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Purpose: Autophagy caused by ischemia/reperfusion (I/R) increases the extent of cardiomyocyte

damage. Melatonin (Mel) diminishes cardiac injury through regulating autophagy and mitochon-

drial dynamics. However, illustrating the specific role of mitophagy in the cardioprotective effects

of melatonin remains a challenge. The aim of our research was to investigate the impact and

underlying mechanisms of melatonin in connection with mitophagy during anoxia/reoxygenation

(A/R) injury in H9c2 cells.

Methods: H9c2 cells were pretreated with melatonin with or without the melatonin membrane

receptor 2 (MT2) antagonist 4-P-PDOT, the MT2 agonist IIK7 and the sirtuin 3 (SIRT3) inhibitor

3-TYP for 4 hours and then subjected toA/R injury. Cell viability, cellular apoptosis, necrosis levels

and oxidative markers were assessed. The expression of SIRT3 and forkhead box O3a (FoxO3a),

mitochondrial function and the levels of mitophagy-related proteins were also evaluated.

Results: A/R injury provoked enhanced mitophagy in H9c2 myocytes. In addition, increased

mitophagy was correlated with decreased cellular viability, increased oxidative stress and mito-

chondrial dysfunction in H9c2 cells. However, melatonin pretreatment notably increased cell

survival and decreased cell apoptosis and oxidative response after A/R injury, accompanied by

restored mitochondrial function. The inhibition of excessive mitophagy is involved in the cardio-

protective effects of melatonin, as shown by the decreased expression of the mitophagy-related

molecules Parkin, Beclin1, and BCL2-interacting protein 3-like (BNIP3L, best known as NIX) and

decreased light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and upregulation of p62 expression.

Moreover, the decreased expression of SIRT3 andFoxO3a inA/R-injuredH9c2 cellswas abrogated

by melatonin, but these beneficial effects were attenuated by the MT2 antagonist 4-P-PDOTor the

SIRT3 inhibitor 3-TYP and enhanced by the MT2 agonist IIK7.

Conclusion: These results indicate that melatonin protects H9c2 cells during A/R injury

through suppressing excessive mitophagy by activating the MT2/SIRT3/FoxO3a pathway.

Melatonin may be a useful candidate for alleviating myocardial ischemia/reperfusion (MI/R)

injury in the future, and the MT2 receptor might become a therapeutic target.
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Introduction
Acute myocardial infarction (AMI) is a major cause of sudden death worldwide.1 Early

reperfusion is the typical therapy for AMI, as it can efficiently reestablish blood flow in

ischemic myocardial tissue. However, reperfusion also increases mortality in AMI

Correspondence: Jun Ma
Department of Anesthesiology, Beijing
Anzhen Hospital, Capital Medical
University-Beijing Institute of Heart Lung
and Blood Vessel Diseases, No. 2 Anzhen
Road, Chaoyang District, Beijing 100029,
People’s Republic of China
Tel +8613370103571
Email majuntongxun@163.com

Drug Design, Development and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2020:14 2047–2060 2047

http://doi.org/10.2147/DDDT.S248628

DovePress © 2020 Wu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

D
ru

g 
D

es
ig

n,
 D

ev
el

op
m

en
t a

nd
 T

he
ra

py
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


patients by accelerating and extending cardiac tissue injury,

which is known as MI/R injury;2 this process involves excess

oxidative products, disturbed mitochondrial dynamics and

excessive autophagy.3 Therefore, novel interventional targets

and adjuvant therapies to abate reperfusion injury in the heart

are urgently required.

Mitochondria are essential organelles that altered in

response to metabolic stress.4 Mitophagy, a selective type of

autophagy for the specific degradation of impaired mitochon-

dria, is pivotal to maintain mitochondrial function and prevent

cell death.5Damagedmitophagy can result in the accumulation

of defectivemitochondria and harmful reactive oxygen species

(ROS), which can pass across the plasmamembrane.6 There is

convincing evidence for the crucial roles of mitophagy in the

pathogenesis of a number of chronic conditions, including

atherosclerosis;7 cancer;8,9 neurodegenerative conditions;10

and cardiovascular,11,12 cerebral13 and liver diseases.14 The

heart, which requires a large amount of dynamic energy to

maintain normal contractile function, is enriched with

mitochondria.15 Mitophagy ensures the regular function of

mitochondria in sustaining cardiomyocytes and plays a dual

role in the progression of MI/R via diverse signaling

pathways.16,17 Thus, it is necessary to explore the specific

role of mitophagy in cardiomyocytes, which may further pro-

vide theoretical and practical evidence to effectively reduce

MI/R injury.

Melatonin, an endogenous circadian indoleamine, is pre-

dominantly generated in the pineal gland.18 Several studies

have suggested thatmelatonin can confer significant protection

in heart diseases, such as MI/R injury, heart failure, hyperten-

sion and atherosclerosis.19 Because of its amphiphilic nature

and relatively small size, melatonin can cross all cell mem-

branes and accumulate in subcellular compartments, particu-

larly mitochondria.20 Hence, melatonin is highly concentrated

in mitochondria, where it plays a crucial role in mitochondrial

processes such as mitophagy. Previous studies with distinct

experimental designs in different cell lines have indicated that

melatonin regulates mitophagy by enhancing or suppressing

mitophagic activity.21–24 The specific mechanisms of this reg-

ulation still require deeper exploration. In addition, it has been

shown that melatonin membrane receptors are exclusively

associated with the myocardial protective effects of

melatonin.25,26 However, the specific melatonin membrane

receptor that controls the cardioprotective effect of melatonin

and the principal mechanisms of this effect remain unclear.

Therefore, investigating the role of melatonin membrane

receptors in melatonin-induced cardioprotection is construc-

tive for the clinical application of melatonin.

SIRT3, a class III histone deacetylase in mitochondria,

modulates the mitochondrial network primarily by regulating

lysine acetylation. SIRT3 has been suggested to be an under-

lying regulator of the beneficial effects of melatonin.27–30

However, the potential interaction between melatonin and

SIRT3 has not been completely elucidated. Recent studies

have demonstrated that SIRT3 can promote or restrain autop-

hagy to alleviate MI/R injury by stimulating specific down-

stream targets, including FoxO3a, adenosine monophosphate

(AMP)-activated protein kinase (AMPK) and ROS.31 In addi-

tion, the relationship between SIRT3 and mitophagy has been

previously reported, and the depletion of SIRT3 strongly exa-

cerbated mitophagy inhibition; thus, aged hearts are more

inclined to cardiac disorders.32 Moreover, SIRT3 could also

exert cardioprotection against diabetic cardiomyopathy

(DCM) through initiating Parkin-dependent mitophagy33 and

exacerbating mitophagy by the voltage-dependent anion chan-

nel 1 (VDAC1)-Parkin interaction.34 Remarkably, SIRT3 has

also been demonstrated to interact with FoxO3a and regulate

its mitochondrial activity.35

Thus, the present study aimed to inspect whether the

cardioprotective effects of melatonin are linked to its cap-

ability to suppress excessive mitophagy and to determine

the potential mechanism. We hypothesized that melatonin

plays a vital role in myocardial protection in A/R-treated

H9c2 cells through mitophagy inhibition. To verify this

assumption, we developed an A/R model in H9c2 myo-

cytes to simulate MI/R in vivo and pretreated H9c2 cells

with melatonin for 4 hours prior to A/R injury.

Subsequently, the impacts of melatonin on cellular injury,

oxidative stress, apoptosis, mitochondrial function and

mitophagy were measured. Furthermore, we investigated

whether melatonin could protect H9c2 cells from A/

R-induced excessive mitophagy by activating SIRT3/

FoxO3a signaling in an MT2-dependent manner.

Materials and Methods
Cell Culture and Treatment
The H9c2 cell line, which was provided by the Shanghai Cell

Library of China, was cultivated in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) (Gibco, Grand Island, NY, USA) and

1% (v/v) penicillin/streptomycin at 37°C in 5% CO2. A/R

treatment was administered as follows: after serum starvation,

H9c2 cells were first subjected to hypoxic buffer containing (in

mM) 12 KCl, 0.9 CaCl2, 137 NaCl, 0.49MgCl2, 10 deoxyglu-

cose, 0.75 sodiumdithionate, 4HEPES, and 20 lactate (pH6.5)
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for 3 hours in a humidified cell culture incubator (95%N2, 5%

CO2, 37°C). The hypoxic buffer was pre-gassed and saturated

with 95% N2 and 5% CO2 for 30 min in advance.36–38

Subsequently, reoxygenation was performed by resuspending

the cells in regular culture medium and incubating them for 4

hours in a humidified cell culture incubator (95% air, 5% CO2,

37°C). To select the appropriate concentration of melatonin,

H9c2 myocytes were pretreated with melatonin at a range of

concentrations (50, 100, 150 and 200 μM) for 4 hours in

normal andA/R-injuredH9c2 cells.26,30,39 Cell viability assays

suggested that the pro-survival effect of melatonin was most

obvious with a concentration of 150 μM. Consequently, a dose

of 150 μMwas chosen for the subsequent experiments.

Then, H9c2 myocytes were randomly distributed into six

groups as follows: the control group, the cells in which were

pretreated using serum-free DMEM; the A/R group, the cells

in which were exposed to A/R treatment as mentioned above;

the A/R + Mel group, the cells in which were pretreated with

melatonin (150 μM) for 4 hours and then exposed to A/R

damage; the A/R + Mel + 4-P-PDOT group, the cells in

which were treated with melatonin (150 μM) and 4-P-PDOT

(10 μM) for 4 hours prior to A/R treatment; the A/R + Mel +

IIK7 group, the cells in which were treated with melatonin

(150 μM) and IIK7 (10 μM) for 4 hours prior toA/R treatment;

and the A/R + Mel + 3-TYP group, the cells in which were

treatedwithmelatonin (150μM)and 3-TYP (5μM) for 4 hours

beforeA/R treatment. The doses of 4P-PDOT, IIK7 and 3-TYP

were chosen based on recent studies.24,40,41

Determination of Cell Viability
Cell viability was evaluated usingmethyl thiazolyl tetrazolium

(MTT) assay. Briefly, after the treated cells were washed with

phosphate buffer saline (PBS), a mixture of 120 μL of cell

culture medium and 20 μL of MTT solution was added to the

cells, which were cultured for 4 hours at 37°C. The medium

was then discarded, and 150μLof dimethyl sulfoxide (DMSO)

was added to the medium to dissolve the formazan crystals.

The absorbance at a wavelength of 570 nm was measured

using an ELX-800 microplate reader (BioTek, Winooski, VT,

USA). Cell viability was calculated by dividing the optical

density of the samples by the optical density of the control

group.

Detection of Cell Apoptosis
Cell apoptosis was quantified using an Annexin V-fluorescein

isothiocyanate (FITC) and propidium iodide (PI) apoptosis

assay kit (Wanleibio, Shenyang, China) by flow cytometry. In

brief, H9c2 myocytes were collected after treatment, washed

twice with PBS, resuspended and cultured in 5 μL of Annexin

V-FITC and 10 μL of PI for 15 min in the dark. Samples were

assessed using flow cytometer (ACEA Bio, San Diego, CA,

USA). The results are expressed as the calculated apoptotic

index.

Detection of Intracellular Ca2+, Lactate

Dehydrogenase (LDH) and Creatine

Kinase-MB (CK-MB) Levels
Cellular calcium was examined using the calcium-dependent

fluorescent dye Fluo-3 acetoxymethyl ester (AM) (Solarbio,

Beijing, China) in accordance with the manufacturer’s proto-

col, and cellular calcium was subsequently analyzed under

a confocal microscope (Olympus FV1000S-SIM/IX81,

Tokyo, Japan). The excitation and emission wavelengths

were 488 nm and 526 nm, respectively. The average fluores-

cence intensity of Fluo-3 AM is regarded as an indicator of the

cellular calcium concentration. LDH and CK-MB levels were

spectrophotometrically (Yoke, Shanghai, China) quantified

using an LDH assay kit (Wanleibio, Shenyang, China) and

aCK-MBassay kit (USCN,Wuhan,China) in accordancewith

the manufacturers’ protocols.

Determination of ROS, Malonaldehyde

(MDA), Superoxide Dismutase (SOD)

and Glutathione Peroxidase (GSH-Px)

Levels
The levels of ROS, MDA, SOD and GSH-Px in the incubated

cells were measured utilizing commercial kits (Wanleibio,

Shenyang, China). All assays were performed in accordance

with the manufacturers’ instructions. ROS production was

quantified using flow cytometry. In brief, treated cells were

gathered and rinsed with 1 mL of 2′,7′-dichlorofluorescein

diacetate (DCF-DA) (1:1000, FBS-free medium) at 37°C for

40 min, and the cells were then analyzed using a flow cyt-

ometer (ACEA Bio, San Diego, CA, USA). The concentra-

tions of MDA, SOD and GSH-Px were determined using

a spectrophotometer (Yoke, Shanghai, China) by measuring

the absorbance at 532, 550 and 412 nm, respectively.

Measurement of Mitochondrial

Permeability Transition Pore (MPTP)

Opening and the Mitochondrial

Membrane Potential (MMP)
In the MPTP opening assay, cells were collected and

stained with calcein-AM/CoCl2 for 15 min at 37°C in the
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dark. Then, the cells were washed three times with PBS,

and the immunofluorescence intensity of calcein-AM was

determined by flow cytometry as a reflection of MPTP

opening. The MMP was assessed by flow cytometry after

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl- imidacarbocyanine

iodide (JC-1) (Beyotime, Beijing, China) staining. In brief,

treated H9c2 myocytes were rinsed with a JC-1 probe

solution for 20 min at 37°C in the dark. The cells were

then washed twice with incubation buffer and collected for

subsequent flow cytometry analysis. The results are

expressed as a relative red/green fluorescence ratio.

Western Blot Analysis
Briefly, the total protein was collected from H9c2 cells

and separated on sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) gels.

Subsequently, the proteins were electrotransferred to

polyvinylidene difluoride membranes (Millipore,

Billerica, MA, USA) and incubated overnight (4°C)

with primary antibodies (Table 1). After that, the mem-

branes were washed and incubated with appropriate sec-

ondary antibodies for 2 hours (37°C). Protein bands were

developed using an enhanced chemiluminescence (ECL)

reagent (Wanleibio, Shenyang, China), and the band

intensity was quantified using Gel-Pro Analyzer

Software (Media Cybernetics, Bethesda, MD, USA). β-
actin served as an internal loading control. The relative

protein level was determined as the ratio of the gray

value of the target band to that of the β-actin band.

Confocal Microscopy
H9c2 myocytes were briefly transfected with Ad-GFP-

LC3 and Ad-HBmTur-Mito (Hanbio, Shanghai, China)

for 6 hours. After the different treatments, yellow puncta

in at least 100 cells for each individual experiment were

detected with a confocal microscope (Olympus, FV1000S-

SIM/IX81, Tokyo, Japan). The Manders’ overlap coeffi-

cient was used to assess the extent of colocalization with

Image Pro-Plus software.

Coimmunoprecipitation
H9c2 myocytes were treated and lysed in cell lysis buffer.

Cell lysates were centrifuged at 12,000 ×g for 10 min at 4°

C and prepared for immunoprecipitation. Sample proteins

(1 μg/μL) were incubated with 2 μg of primary antibodies

targeting MT2 (ab203346, Abcam) or SIRT3 (sc-365175,

Santa Cruz) overnight at 4°C, followed by incubation with

protein agarose beads (Beyotime, Shanghai, China) for 2

hours at 4°C. The beads were washed three times, and

protein complexes were dissolved in 60 μL of 2× SDS

sample buffer and probed by SDS-PAGE.

Statistical Analysis
All the results are shown as the means ± SEM. Statistical

analyses were performed with GraphPad Prism 8.0 soft-

ware (GraphPad Software, Inc., San Diego, CA, USA).

Data were evaluated by one-way analysis of variance

(ANOVA) followed by Tukey’s post hoc test. A p value

< 0.05 indicated a statistically significant difference.

Results
Effects of Melatonin with or Without

4-P-PDOT, IIK7 and 3-TYP on Cell

Viability; Apoptosis; and Cellular Ca2+,

LDH and CK-MB levels in A/R H9c2 cells
To investigate the effects of melatonin on H9c2 cells after

4 hours of reoxygenation, melatonin at different concen-

trations (50, 100, 150 and 200 μM) was initially adminis-

tered to normal and A/R-injured H9c2 cells for 4 hours.

Then, cell viability was assessed via MTT assay. As shown

in Figure 1A, melatonin alone exerted no substantial

effects on the viability of control cells. As shown in

Figure 1B, A/R injury triggered a notable reduction in

cell viability compared with that in control cells, while

melatonin at three concentrations (100, 150 and 200 μM)

significantly improved the cell viability of A/R-injured

cells; no notable difference between the A/R and A/R+50

μM Mel group was observed. The beneficial effect of

melatonin was most evident at a concentration of 150

μM. Therefore, a dose of 150 μM was chosen for

Table 1 Primary Antibodies Used in Western Blot

Antibody Company Catalog No. Dilution

SIRT3 Santa Cruz sc-365175 1:100

FoxO3a Wanleibio WL02891 1:1000

Cleaved caspase-3 Wanleibio WL01992 1:500

Bax Wanleibio WL01637 1:500

Bcl-2 Wanleibio WL01556 1:1000

Parkin Wanleibio WL02512 1:500

Beclin1 Wanleibio WL02508 1:500

NIX Affinit DF8163 1:500

LC3 I/LC3 II Wanleibio WL01506 1:1000

p62 Wanleibio WL02385 1:400

MT2 Abcam ab203346 1:500

β-actin Wanleibio WL01372 1:500
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subsequent studies. In addition, the effects of 4-P-PDOT,

IIK7 and 3-TYP treatments were evaluated in control and

A/R-treated cells. As shown in Figure 1C, 4-P-PDOT,

IIK7 and 3-TYP treatments exerted no remarkable change

in the cell viability of treated cells compared to that of

control cells. In A/R-treated cells, 4-P-PDOT and 3-TYP

treatment also resulted in no notable difference in cell

viability, while IIK7 treatment significantly increased cell

viability compared with that in the A/R group, which is in

accordance with a previous study.42 Melatonin evidently

increased cell viability after A/R injury (Figure 1D). In

addition, the apoptotic index was markedly reduced by

melatonin pretreatment compared with that in the A/R

group (Figure 1E and I). Moreover, cellular Ca2+, LDH,

and CK-MB levels were drastically decreased with mela-

tonin treatment compared to those in the A/R group

(Figure 1F–H, J). Nevertheless, the beneficial changes

due to melatonin observed in the A/R + Mel group were

Figure 1 Melatonin ameliorated A/R injury in H9c2 cells by increasing cellular viability and reducing the apoptotic index, cellular Ca2+ level, LDH release and CK-MB level,

but these effects were attenuated by 4-P-PDOTor 3-TYP and increased by IIK7. (A–D) Cell viability was examined by MTT assay and was calculated by dividing the optical

density of samples by that of control group. (E) Apoptotic cells were evaluated by Annexin V/PI staining; the results are expressed as the calculated apoptotic index. (F) The
mean fluorescence of Fluo-3 AM-stained cells was assessed using a confocal microscope, and the data were normalized to the control group. (G) LDH levels. (H) CK-MB

levels. (I) Representative apoptosis data from flow cytometry. (J) The fluorescence intensity of Fluo-3 AM is representative of the cellular calcium concentration. Data are

described as the mean ± SEM (n=6 in each group). *P < 0.05 vs the control group; #P < 0.05 vs the A/R group; &P < 0.05 vs the A/R + Mel group.
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abolished by either 4-P-PDOT or 3-TYP; conversely, these

beneficial effects were enhanced by IIK-7. These results

provided evidence that melatonin pretreatment alleviated

A/R damage by attenuating cell apoptosis and necrosis.

MT2 and SIRT3 signaling might participate in this

process.

Effects of Melatonin with or Without

4-P-PDOT, IIK7 and 3-TYP on Oxidative

Stress, MPTP Opening and MMP in A/R

H9c2 Cells
Biomarkers of the level of oxidative stress were further

examined. Melatonin treatment effectively reduced cellu-

lar ROS generation and MDA levels in H9c2 cells after 4

hours of reperfusion compared to those in the A/R group

(Figure 2A and B). Additionally, the decreased activities

of SOD and GSH-Px were reversed by melatonin treat-

ment compared to those in the A/R group (Figure 2C

and D). Accordingly, these antioxidative effects of mela-

tonin were alleviated by either 4-P-PDOT or 3-TYP but

intensified by IIK-7, indicating that melatonin reduced

oxidative damage induced by A/R injury. MT2 and

SIRT3 might play a role in this process. Moreover, mito-

chondrial function was also evaluated. MPTP opening was

shown to be substantially promoted due to excessive oxi-

dative injury, resulting in MMP repression.43 A/R injury

increased MPTP opening and decreased the MMP com-

pared to those in the control group (Figure 2E–H).

However, melatonin pretreatment decreased MPTP open-

ing and rescued changes to the MMP. In accordance, these

protective effects in the A/R + Mel group were abrogated

by either 4-P-PDOT or 3-TYP; in contrast, they were

enhanced by IIK-7. Mechanistically, these results sug-

gested that melatonin decreased oxidative stress and

MPTP opening and restored the MMP in H9c2 cells, and

MT2 and SIRT3 are involved in this process.

Effects of Melatonin with or Without

4-P-PDOT, IIK7 and 3-TYP on SIRT3 and

Apoptotic Signaling in A/R H9c2 Cells
To further explore the protective impact of melatonin on

A/R damage in H9c2 cells, SIRT3 and apoptotic signaling

were investigated. SIRT3 and FoxO3a expression was

significantly reduced in the A/R group compared to that

in the control group (Figure 3A and B). However, mela-

tonin counteracted this effect by elevating SIRT3 and

FoxO3a expression compared to that in the A/R group,

revealing that the positive effects of melatonin might be

linked to SIRT3 and FoxO3a. In addition, these protective

effects were immediately diminished after the introduction

of 4-P-PDOT and the 3-TYP treatment inhibited the

FoxO3a expression but not the expression of SIRT3 com-

pared with that in the A/R + Mel group, which is consis-

tent with a previous study.30 In contrast, the protective

effects of melatonin were increased by IIK7. In addition,

melatonin significantly decreased levels of the apoptosis

markers cleaved caspase-3 and Bax in A/R-injured myo-

cytes but upregulated expression of the antiapoptotic pro-

tein Bcl-2. Moreover, the presence of 4-P-PDOT and

3-TYP elevated apoptotic signaling by increasing cleaved

caspase-3 and Bax expression while decreasing Bcl-2

expression compared with that in the A/R + Mel group

(Figure 3C–E), which suggested that melatonin’s protec-

tive effects are associated with the MT2 and SIRT3 signal-

ing pathway.

Effects of Melatonin with or Without

4-P-PDOT, IIK7 and 3-TYP on Mitophagy

in A/R H9c2 Cells
To reveal whether melatonin restrains mitophagy levels,

the expression of molecules involved in mitophagy and

autophagy was determined by Western blotting. Parkin,

Beclin1 and NIX protein expression in A/R-treated cells

was significantly increased, and this increase was clearly

attenuated by melatonin (Figure 4A–C). Autophagy index

proteins were also investigated after A/R injury, which

revealed an elevated LC3 II/LC3 I ratio and decreased

p62 level. Melatonin markedly decreased the LC3 II/LC3

I ratio and upregulated the p62 protein level (Figure 4D

and E), indicating that melatonin exerted an inhibitory

effect on the mitophagic process. These observations

were confirmed by measuring the overlap between the

GFP-LC3 distribution and MitoTracker-labeled mitochon-

dria via confocal microscopy. Compared with the control

cells, A/R-damaged H9c2 cells after melatonin pretreat-

ment displayed a diminished number of autophagic

vacuoles engulfing mitochondria (Figure 4F and G). To

illustrate the specific role of MT2 and SIRT3 in A/

R-induced mitophagy, the specific MT2 antagonist

4-P-PDOT and the SIRT3 inhibitor 3-TYP were employed.

4-P-PDOT suppressed the inhibitory effect of melatonin on

mitophagy in H9c2 cells observed in the A/R + Mel group,

leading to a significant increase in Parkin, Beclin1 and
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NIX protein expression. In addition, there was a notable

increase in the LC3 II/LC3 I ratio with a decrease in p62

expression compared to those in the A/R + Mel group

(Figure 4A–E). The SIRT3 inhibitor 3-TYP had the same

effects as shown by an obvious increase in Parkin,

Beclin1, and NIX expression and an increased LC3 II/

LC3 I ratio, with a decrease in p62 expression.

Moreover, the results of microscopic analysis of the degree

to which GFP-LC3 colocalized with MitoTracker-labeled

mitochondria were consistent with the results of Western

blot analysis. Melatonin treatment decreased the degree to

which GFP-LC3 and MitoTracker colocalized following

A/R; both 4-P-PDOT and 3-TYP abrogated this decrease

in GFP-LC3 and MitoTracker colocalization (Figure 4F

and G). Overall, the above results suggested the excessive

activation of mitophagy in H9c2 cells after A/R treatment

and that melatonin can alleviate A/R injury in H9c2 cells

by reducing mitophagic activation. Moreover, these inhi-

bitory effects of melatonin on mitophagy might be modu-

lated by MT2 and SIRT3 signaling pathway.

Figure 2 Melatonin attenuated A/R injury in H9c2 cells by alleviating myocardial oxidative stress, decreasing MPTP opening and restoring the MMP, but these effects were

lessened by 4-P-PDOTor 3-TYP and enhanced by IIK7. (A) ROS production. (B) MDA content. (C) SOD content. (D) GSH-Px level. (E) MPTP opening was determined by

calcein-AM flow cytometry assay. (F) The MMP was determined by JC-1 staining. (G) Fold change in calcein-AM fluorescence. (H) The MMP is expressed as the ratio of red/

green fluorescence. Data are described as the mean ± SEM (n=6 in each group). *P < 0.05 vs the control group; #P < 0.05 vs the A/R group; &P < 0.05 vs the A/R + Mel group.
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Interaction Between SIRT3 and MT2 and

Its Impact on the Effects of Melatonin in

A/R H9c2 Cells
According to previous research, the SIRT3 signaling pathway

plays a critical role in the defensive effects ofmelatonin against

A/R damage,44 but the association between SIRT3 andMT2 is

still uncertain. In the present in vitro study, the expression

levels of both SIRT3 and MT2 were extensively decreased

following A/R. Melatonin treatment restored SIRT3 and MT2

expression after A/R (Figures 3A and 5A). Remarkably, the

SIRT3 inhibitor 3-TYPhad a significant effect onMT2 expres-

sion (Figure 5A), and specific inhibition of the MT2 with

4-P-PDOTalso generated a notable decrease in SIRT3 expres-

sion (Figure 3A). Moreover, a coimmunoprecipitation assay

showed that SIRT3 interacted with the MT2 receptor in both

control cells and A/R-injured cells. However, A/R treatment

attenuated the interaction between SIRT3 and the MT2 recep-

tor (Figure 5B). Collectively, these data may demonstrate the

role of MT2/SIRT3 signaling in the cardioprotective effects of

melatonin via the inhibition of mitophagy.

Discussion
In the current study, we revealed that melatonin pretreatment

notably alleviated cellular injury, apoptosis and oxidative stress

Figure 3 Melatonin reduced A/R injury in H9c2 cells by upregulating SIRT3-related signaling and reducing cellular apoptosis, but these effects were suppressed by 4-P-PDOT

or 3-TYP and improved by IIK7, while 3-TYP did not decrease the beneficial effect of melatonin towards SIRT3 expression. (A) SIRT3 expression. (B) FoxO3a expression.

(C) Cleaved caspase-3 expression. (D) Bax expression. (E) Bcl-2 expression. Data are described as the mean ± SEM (n=6 in each group). *P < 0.05 vs the control group; #P <
0.05 vs the A/R group; &P < 0.05 vs the A/R + Mel group.
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Figure 4 Melatonin alleviated A/R injury in H9c2 cells by inhibiting mitophagy, but these effects were inhibited by 4-P-PDOT or 3-TYP and enhanced by IIK7. (A) Parkin

expression. (B) Beclin1 expression. (C) NIX expression. (D) LC3 II/LC3 I ratio. (E) p62 expression. (F) Manders’ overlap coefficient for GFP-LC3 and mitochondria. (G)

Colocalization of GFP-LC3 and MitoTracker. Fluorescence images were obtained by confocal microscopy. Data are described as the mean ± SEM (n=6 in each group). *P <

0.05 vs the control group; #P < 0.05 vs the A/R group; &P < 0.05 vs the A/R + Mel group.
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and attenuated mitochondrial dysfunction after A/R-induced

injury in vitro. In addition, we demonstrated the underlying

mechanism of these effects in themelatonin-induced inhibition

of excessive mitophagy. Our results indicated that melatonin

significantly suppressedmitophagy by inhibiting expression of

the mitophagy-related proteins Parkin, Beclin1, and NIX;

decreasing the LC3 II/LC3 I ratio; and consequently protected

H9c2 cells from A/R-damaged cellular death. Additional

experiments suggested that melatonin pretreatment restored

the expression of SIRT3 and FoxO3a and prevented excessive

mitophagy in A/R-injured H9c2 cells. However, these effects

were notably attenuated by 4-P-PDOTor 3-TYP, revealing that

the cardioprotective effect of melatonin due to the inhibition of

excessive mitophagy might be mediated, at least in part, by

MT2 and SIRT3. In summary, we identified a specificmechan-

ismbywhichmelatonin attenuatesA/R injury inH9c2 cells via

inhibition of mitophagy through the MT2/SIRT3/FoxO3a sig-

naling pathway. This provides new evidence of melatonin as

a prospective drug to alleviate MI/R injury and demonstrates

that the combination of melatonin with an MT2 agonist might

produce a more promising result.

Mitophagy is essential to homeostasis in bothmitochondria

and cells. Mitophagy dysfunction might be responsible for the

pathogenesis of numerous chronic diseases, including cancer,

Parkinson’s disease, and heart and liver disorders.45 The dys-

regulation of mitophagy leads to decreased cellular resistance

to MI/R injury due to energy shortage. Increasing evidence

demonstrates that excessive mitophagy and autophagy during

the reperfusion period could give rise to irreparable damage in

cardiac myocytes and ultimately death.46–48 Our data also

indicated that the triggering of excess mitophagy during the

reperfusion phase was damaging to H9c2 cells. In this study,

the expression of Parkin, Beclin1, andNIXand theLC3 II/LC3

I ratio were significantly increased after A/R treatment,

whereas p62 expression was notably decreased, indicating

that excessive mitophagy was activated; the activation of

excessive mitophagy was also confirmed by increased overlap

between the GFP-LC3 distribution and MitoTracker signal

measured using confocal microscopy. Furthermore, these

changes might be due to an alternative form of mitophagy

known as receptor-mediated mitophagy in which proteins in

the outer mitochondrial membrane (OMM) including BNIP3

and NIX, directly bind LC3 through its BH3 domain under

hypoxic conditions.49 The results indeed showed excessive

mitophagy in myocardial cells exposed to A/R, which was in

accordance with the above data. Thus, it is conceivable that

inhibiting mitophagy could indirectly benefit cardiomyocytes

and be developed into a strategy for MI/R injury mitigation.

Melatonin, the chief hormone in the pineal gland, is highly

pleiotropic and regulates a variety of physiological functions in

numerous organs through receptor-mediated and receptor-

independent mechanisms.50 In the present investigation, we

discovered that melatonin pretreatment had cardioprotective

effects on anA/Rmodel in vitro, as evidenced by increased cell

viability and a decreased oxidative response, cellular apoptosis

Figure 5 The interaction between SIRT3 and MT2 may promote the protective effects of melatonin in A/R H9c2 cells. (A) MT2 expression. (B) A coimmunoprecipitation

assay indicated the interaction between SIRT3 and MT2 in control and A/R-injured cells. Data are described as the mean ± SEM (n=6 in each group). *P < 0.05 vs the control

group; #P < 0.05 vs the A/R group; &P < 0.05 vs the A/R + Mel group.
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and necrosis. The role of melatonin during I/R damage was

recently discussed, and melatonin was shown to play a dual

role by either enhancing or suppressing autophagy during I/R

injury in different established models.11,51-53 Moreover, mito-

phagy, a specific form of autophagy, is also considered to be

affected by melatonin in a dual manner. The precise mechan-

ism by which melatonin affects mitophagy is still an enigma.

According to recent investigations, melatonin could attenuate

MI/R by potentiating mitophagy by initiating different signal-

ing pathways, including the mammalian Ste20-like kinase 1

(Mst1) inhibition, AMPK-optic atrophy 1(OPA1) signaling

and uncoupling protein 2 (UCP2) regulatory pathways. In

contrast, melatonin could also attenuate I/R injury in the myo-

cardial microvasculature through suppressing the VDAC1-

hexokinase 2 (HK2)-mitophagy axis.22,25,54-56 Our results

showed that melatonin significantly suppressed mitophagy by

decreasing the receptor-mediated mitophagy proteins Parkin,

Beclin1, and NIX and the LC3 II/LC3 I ratio and upregulating

p62 expression. These effects of melatonin conferred cardio-

protection against A/R treatment, resulting in the improved

survival of H9c2 cells. Moreover, melatonin treatment also

restored changes to MPTP opening and the MMP in H9c2

myocytes after A/R injury, suggesting its role in defense

against mitochondrial dysfunction.

FoxO3a is known to directly modulate the promotion of

mitophagy by stimulating the downstream targets Parkin,

BNIP3 and sequestosome. Its activity was suggested to be

altered by its physical interaction with mitochondrial SIRT3,

as SIRT3 elevates the DNA-binding activity of FoxO3a, lead-

ing to the upregulation of FoxO3a-dependent genes.35 As

a principal member of the mitochondrial sirtuin family,

SIRT3 acts as a crucial modulator of cellular metabolic main-

tenance, the oxidative response and mitophagy in cardiomyo-

cytes. Recent studies demonstrated that SIRT3-FoxO3a

signaling could activate mitophagy by promoting the Pink-1/

Parkin pathway when I/R occurred.33,57,58 Our data suggested

that SIRT3 and FoxO3a were decreased in A/R-injured myo-

cytes, and their expression was accordingly correlated with

oxidative damage and mitochondrial dysfunction. Melatonin

treatment was also shown to elevate SIRT3 protein level as

well as FoxO3a expression in H9c2 cells after A/R injury. By

suppressing SIRT3 with the SIRT3 inhibitor 3-TYP, the bene-

ficial effects of melatonin against A/R were demonstrated to

involve SIRT3. Moreover, we found that 3-TYP abolished the

melatonin-induced upregulation of FoxO3a expression.

Consequently, SIRT3 might be a vital upstream molecule that

affects the levels of the FoxO3a protein during the mechanism

of melatonin-mediated cardioprotection.

Three melatonin membrane receptors have been detected

thus far. Melatoninmembrane receptor 1 (MT1) andMT2 are

expressed in humans, while melatonin membrane receptor 3

(MT3) has been found in hamsters.59 MT1 and MT2 were

recently identified in mitochondrial membranes.60 Several

studies exploiting the nonspecific melatonin receptor antago-

nist luzindole have also illustrated that the cardioprotective

impact of melatonin is chiefly attributed to melatonin

receptors.28,44 However, the specific melatonin membrane

receptor that regulates melatonin-induced cardioprotection

remains unclear. It has been reported that MT2 expression

was enhanced due to MI/R, and melatonin exerted its cardi-

oprotective activity during ischemic injury throughMT2, but

not MT1.25 Therefore, this in vitro study was mainly focused

on MT2. However, our results showed that the MT2 level

was instead decreased after A/R injury, which is consistent

with a previous study indicating that traumatic brain injury

(TBI) in rats led to the decreased expression of MT1 and

MT2.61 This discrepancy may be explained in part by the

different stress conditions and cultured cell lines. In addition,

melatonin-mediated cardioprotection against A/R damage

was considerably suppressed by 4-P-PDOT and conversely

enhanced by IIK-7. Taken together, these results suggest that

melatonin exerts an important effect by inhibiting mitophagy

through an MT2-dependent cardioprotective mechanism.

However, there are some limitations in the present

study. First, the MT2 antagonist 4-P-PDOT significantly

but not completely abolished the cardioprotective effects

of melatonin in A/R-injured cells. As for melatonin treat-

ment, the role of MT1 antagonist should be considered and

further explored as well as the combination of IIK7 and

4-P-PDOT. Second, the blockage of FoxO3a, which might

be an underlying contributor to the functional work of

melatonin, was not examined in the present study. Third,

our research was particularly focused on in vitro studies.

Further investigations are needed to support the present

findings applied to an animal model.

In conclusion, melatonin pretreatment drastically reduced

injury after A/R treatment and enhanced the viability of H9c2

cells by inhibiting excessive mitophagy. The protective effects

of melatonin against A/R injury were modulated by suppres-

sing excessive mitophagy through regulating the SIRT3/

FoxO3a signaling pathway in an MT2-dependent manner.

The above results indicated that melatonin might be

a candidate for the treatment of MI/R injury in cardiovascular

diseases, and theMT2 receptor represents a potentially appeal-

ing molecular target as well.
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