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Abstract: Nerve growth factor (NGF) is a neurotrophic protein essential for the growth,

differentiation, and survival of sympathetic and sensory afferent neurons during development.

A substantial body of evidence, based on both animal and human studies, demonstrates that

NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred

development of a variety of novel analgesics that target the NGF signaling pathway. Here,

we present a narrative review designed to summarize how NGF receptor activation and

downstream signaling alters nociception through direct sensitization of nociceptors at the site

of injury and changes in gene expression in the dorsal root ganglion that collectively increase

nociceptive signaling from the periphery to the central nervous system. This review illustrates

that NGF has a well-known and multifunctional role in nociceptive processing, although the

precise signaling pathways downstream of NGF receptor activation that mediate nociception

are complex and not completely understood. Additionally, much of the existing knowledge

derives from studies performed in animal models and may not accurately represent the human

condition. However, available data establish a role for NGF in the modulation of nociception

through effects on the release of inflammatory mediators, nociceptive ion channel/receptor

activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in

nociception and the generation and/or maintenance of chronic pain has led to it becoming

a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.
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Introduction
Nerve growth factor (NGF) is a neurotrophic protein essential for the growth,

differentiation, and survival of sympathetic and sensory afferent neurons during

development.1 NGF contributes to neuronal phenotype by modulating axonal gui-

dance, gene transcription, neurotransmitter release, and synaptic plasticity.2–4 In

addition, NGF plays a pivotal role in the modulation of nociception in adulthood.5,6

This review highlights how NGF receptor activation and subsequent down-

stream signaling alter nociception. Specifically, we discuss how NGF can (i) in

a short time frame (typically within minutes) lead to direct sensitization of noci-

ceptors via actions at the site of injury, and (ii) in a longer time frame (several hours

to days) change gene expression and render nociceptors more responsive via actions

in the dorsal root ganglion (DRG). These actions contribute to anatomic remodeling

that results in a wider nociceptor input from injured tissue and increases the

nociceptive signaling from the periphery to the central nervous system (CNS),

providing a rationale for future study of novel analgesics that neutralize NGF or

antagonizes its receptors.
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Methods
This narrative review was intended to provide an overview

of the effects of NGF on nociceptive signaling. Due to the

broad scope of the review, and the substantial body of

published literature, a narrative approach was utilized.

The review was based on searches of PubMed and the

authors’ familiarity with the published literature. Search

terms included concepts related to NGF and pain or noci-

ception. Results included both animal and human studies.

Recent publications were prioritized, though older pivotal

studies were also included.

Results
Overview of NGF and Its Receptors
NGF (Figure 1) is a member of the neurotrophin family,

which in mammals also includes brain-derived neuro-

trophic factor (BDNF), neurotrophin-3, and neurotrophin-

4/5.7 NGF is initially translated as a precursor, proNGF,

which can be (i) cleaved intracellularly into mature β-NGF
by furin, (ii) cleaved extracellularly by plasmin or matrix

metalloproteinases, or (iii) remain intact and signal in its

proNGF precursor form.8–10 Inhibiting the processing of

proNGF abolishes regulated secretion of the resulting

mature NGF product.11

There are 2 receptors for NGF, p75 neurotrophin recep-

tor (p75NTR) and tropomyosin receptor kinase

A (TrkA).12 TrkA has a higher affinity for mature NGF

than for proNGF and activates neurotrophic signaling.9,13

P75NTR has a higher affinity for proNGF and can activate

both neurotrophic and apoptotic signaling, the later in the

presence of sortilin.8,14 There is an intricate functional

relationship between the 2 NGF receptors, and the signal-

ing outputs of NGF and proNGF (survival versus apopto-

sis) depend on the cellular context and the ratio of TrkA to

p75NTR.13

TrkA is expressed in nociceptive sensory neurons and

is thought to mediate most of the important effects of NGF

on the nociceptive system.6,23 In rats, about 40% of DRG

sensory neurons express TrkA, including peptidergic fibers

that innervate bone, skin, muscle, and viscera.6,23

Following the release of NGF, which frequently occurs at

sites of peripheral tissue injury, NGF can bind TrkA

receptors located at peripheral nociceptor terminals.

Upon binding of NGF to the extracellular region of

TrkA, the receptor dimerizes, autophosphorylates, and

initiates signaling events by docking and phosphorylating

downstream targets.24–26 The NGF-TrkA complex is

internalized into endosomes where it can be retrogradely

transported, recycled, or degraded.26 Immediate pro-

nociceptive effects resulting from NGF/TrkA signaling

(such as modulation of ion channel activity) occur in the

peripheral nociceptor terminal, while longer-term effects

(such as modification of gene expression) occur in the

soma following retrograde axonal transport of the NGF/

TrkA complex to the DRG.5,6 Three major signaling cas-

cades initiated by TrkA activation include the phospholi-

pase C-γ (PLCγ) pathway, the mitogen-activated protein

kinase (MAPK)/Erk pathway, and the phosphoinositide

3-kinase (PI3K) pathway.26

Figure 1 X-ray crystallographic structure of human NGF homodimer. NGF is

a homodimer consisting of 2 strands of 120 amino acids each, which non-

covalently dimerize to form a 26-kDa protein. Note the N-terminus of the mono-

mers is not apparent (unresolved). Copyright© 2006. Portland Press. Reproduced

with permission from Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins

and their receptors. Clin Sci (Lond). 2006;110(2):175–191.7

Abbreviation: NGF, nerve growth factor.
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Role of NGF on the Nociceptive System

During Development
A dominant effect of NGF during early development is its

role as a survival factor for neurons, including sympathetic

and sensory neurons.1,27 The density of the innervation of

the target tissue is controlled by a spatially and temporally

limited supply of NGF, and cells receiving insufficient

support during this critical period of time succumb to

cell death.28

NGF null mice have a severe loss of sympathetic and

sensory neurons, particularly in the population of pepti-

dergic small- and medium-diameter DRG neurons.30

Animals lacking TrkA receptors show a phenotype similar

to NGF null mice, underscoring the importance of NGF-

TrkA signaling for the development of the nociceptive

system.30,31

In humans, Hereditary Sensory and Autonomic

Neuropathy type V (HSAN V) is caused by mutations in

the NGF gene.32,33 The first mutation identified, a cytosine

to thymine point mutation at nucleotide 661, came from

analysis of a northern Swedish multi-generational

family.32,34 This particular NGF mutation results in

a substitution of tryptophan (W) for arginine (R) at

amino acid 221 in proNGF (R221W), which corresponds

to amino acid 100 in mature NGF (R100W).35 This muta-

tion causes a substantial loss of unmyelinated nerve fibers

and a moderate loss of thinly myelinated fibers.32 Patients

with this mutation present with impaired ability to sense

deep pain (pain originating in the bones or joints) and

temperature (thresholds for heat and cold sensing are

increased), but most other neurological functions, includ-

ing sweating, appear normal.32 This mutation does not

affect NGF binding to TrkA but does reduce PLC signal-

ing downstream of TrkA.35 This NGF mutation also inhi-

bits processing of proNGF to mature NGF, which may

lower systemic NGF levels, and abolishes NGF binding

to p75NTR.34,35 Other mutations can alter the spectrum of

HSAN V presentation. For example, a cytosine to adeno-

sine mutation at nucleotide 680 (C680A) causes complete

insensitivity to pain accompanied by anhidrosis, mild men-

tal retardation, and immune deficiency.33 Thus, different

HSAN V NGF gene mutations may have a variety of

effects on NGF-sensitive tissues.

Mutations in the TrkA gene cause a related disorder,

HSAN IV, which produces a phenotype similar to HSAN

V.36 These TrkA gene mutations result in defective binding

of NGF to TrkA and, as a result, the inhibition of NGF-

induced TrkA phosphorylation and downstream signaling

cascades.37

As development proceeds, the role of NGF in neuronal

growth/survival during development diminishes and its role

in modulating nociception becomes more relevant.6 It is

likely that the developmental role of NGF and the nocicep-

tive role of NGF overlap temporally. The ability of NGF to

modulate nociceptive signaling has been observed during

early perinatal stages, with repeated postnatal (P0-14) expo-

sure to exogenous NGF in rodents producing mechanical

hyperalgesia that persists into adulthood.38 Further, the abil-

ity of NGF to sensitize sensory neurons to capsaicin or heat

stimuli begins between postnatal days 4 to 10.39

Evidence for a Role of NGF Signaling in

Nociception in Adulthood
NGF Levels are Increased During Pain Conditions

Though adult sensory and sympathetic neurons can sur-

vive in the absence of NGF, NGF remains capable of

promoting neuronal growth and sprouting in

adulthood.40–43 Basal NGF levels are lower in the adult

than in development.42,44 In humans, serum NGF levels

start to decrease at approximately 8 years of age, presum-

ably reflecting increasing maturity of the nervous

system.45 Levels of NGF increase in adult rodents in

several inflammatory conditions and in several models of

pain.46–49 Further, blockage of NGF signaling can attenu-

ate pain-related behavior in a variety of animal models

including immune arthritis, fracture, bone cancer pain,

osteoarthritis, and neuropathic pain.50–60 Increased levels

of NGF are also found in chronic pain conditions in

humans, such as osteoarthritis, low back pain, and inter-

stitial cystitis (Table 1).61–77 However, an elevated level of

NGF is not a hallmark of all chronic pain conditions and

low levels of NGF have been found in the plasma of

patients with fibromyalgia.78 Thus, care should be taken

when generalizing findings from one condition to another.

It should also be noted that the physiologically relevant

level of NGF required for neuronal sensitization at local

sites of peripheral tissue injury is not known. It is also

unclear how NGF levels at local sites of peripheral injury

are correlated to overall levels measured in serum or other

fluids.

NGF Administration Induces Hyperalgesia

In addition to the observation of increased NGF levels in

chronic pain conditions and animal models of pain/inflam-

mation, it has been demonstrated that exogenous
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Table 1 Summary of Disease States or Conditions in Humans in Which Increased Levels of NGF Were Detected Compared with

Controls

Study Disease/Condition Sample Size Sample Matrix NGF

Form

Aloe et al61 Rheumatoid arthritis,

osteoarthritis, or other

chronic arthritis

n = 6 osteoarthritis patients; n = 8 rheumatoid arthritis patients;

n = 8 patients with other chronic arthritis; n = 2 control

patients who did not have rheumatic disease

Synovial fluid Protein

Halliday et al62 Rheumatoid arthritis or

other inflammatory

arthropathy

n = 13 rheumatoid arthritis patients; n = 10 other inflammatory

arthropathies; n = 3 normal volunteers

Synovial fluid Protein

Walsh et al63 Rheumatoid arthritis or

osteoarthritis

n = 10 rheumatoid arthritis patients; n= 11 osteoarthritis

patients; n = 11 non-arthritic post-mortem controls

Vascular channels

of osteochondral

junction

Protein

Iannone et al13 Osteoarthritis n = 12 osteoarthritis patients; n = 3 healthy controls Knee

chondrocytes

Protein

Jiang et al65 Interstitial cystitis/bladder

pain syndrome

n = 30 interstitial cystitis/bladder pain syndrome patients; n = 26

controls

Blood serum Protein

Okragly et al66 Interstitial cystitis or

bladder cancer

n = 4 interstitial cystitis patients; n = 6 bladder transition cell

cancer-carcinoma patients;

n = 7 urinary tract infection patients; n = 7 healthy volunteers

Urine Protein

Liu et al67 Interstitial cystitis/bladder

pain syndrome

n = 58 interstitial cystitis/bladder pain syndrome patients; n = 28

healthy controls

Urine Protein

Lowe et al68 Idiopathic sensory urgency,

chronic cystitis, or

interstitial cystitis

n = 4 patients with idiopathic sensory urgency; n = 4 chronic

cystitis patients; n = 4 interstitial cystitis patients; n = 4 controls

(genuine stress incontinence on cystometry but with no

irritative symptoms)

Urothelium Protein

Watanabe et al69 Chronic prostatitis (CP) or

chronic pelvic pain

syndrome (CPPS)

n = 20 CP or CPPS patients; n = 4 healthy male controls with no

history of genitourinary symptoms, instrumentation, or surgery

Expressed

prostatic

secretions

Protein

Giovenga et al70 Primary fibromyalgia

syndrome

n = 34 fibromyalgia syndrome patients; n = 15 patients

diagnosed with fibromyalgia in addition to another painful or

inflammatory condition; n = 10 other (patients diagnosed with

another painful or inflammatory condition, but not

fibromyalgia); n = 35 healthy controls

Cerebrospinal

fluid

Protein

Sarchielli et al71 Chronic daily headache n = 20 chronic daily headache patients; n = 20 age-matched

controls who underwent lumbar puncture for diagnostic

purposes

Cerebrospinal

fluid

Protein

Sobue et al72 Various neuropathiesa n = 54 neuropathy; n = 4 specimens with normal appearance of

morphology and normal nerve conduction

Sural nerve

segments

mRNA

Freemont et al73 Low back pain n = 21 “pain level” (discography at these levels reproduced the

patients’ symptoms of low back pain and/or sciatica)

intervertebral disc (IVD) specimens; n = 20 “non-pain level”

(discography was either painless or induced sensations that

were not described by the patient as mimicking their symptoms)

IVD specimens. A total of 41 specimens were taken from 36

patients

Intervertebral

disc

mRNA

(Continued)
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administration or overexpression of NGF results in hyper-

algesia and/or allodynia.38,79-81

Interestingly, striking hyperalgesic effects of NGF

administration have also been observed in humans. In

healthy adults, for example, a single subcutaneous injec-

tion of recombinant NGF has been shown to elicit local

injection-site hyperalgesia that persists for up to 7 weeks,

depending on the dosage.82 Likewise, intradermal injec-

tion of NGF produces long-lasting local thermal (early

onset) and mechanical (delayed) hyperalgesia.83–87

Localized priming of nociceptors following intradermal

injection of NGF has also been demonstrated through an

enhancement of hyperalgesia in response to irradiation

with ultraviolet-B.88,89

Intramuscular injection of NGF has been shown to

cause lasting mechanical hyperalgesia in a variety of

muscles.90–101 Notably, injection of NGF into the tibialis

anterior muscle induces local mechanical hyperalgesia

within 3 hours of injection that spreads to distant areas

on days 1 to 4, suggesting involvement of central pain

mechanisms.93 Repeated injections result in both temporal

summation and spreading of mechanical pain, again impli-

cating both peripheral and central mechanisms.102

Spreading of NGF-induced hyperalgesia has also been

observed following injection into the supraspinatus

muscles.94 A single injection of NGF into the facia of

the musculus erector spinae muscle produces both

mechanical and chemical (proton) hyperalgesia.103

Chemical hyperalgesia has also been demonstrated follow-

ing the injection of NGF into the tibialis anterior.101

NGF Treatment Lowers Nociceptor Activation

Threshold

Intradermal injection of NGF increases the conduction velo-

city and decreases activity-dependent slowing of conduction

velocity in unmyelinated porcine (pig) mechano-insensitive

nociceptors.104–106 The activation threshold of mechano-

sensitive nociceptors at the injection site decreases following

NGF treatment and the proportion of mechano-sensitive

nociceptors increases.104 While the receptive field of these

nociceptors increased, there was no increase in intraepider-

mal nerve fiber density, suggesting that previously silent

nociceptors may be recruited in this circumstance.104 These

changes were measured 3 weeks after NGF administration

and, therefore, likely represent long-term effects of NGF

signaling. Sensitization of skin nociceptors has been con-

firmed in humans using microneurography techniques

which demonstrate that axonal branches exhibit reduced

activation thresholds within the NGF injection zone but not

outside of the injection zone.107

Nociceptive Actions of NGF Signaling
Effects of NGF on Inflammatory Cells and Mediators

There is evidence that NGF modulates nociception, in part,

by influencing the actions of inflammatory cells and media-

tors. It has been shown that rodent mast cells produce and

store NGF in granules until degranulation and NGF mRNA

has been detected in a human mast cell line.108,109 Moreover,

cultured media from this mast cell line is able to induce

neurite outgrowth in cultured chick embryonic sensory neu-

rons, suggesting that NGF is secreted from these cells.109

Table 1 (Continued).

Study Disease/Condition Sample Size Sample Matrix NGF

Form

Richardson

et al74
Low back pain n = 5 samples from 4 non-degenerate post-mortem nucleus

pulposus (NP) patients; n = 9 post-mortem degenerate NP

samples from 4 patients; n = 13 surgical degenerate NP samples

from 11 patients

Nucleus pulposus mRNA

Aoki et al75 Lumbar degenerative disc

disease

n = 29 patients with herniated discs; n = 26 patients with other

degenerated disc diseasesb
Nucleus pulposus Protein

Zhu et al76 Pancreatic cancer n = 37 pancreatic cancer patients; n = 27 pancreatic samples

from humans free of pancreatic disease through an organ donor

program in which there were no candidates for transplantation

Pancreatic cancer

tissuec
mRNA

Notes: aPatients included had vasculitic and ischemic neuropathy; inflammatory demyelinating neuropathy with Guillain–Barre syndrome or chronic inflammatory

demyelinating neuropathy; alcoholic neuropathy; familial amyloid polyneuropathy type 1; toxic neuropathy with cisplatin; Charcot–-Marie–Tooth disease type 1; X-linked

recessive bulbospinal neuronopathy; diabetes mellitus; hypothyroidism; or neuropathy with unknown origin. bOther degenerated disc diseases were spondylolisthesis, spinal

canal stenosis, and lumbar degenerative scoliosis. cTaken from patients undergoing a partial duodenopancreatectomy for pancreatic cancer.
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NGF has also been found to be present in, and released from,

human CD14+ T cell clones and human monocytes.110,111

NGF has been shown to increase the release of mediators

from inflammatory cells (Figure 2). These mediators, such as

bradykinin, histamine, ATP, serotonin, and protons, are

released during inflammation or injury from ruptured cells or

from infiltrating inflammatory cells and are capable of activat-

ing receptors and ion channels found on the peripheral noci-

ceptor terminal, leading to neuronal depolarization and

sensitization that manifests as pain hypersensitivity.112 For

example, exogenous IL-1β causes mechanical and thermal

hyperalgesia (measured as an increased nociceptive reflex) in

rodents, and histamine has been shown to mediate pain-related

behaviors in a rodent model of interstitial cystitis.113,114

Further, serotonin administered to healthy human volunteers

causes mechanical hyperalgesia and stimulates calcium influx

into cultured rat sensory neurons, an indication of cell

excitability.115,116 Finally, bradykinin treatment causes

mechanical hyperalgesia in rats and Protein Kinase C (PKC)

signaling-dependent sensitization of the transient receptor

potential cation channel subfamily V member 1 (TRPV1),

when isolated via patch-clamp, which has a known role in

nociception and noxious heat sensation.117,118

NGF can trigger the release of histamine and leukotriene

from human basophils, serotonin and histamine from rodent

mast cells, and histamine and tryptase from a human mast cell

line.119–123However,NGFadministration did not activatemast

cells in a separate rodent study, and there is some evidence that

rodent mast cells do not express NGF receptors.109,124 Though

the contribution of mast cells to NGF signaling in humans is

not clear, human mast cells express TrkA receptors and, thus,

species differences must be considered when discussing the

influence of NGF on inflammatory cells.109 Similar to effects

seen in mast cells, isolated murine peritoneal macrophages

exposed to NGF increase the production of interleukin 1β

(IL-1β).125 This may occur through TrkA activation as TrkA

expression, but not p75NTR expression, was observed in these

cells.125 The effects that NGF-mediated release of inflamma-

tory mediators have will depend on the tissue. For example,

histamine evokes the sensation of itch when released in isola-

tion in superficial skin and mucous membranes, but causes

burning pain when applied to deep somatic tissues.126,127

In addition to affecting cytokine release, NGF can also

affect the actions of inflammatory mediators. For example,

NGF can potentiate the sensitivity of rat DRG neurons to

bradykinin.128 On the other hand, inflammatory mediators

can influence the levels and effects of NGF. Evidence suggests

that IL-1β contributes to increased NGF levels in cultured

sciatic nerve explants, and inhibiting bradykinin-1 receptor

activity blocks NGF-induced thermal hyperalgesia in

rodents.114,129,130 Thus, there may be instances of positive

feedback loops in vivo in which NGF stimulates the release

and actions of inflammatory mediators that in turn stimulate

increased synthesis and/or release of NGF. However, the role,

if any, such a feedback loop plays in the generation or main-

tenance of chronic pain is not known.

NGF Effects on Nociceptive Ion Channels,

Receptors, and Peptides

In addition to enhancing the release of inflammatory med-

iators that alter sensory neuron excitability, NGF signaling

itself also has effects on the activity of nociceptive ion

Figure 2 Nociceptive effects of NGF on inflammatory cells. NGF binds TrkA receptors on inflammatory cells. The resulting NGF/TrkA signaling increases the release of

a variety of inflammatory mediators such as serotonin, histamine, and NGF itself, which are known to cause sensitization of nociceptors via modulation of receptor or ion

channel activity at the peripheral terminal.

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); NGF, nerve growth factor; TrkA, tropomyosin receptor kinase A.
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channels and receptors that contribute to nociceptor sensi-

tization (Table 2). The changes may be due either to direct,

immediate effects on ion channel/receptor activity at the

cell membrane and/or through longer-term effects such as

enhanced gene transcription that leads to increased num-

bers of ion channels/receptors at the cell surface

(Figure 3).

NGF Effects in Ion Channel Activity

The cation channel TRPV1, known to play a key role

in nociception, is modulated by NGF activity. Cell

culture studies have implicated each of the major sig-

naling pathways downstream of TrkA activation in

NGF-induced sensitization of TRPV1, though data par-

ticularly support a role for PI3K as a mediator of

TRPV1 sensitization.131–135 Another non-selective

cation channel predominantly expressed in sensory

neurons, the ATP-gated P2X3 receptor, is also modu-

lated by NGF.136–138 Cultured rodent trigeminal sen-

sory neurons exposed to NGF exhibit potentiated P2X3

currents, while blocking NGF activity reduces such

currents.137,138 NGF-induced enhancement of P2X3

activity may occur downstream of TrkA activation, as

PKC-mediated phosphorylation of P2X3 threonine sub-

units has been shown to increase P2X3 currents in

these cultured neurons.137,139

In isolated rat primary DRG sensory neurons, NGF

enhances tetrodotoxin-resistant sodium currents and sup-

presses delayed rectifier potassium currents, which together

lead to increased cell excitability.140 Signaling molecules

downstream of TrkA activation have been shown to potenti-

ate sodium channel activation. In cultured rodent DRG neu-

rons, for example, Nav1.7 activation is increased via Erk1/2

signaling, and activation of p38 MAPK can directly phos-

phorylate Nav1.8 leading to an increase in Nav1.8 current

density in DRG neurons.141,142 However, whether these

changes to sodium channel activation properties occur down-

stream of NGF-TrkA signaling, or as part of other signaling

pathways, was not explored in these studies.

While numerous studies have demonstrated a role for

NGF-TrkA signaling in the modulation of nociceptive ion

channel activity, there is also evidence that NGF-p75NTR

Table 2 Summary of Short- and Intermediate/Long-Term Effects of NGF Signaling on Ion Channels, Receptors, and Peptides

Term Effect Downstream Signaling Pathways Possibly Involved

Short-term (typically within

a few minutes)

● Increased TRPV1 channel activity.131,134 ● PLC/PKC, MAPK/ErK, Likely PI3K.131–134

● Increased P2X3 channel activity.137 ● PLC/PKC.137

● Increased tetrodotoxin-resistant sodium channel

activity.140

● Not identified

● Decreased delayed rectifier potassium channel

activity.140

● Not identified

● Increased calcium channel activity.202 ● Not identified

● Increased NMDA receptor activity.203 ● Possible direct interaction.203

Longer-term (typically

several hours to days)

● Increased NaV1.8 synthesis.204 ● Not identified

● Increased NMDA receptor subtype 2B synthesis.148 ● Not identified

● Increased synthesis of TRPV1.149 ● Not identified

● Increased synthesis of voltage-gated calcium

channels.205

● Not identified

● Increased synthesis of P2X3.153 ● Not identified

● Increased BK2R synthesis.128,154 ● Not identified

● Increased activity of ASIC channels.156 ● Not identified

● Increased ASIC1a synthesis.158 ● Not identified

● Increased ASIC3 synthesis.157 ● NGF/TrkA and downstream PLC/PKC. NGF/p75NTR and

downstream JNK/p38 MAPK.157

● Increased substance P synthesis.159,160,174 ● Not identified

● Increased CGRP synthesis.47,159,174 ● Not identified

● Increased BDNF synthesis.179,206 ● Not identified

Abbreviations: ASIC, acid-sensing ion channel; BDNF, brain-derived growth factor; BK2R, bradykinin receptor 2; CGRP, calcitonin gene-related peptide; ERK,

extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate;

P2X3, P2X purinoceptor 3; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLC, phospholipase C; TrkA, tropomyosin receptor kinase A; TRPV1, transient

receptor potential cation channel subfamily V member 1.
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Figure 3 Effects of NGF on nociceptive ion channels, receptors, and peptides. (A) NGF signaling increases the activity of a variety of ion channels and receptors at the

nociceptor peripheral terminal, which promotes depolarization and sensitization in a relatively short time frame. In a longer time frame, the NGF/TrkA complex is

retrograde transported to the soma where NGF/TrkA signaling within the DRG promotes gene expression and leads to an upregulation of nociceptive ion channels,

receptors, and peptides in the peripheral and central terminals. (B) NGF is released from a variety of cells following inflammatory injury. Reproduced with permission from

Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology (Official Journal of the

American Society of Anesthesiologists). 2011;115(1):189–206; https://anesthesiology.pubs.asahq.org/article.aspx?articleid=1933906.

Abbreviations: ASIC3, acid-sensing ion channel 3; BDNF, brain-derived neurotrophic factor; BR, bradykinin receptor; Ca, calcium; CGRP, calcitonin gene-related peptide;

DRG, dorsal root ganglion; K, potassium; Na, sodium; NGF, nerve growth factor; SP, substance P; TrkA, tropomyosin receptor kinase A; TRPV1, transient receptor potential

cation channel subfamily V member 1.
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signaling can contribute to sensory neuron

excitability.6,143-145 For example, NGF-mediated activa-

tion of p75NTR has been shown to increase ceramide

levels in a TrkA-independent manner in cell culture, and

studies in rodents have shown that ceramide likely med-

iates NGF-induced sensitization of isolated sensory neu-

rons in vitro and possibly NGF-induced pain-related

behaviors in vivo.140,146,147

NGF Effects on Gene Expression

In addition to enhancing the activity of nociceptive ion

channels to promote depolarization and sensitization in

a short time frame, NGF also mediates longer-term

changes in gene expression and/or membrane localiza-

tion, both of which contribute to increased sensory neuron

excitability. For example, intramuscular injection of NGF

into the masseter of rats causes an increase in the number

of trigeminal ganglion neurons expressing the N-methyl-

D-aspartate (NMDA) receptor subtype 2B, an increase

that peaks after 3 days and is associated with mechanical

sensitization.148 NGF has also been shown to promote

TRPV1 transcription in PC12 cells and increase translo-

cation of TRPV1 protein to the cell surface of cultured

rodent DRG neurons, the latter possibly mediated through

PI3K and/or PKC signaling events downstream of

TrkA.134,149–151 Increased expression of sodium channels

is evident in DRG neurons, accompanied by behaviors

associated with thermal and mechanical allodynia, after

subcutaneous administration of NGF in rats.152

Intrathecal administration of NGF in rats causes novel

P2X3 expression in axons projecting to lamina I and

outer lamina II of the spinal cord.153 In freshly isolated

mouse DRG, NGF exposure increases bradykinin B2

receptor mRNA and membrane expression.154 Likewise,

a separate study found that NGF treatment increases the

number of bradykinin binding sites in these cells, which is

dependent on the presence of p75NTR.155

Proton-gated acid-sensing ion channels (ASIC) levels

may also be modulated by NGF. In cultured rodent DRG

neurons, a mixture of inflammatory mediators including

NGF, serotonin, interleukin-1, and bradykinin signifi-

cantly increase ASIC3 currents, and NGF is known to

increase ASIC3 expression.156,157 In humans, local NGF-

induced hyperalgesia in the tibialis anterior muscle is

enhanced by subsequent treatment with acid, an activator

of ASIC channels.101 In this study, however, acute acid-

induced pain was not enhanced by previous intramuscular

injection of NGF.101 This contrasts with a separate human

study in which injection of NGF into the fascia of the

Musculus erector spinae muscle enhanced painful

responses to acidic saline treatment compared with con-

trol saline.103 This difference may be due to the time

required for retrograde transport of the NGF signaling

complex to the DRG, since acid treatment occurred 7

and 14 days after NGF administration in the former

study (enhanced acid response) and only 1 day after

NGF administration in the latter study (no enhancement

of acid response).101,103 NGF signaling increases ASIC3

expression through a p75NTR-dependent transcriptional

switch in primary cultured rat DRG neurons.157 NGF

controls a basal-level of ASIC3 transcription through

constitutive activation of TrkA/PLC/PKC signaling,

while increased levels of NGF promote ASIC overexpres-

sion via combined PLC/PKC and JNK/p38 MAPK sig-

naling that depends on the presence of p75NTR.157

ASIC1a protein expression has also been shown to

increase following NGF treatment of cultured rat

DRGs.158

Overall, the cellular processes mediating NGF-induced

upregulation of ion channel membrane expression are not

completely delineated and may involve a combination of

effects on transcription, translation, and exocytosis.

NGF Effects on Peptides

NGF has also been shown to increase levels of peptides

expressed by nociceptors including substance P and calci-

tonin gene-related peptide (CGRP), both of which are

increased during inflammation.47,159,160 NGF-mediated

increases in substance P protein levels occur downstream

of both TrkA and p75NTR activation in cultured rat sen-

sory neurons.160 While NGF’s effects on nociceptive ion

channels and cell surface receptors sensitize the nociceptor

(more action potentials over time), NGF’s ability to

enhance neurotransmitter release (substance P and

CGRP) potentially increases neurotransmission indepen-

dent of increases in the number of action potentials. This

synergistic effect makes NGF a novel therapeutic target

relative to other known neuronal mediators such as brady-

kinin and serotonin.

NGF Effects on Nerve Sprouting

First-in-human studies using recombinant human NGF

were designed to prevent or reverse peripheral

neuropathy.161 Phase 3 clinical trials not only failed to

demonstrate a significant beneficial effect, but it was also

observed that NGF injection produced generalized
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myalgia and localized hyperalgesia at the injection

site.161 This observation revealed that intradermal NGF

injections could be used as an experimental model for

hyperalgesia and opened the door into research on how

NGF modulates pain signaling. One thought was that

local peripheral neuronal sprouting of sensory nerves

can increase nerve terminal density in peripheral tissues.

Such anatomical remodeling at sites of injury or inflam-

mation could, potentially, contribute to increased nocicep-

tive input and increased pain perception. For example,

pathological sensory and/or sympathetic nerve sprouting,

sometimes resulting in the formation of painful neuroma-

like structures, has been observed in disease models of

bone cancer pain and arthritis pain.49,53,54,162 Evidence

suggests that NGF can drive neuronal sprouting

(Figure 4). For example, administration of NGF antibody

inhibits sprouting and neuroma formation in the afore-

mentioned models of bone and arthritis pain.53–55,163

In addition to its effect at peripheral sites, NGF may

also play a role in neuronal sprouting at sites such as the

DRG and dorsal horn of the spinal cord.164–166 For exam-

ple, axonal sprouting of peptidergic nociceptive neurons in

the dorsal horn and into the ventral horn of the spinal cord

can be induced by adenovirus-driven overexpression of

NGF in rats.165,166 Such sprouting leads to chronic pain,

characterized by thermal-mechanical and hyperalgesia, in

these animals.165,166

Although aberrant nerve sprouting has been seen in

animal models of pain and evidence suggests this is NGF-

dependent, the exact signaling pathways downstream of

NGF receptor activation are unknown. Under in vitro

experimental conditions, chick DRG axonal sprouting

towards NGF-coated beads is blocked both by treatment

with a pan-Trk inhibitor and with PI3K inhibition, consis-

tent with the hypothesis that pathological sprouting may be

mediated by NGF-TrkA signaling pathways.167

Figure 4 Preventative administration of anti-NGF antibody reduces metastatic prostate cancer-induced CGRP+ and NF200+ sensory nerve sprouting. (A andD) CGRP+ and NF200

+ innervation of the bone marrow in sham-operated mice (yellow). (B and E) 26 days post-injection. Proliferation of prostate cancer cells (transfected with green fluorescent protein;
green) and increased sprouting of CGRP+ and NF200+ fibers (yellow). (C and F) Effects of anti-NGF antibody (mAb911) administered at 10, 15, 20, and 25 days after cell injection.

CGRP+ and NF200+ nerve sprouting has significantly reduced. Republished with permission from Pathological Sprouting of Adult Nociceptors in Chronic Prostate Cancer-Induced

Bone Pain. Juan M. Jimenez-Andrade, Aaron P. Bloom, James I. Stake, William G. Mantyh, Reid N. Taylor, Katie T. Freeman, Joseph R. Ghilardi, Michael A. Kuskowski and Patrick W.

Mantyh. J Neurosci. 2010;30 (44) :14649-14656.163 https://doi.org/10.1523/JNEUROSCI.3300-10.2010.

Abbreviations: CGRP, calcitonin gene-related peptide; GFP, green fluorescent protein; NF200, 200-kDa neurofilament; NGF, nerve growth factor.
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NGF also mediates sprouting of TrkA+ sympathetic

nerve fibers.168–171 Exogenous administration of NGF in

adult mice, for example, leads to increased adrenergic

nerve sprouting in several peripheral organs and in the

brain.168 An increase in sympathetic drive may represent

another mechanism through which NGF contributes to

pain. For example, increased sympathetic signaling plays

a role in the maintenance of pain associated with complex

regional pain syndrome (CPRS) and elevated sympathetic

activity increases the spatial distribution of hyperalgesia in

these patients.172,173

NGF Effects Within the CNS

As discussed above, NGF signaling contributes to acute

and long-term nociceptive hypersensitivity by increasing

the activity and/or expression of nociceptive ion channels,

receptors, and peptides in the periphery. However, NGF

may also have sensitizing effects within the CNS.

NGF has been shown to affect levels of nociceptive

peptides within the CNS. Repeated subcutaneous admin-

istration of NGF increases CGRP and substance P release

at central afferent terminals of sensory neurons in

rodents.174 CGRP increases neuronal excitability of spinal

neurons and substance P has been shown to increase dorsal

horn neuron excitability by potentiating NMDA activity in

these animals.175–177 NGF also affects BDNF levels,

a neurotrophin that is expressed by some TrkA+ sensory

neurons, and BDNF release in the spinal cord is thought to

contribute to the central sensitization thought to underlie

many chronic pain conditions.178 In adult rats, BDNF

mRNA levels are selectively increased in TrkA-

expressing DRG cells in response to intrathecal adminis-

tration of NGF.179 Following NGF treatment, BDNF is

retrogradely and anterogradely transported from the DRG

to the peripheral and central sensory nerve terminals.179,180

BDNF is also released directly in the dorsal horn follow-

ing electrical stimulation of dorsal roots in isolated rat

dorsal horns, and this release is enhanced by systemic or

intrathecal NGF administration.181 BDNF increases sen-

sory neuron excitability via binding to p75NTR and sub-

sequent downstream sphingosine kinase signaling.182

BDNF can also sensitize rodent spinal lamina II neurons

via NMDA receptor activation and PLC/PKC signaling,

though it is not known whether the PLC/PKC signaling

pathway is initiated downstream of TrkA activation in this

case.183

NGF may also play a role in wind-up, the process by

which central neuron excitability is increased following

repeated low-frequency stimulation.184 Isolated rat spinal

cords treated with NGF exhibit a novel wind-up response

with low-frequency stimulation of group I/II Aβ fibers that

were found to be mediated through enhanced neurokinin-1

receptor activation.185

Overall, NGF signaling initiated at distal peripheral

locations can have long-lasting effects within the CNS

that may contribute to chronic pain (Figure 5). A single

subcutaneous administration of NGF in the rat, for exam-

ple, causes transient thermal and mechanical allodynia (up

to 24 hours), but persistent (up to 3 months) increases in

sodium channel levels within neurons of the DRG.152

Future Perspectives
Given the role of NGF in the modulation of nociception,

the analgesic benefits of drugs targeting the NGF pathway

have been explored in pre-clinical pain models and in

human studies. Monoclonal antibodies against NGF (eg,

tanezumab and fasinumab) that bind and neutralize NGF

activity are in late stages of clinical development, having

demonstrated significant analgesic effects over placebo in

Phase 2 or Phase 3 trials of osteoarthritis.186–196 Small

molecule TrkA inhibitors (ASP7962 and GZ389988A)

have advanced to Phase 2 clinical testing with mixed

results. A single intra-articular injection of the TrkA inhi-

bitor GZ389988A has been shown to modestly improve

osteoarthritis knee pain at 8 weeks.197 In contrast, treat-

ment with the oral TrkA inhibitor ASP7962 at a dose of

100 mg BID failed to improve pain and function in

patients with knee osteoarthritis after 4 weeks of

treatment.198 Finally, a Phase 1 trial of LEVI-04, an inject-

able p75NTR fusion protein designed to bind excess NGF,

is currently recruiting healthy volunteers and patients with

knee OA (NCT03227796).

Other novel pain therapeutics targeting the NGF path-

way are in the early stages of discovery or pre-clinical

development. These include monoclonal antibodies that

bind and neutralize TrkA and small molecule NGF/pro-

NGF inhibitors that disrupt NGF/proNGF binding to TrkA

and p75NTR.199–201 While still in early developmental

stages, these small molecule-based inhibitors may be of

therapeutic interest in attenuating NGF-induced sensitiza-

tion of nociceptive signaling pathways.

The nociceptive signaling pathways mediated by NGF

have been studied primarily in vitro in cell culture studies

or in vivo using animal models. However, signaling path-

ways may differ in human cells. With advances in human

induced pluripotent stem cells, it may be possible in the
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future to study NGF-induced nociceptive signaling path-

ways in sensory neuron-like cells derived from human

pluripotent stem cells, allowing for a better understanding

of the cellular role of NGF in human nociception.171

Conclusions
NGF has a well-known and multifunctional role in noci-

ceptive processing; however, the precise signaling path-

ways downstream of NGF receptor activation that mediate

nociception are complex and not completely understood.

Additionally, much of the existing knowledge derives from

studies performed in animal models, and this may not

accurately represent the human condition. However, avail-

able data establish a role for NGF in the modulation of

nociception through effects on the release of inflammatory

mediators, nociceptive ion channel/receptor activity, noci-

ceptive gene expression, and local neuronal sprouting. The

role of NGF in nociception and the generation and/or

maintenance of chronic pain have led it to become

a novel and attractive target of pain therapeutics for the

treatment of chronic pain conditions.
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Figure 5 Summary of NGF effects on nociception. NGF/TrkA signaling has relatively short-term actions at the peripheral nociceptor terminal and on inflammatory cells,

followed by longer-term actions within the nociceptor soma in the DRG. The overall effect is neuronal sensitization in the periphery and in the dorsal horn, leading to

increased nociceptive signaling to higher-order pathways. Reproduced with permission from Schmelz et al. Nerve growth factor antibody for the treatment of osteoarthritis

pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain (Official Journal of the International Association for the Study of Pain). 2019

Oct;160(10):2210–2220; https://journals.lww.com/pain/Fulltext/2019/10000/Nerve_growth_factor_antibody_for_the_treatment_of.6.aspx.207

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); ASIC, acid-sensing ion channels; BDNF, brain-derived neurotrophic factor; BK, bradykinin; Ca, calcium; CGRP,

calcitonin gene-related peptide; DRG, dorsal root ganglion; K, potassium; Na, sodium; NGF, nerve growth factor; PGE2, prostaglandin E2; SubP, substance P; TrkA,

tropomyosin receptor kinase A; TRPV1, transient receptor potential cation channel subfamily V member 1.
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