parenchyma, and those in the H-Cro group

indicated that pre-treatment with crocetin markedly ame-

liorated apoptosis and steatosis of hepatocytes.

Effects of CRO on Biochemical Markers

of Liver Function
Treatment with crocetin alone did not produce any marked

changes in the activities of ALT, AST, and ALP versus the

control group. ATO treatment brought about a marked

Table 1 General Observations in Rats

General Observation Con Cro ATO L-Cro H-Cro

Initial body weight (g) 207.4 ± 14.6 205.8 ± 13.2 206.8 ± 13.9 207.7 ± 13.0 206.9 ± 14.0

Final body weight (g) 238.4 ± 13.6 237.7 ± 14.5 225.8 ± 6.8a 234.8 ± 7.3b 236.9 ± 8.8b

Mean food consumption (g/rat/day) 24.7 ± 2.1 24.1 ± 1.4 21.9 ± 0.9a 23.8 ± 1.8b 23.9 ± 1.4b

Mean water consumption (mL/rat/day) 67.3 ± 2.5 67.8 ± 2.2 63.9 ± 1.6a 66.2 ± 1.8b 66.8 ± 1.8b

Mortality (ratio %) 0.00 0.00 0.00 0.00 0.00

Notes: Data are presented as mean ± SEM (n = 8) or as ratio. Compared to the Con group (ap < 0.05); compared to the ATO group (bp < 0.05).
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Figure 2 Effects of crocetin on hepatic histopathologic changes in ATO-treated rats. Scale bar = 50 µm (hematoxylin and eosin, 400×).

Abbreviations: Con, control rats; Cro, crocetin alone group; ATO, ATO-treated rats; L-Cro, low-dose crocetin; H-Cro, high-dose crocetin.

Figure 3 Effects of crocetin on activities of ALT (A), AST (B), and ALP (C) in each group. The values were presented as the mean ± SD (n = 8). ##p < 0.01 compared to

control, **p < 0.01 and *p < 0.05 compared to the ATO-treated group.
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increase in ALT, AST, and ALP levels versus the control

group. Whereas pretreatment with crocetin obviously sup-

pressed the ATO-induced increase of ALT, AST, and ALP

activities (Figure 3).

Effects of CRO on Levels of MDA, GSH,

CAT, and SOD
To assess the anti-oxidative effects of crocetin, the levels of

MDA, GSH, CAT, and SODwere measured. Figure 4A shows

the MDA levels were elevated in ATO groups versus the

control group, and this effect was decreased with crocetin

pretreatment. As shown in Figure 4B, treatment with ATO

resulted in a significant depletion of GSH level versus the

control group; treatment with crocetin increased the level of

GSH versus ATO group. Figure 4C and D show the effect of

pretreatment with crocetin on the activities of CAT and SOD.

CATand SOD activities obviously decreased after ATO expo-

sure. Pretreatment with crocetin inhibited the decrease of CAT

and SOD activity.

Effects of CRO on the ROS Generation
As shown in Figure 5, no obvious dichlorofluorescein fluores-

cence was detected in the control group. Strong fluorescence

was detected in the ATO treated group. Crocetin reduces the

level of ROS induced by ATO.

Effects of CRO on the Pro-Inflammatory

Markers of IL-6, IL-1β, and TNF-α
Results indicate that IL-6, IL-1β, and TNF-α were drama-

tically elevated in the ATO treated group compared with

the control group. CRO, meanwhile, was found to mark-

edly restore the protein levels of IL-6, IL-1β, and TNF-α
to normal levels, as shown in Figure 6A–C.

Effects of CRO on the Expression of

Nrf2, HO-1, and NQO1
To explore themechanism of action, the effect of CROonNrf2

expression was analyzed byWestern blotting in liver samples.

Experimental results suggested thatNrf2 proteinwasmarkedly

higher in CRO-treated rats than the control and ATO alone

treated rats (Figure 7A). To further explore the effects of CRO

on theNrf2 signal pathway, theHO-1 andNQO1 proteins (two

representativeNrf2 downstream regulatory proteins) were also

analyzed in the hepatic tissues. Figure 7B and C also show

a clear induction of HO-1 and NQO1 proteins in the

Figure 4 Effects of crocetin on the levels of MDA (A), GSH (B), CAT (C), and SOD (D). The values were expressed as the mean ± SD (n = 8). ##p < 0.01 compared to

control, *p < 0.05 and **p < 0.01 compared to the ATO-treated group.
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Figure 5 Fluorescent images of dichlorofluorescein staining for ROS from rats of different groups. Hepatic tissue obtained from control rats (Con), crocetin alone group

(Cro), ATO-treated rats (ATO), low-dose crocetin (L-Cro), and high-dose crocetin (H-Cro) groups. Scale bar = 50 µm (magnification 400×). The values were expressed as

the mean ± SD (n = 3). ##p < 0.01 compared to control, **p < 0.01 compared to the ATO-treated group.

Figure 6 Effects of crocetin on levels of IL-6 (A), IL-1β (B), and TNF-α (C) in rats. The values were presented as the mean ± SD (n = 8). ##p < 0.01 compared to control, *p < 0.05

and **p < 0.01 compared to the ATO-treated group.
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correspondingATO-treated groups. The experiments also indi-

cate that the expression levels of Nrf2, HO-1, and NQO1were

elevated byATO treatment.Meanwhile, CROup-regulated the

protein expression ofNrf2,HO-1, andNQO1 induced byATO.

Furthermore, the treatment of CRO alone could increase the

expression of Nrf2, HO-1, and NQO1 even without the ATO

induction.

Discussion
CRO is an aglycone of crocin found in the fruit of gardenia and

the stigma of saffron,37 which in its free-acid form is insoluble

in water and most organic solvents.38 CRO has been reported

to have antioxidant and anti-inflammatory actions.39

Unfortunately, the precise mechanisms involved remain

unclear. In our current research, we investigated the effects of

CRO on hepatic injury in ATO-induced rats according to its

antioxidant and anti-inflammatory effects through activating

the Nrf2 signaling pathway.

General observations in rats showed that ATO induced

the body weight loss, food and water consumption

decreases compared with control group, these parameters

were improved in the L-Cro and H-Cro groups.

We found that significant pathological changes discovered

in the liver verified the side effects of ATO. The histological

analysis showed that crocetin alleviated liver pathologic

changes, such as hepatocyte vacuolation and cellular apoptosis.

Meanwhile, these results demonstrated that ATO caused liver

injury as measured by the elevated activities of ALT, AST, and

Figure 7 Effects of crocetin on Nrf2 (A), HO-1 (B), and NQO1 (C). β-actin antibody was used for equal protein loading. The values were presented as the mean ± SD (n = 3).
##p < 0.01 compared to control, *p < 0.05 and **p < 0.01 compared to the ATO-treated group.
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ALP compared with control group treatment. Crocetin mark-

edly inhibited ATO-induced ALT, AST, and ALP production,

which suggests crocetin could attenuate liver injury.

The underlying mechanism of ATO-induced liver damage

requires further investigation. It has been reported that arsenic

exposure leads to the production of ROS.25 ROS are formed in

aerobic cells as byproducts of mitochondrial respiration or

oxidases.40 The alteration of the redox environment of the

tissue implies the production or metabolism of ROS.41

Peroxidases, such as CAT and GSH peroxidase, are further

metabolized to produce O2 and H2O.
40 The generation of

excessive ROS might result in free radical-mediated injuries,

loss of cellular function, and eventual apoptosis or necrosis.42

MDA is the product of endogenous lipid peroxidation and

reflects the status of oxidative stress.43,44 Arsenic-induced

oxidative damages the liver, which not only increases ROS

and MDA but also reduces GSH contents and inhibits many

antioxidant enzyme activities, including CAT and SOD.5

Thus, antioxidant therapy might play an important role in

reducing liver tissue damage caused by oxidative stress.9,45

After a 7-day treatment with ATO, liver homogenate from rats

treated with ATO indicated markedly elevated MDA content,

decreased GSH content, and reduced CAT and SOD levels

compared to the control group. Nevertheless, crocetin sup-

pressed (dose-dependently) ROS and MDA production

induced by ATO. Furthermore, crocetin was found to up-

regulate the generation of SOD, CAT, and GSH (which are

suppressed by ATO). Our results confirm that ATO-induced

liver oxidative stress damages and destroys the balance

between oxidative agents and antioxidants. These results also

suggested that crocetin protects against ATO induced liver

damage by suppressing oxidative stress.

Enhanced oxidative stress causes the disruption of the

biological membrane and results in inflammation and the gen-

eration of pro-inflammatory cytokines.16,46 Our study also

demonstrates that CRO has anti-inflammatory actions.

Cytokine (IL-6, IL-1β, and TNF-α) levels were also higher in
the ATO group than the control group. After treatment with

CRO for 7 days, these parameters were decreased in the L-Cro

and H-Cro groups.

The Nrf2 signal pathway is generally considered to

enhance the cellular defenses against increased oxidative

injuries.24 Furthermore, Nrf2 has been shown to play essential

roles in stimulating antioxidant enzymes against oxidative

injury.21 Nrf2 manages a series of downstream antioxidative

genes encoding antioxidant enzymes, including HO-1 and

NQO1, to defend against oxidative damage.8 We discovered

that ATO exposure somewhat increases hepatic Nrf2

expression under the tested conditions, which has also been

reported by other authors.8,9

The results showed that the expressions of Nrf2, HO-1,

and NQO1 were enhanced in the ATO group, these enhance-

ments of Nrf2, HO-1, and NQO1 were up-regulated by

CRO. Nevertheless, the protective effect of the Nrf2 signal

path might be covered by tissue damage at high doses of

arsenic compounds, and the Nrf2-dependent defense reac-

tion is counteracted by the adverse effects induced by ATO,

ultimately leading to oxidative stress and toxic damage.25

HO-1 has an anti-oxidant activity that can resist oxidative

damage.21 In this research, the up-regulation of HO-1 and

NQO1 protein expression are considered to be beneficial and

to play key roles in opposing redox imbalances induced

by ATO.

Conclusion
In summary, the outcomes of the current study show that

crocetin exhibits a protective effect against ATO-induced

hepatic oxidant stress, inflammatory injuries and the abil-

ity of crocetin to active Nrf2 might help to protect against

the arsenic hepatotoxicity. Therefore, crocetin provides

a safe and natural option for preventing ATO-induced

hepatotoxicity in acute promyelocytic leukemia patients.
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