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Purpose: Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin

(CDDP) was used in combination with curcumin (CUR) for the treatment of non-small cell

lung cancer. The aim of this study was to prepare and characterize CDDP prodrug and CUR

co-encapsulated layer-by-layer nanoparticles (CDDP-PLGA/CUR LBL NPs) to induce coop-

erative response, maximize the therapeutic effect, overcome drug resistance, and reduce

adverse side effects.

Methods: CDDP prodrug (CDDP-PLGA) was synthesized. CDDP-PLGA/CUR LBL NPs

were constructed and their physicochemical properties were investigated by particle-size

analysis, zeta potential measurement, drug loading, drug entrapment efficiency, and in vitro

drug release behavior. In vitro cytotoxicity against human lung adenocarcinoma cell line

(A549 cells) was investigated, and in vivo anti-tumor efficiency of CDDP-PLGA/CUR LBL

NPs was evaluated on mice bearing A549 cell xenografts.

Results: CDDP-PLGA/CUR LBL NPs have a size of 179.6 ± 6.7 nm, a zeta potential value

of −29.9 ± 3.2 mV, high drug entrapment efficiency of 85.6 ± 3.9% (CDDP) and 82.1 ± 2.8%

(CUR). The drug release of LBL NPs exhibited a sustained behavior, which made it an ideal

vehicle for drug delivery. Furthermore, CDDP-PLGA/CUR LBL NPs could significantly

enhance in vitro cytotoxicity and in vivo antitumor effect against A549 cells and lung cancer

animal model compared to the single drug-loaded LBL NPs and free drug groups.

Conclusion: CDDP-PLGA/CUR LBL NPs were reported for the first time in the combina-

tion therapy of lung cancer. The results demonstrated that the CDDP-PLGA/CUR LBL NPs

might be a novel promising system for the synergetic treatment of lung carcinoma.
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Introduction
Lung cancer is the leading cause of cancer-related death worldwide.1 Non-small cell

lung cancer (NSCLC) is the most frequent lung cancer of all types, which accounts for

about 85% of all cases of lung cancer.2,3 Although some progresses have been made in

radiotherapy, targeted therapy and immunotherapy of NSCLC, the overall survival rate

has only slightly improved.4,5 Currently, cisplatin (CDDP) based chemotherapy has

become a first-line adjuvant therapy strategy for NSCLC patients after surgical

resection.6 However, drug resistance has become a major obstacle to cancer treatment.

Polymeric conjugates of conventional drugs (polymeric drug conjugates) have several

advantages over their low molecular weight precursors.7 Because of the advantages

over free-form drugs, polymer-drug conjugates have led to a new era of polymer drug
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delivery systems.8,9 One of the most widely used polymers is

the biodegradable and biocompatible poly(D,L-lactide-co-

glycolide) (PLGA), which has been approved by the FDA

for certain human clinical uses.10 In the present study, PLGA

was applied to conjugate with CDDP to form a prodrug

(CDDP-PLGA).

Combination chemotherapy is preferred over treatment

with single agents to combat most cancers as it targets

multiple cell-survival pathways at the same time and

delays the onset of resistance.11 Combined chemotherapy

can regulate different signaling pathways in cancer cells,

induce cooperative response, maximize the therapeutic

effect, overcome drug resistance, and become increasingly

important for achieving long-term prognosis and reducing

adverse side effects.12 Curcumin (CUR) is a hydrophobic

polyphenol, derived from the plant curcuma longa (tur-

meric), with low intrinsic toxicity.13 CUR has been widely

studied for its anti-inflammatory, anti-angiogenic, antiox-

idant, wound healing and anti-cancer effects.14 Due to its

water-insolubility and instability, CUR has been loaded

into liposomes, polymers or nanoparticles to improve its

water-solubility, stability and thus bioavailability.15,16

Furthermore, CUR has been co-delivered with doxorubi-

cin, paclitaxel and docetaxel for combination therapy of

cancer.17–19 So in this research, CUR was combined with

CDDP prodrug for the NSCLC treatment.

Layer-by-layer (LBL) technology is a versatile method to

develop multilayer films by the electrostatic attraction of

oppositely charged polyelectrolytes.20 This method of alter-

native deposition of polyelectrolytes has become a new

method to functionalize the surface of nanoparticles or to

form a core-shell nanoparticle.21 The diversity of the inter-

actions including electrostatic attraction, hydrogen bonding,

and chemical reactions been used to produce multilayer films

allows a broad range of materials to be used to fabricate an

array of functional LBL materials for various applications,

such as drug delivery and tissue engineering.22 In particular,

drug delivery systems prepared by LBL deposition of poly-

electrolytes can significantly promote the delivery of thera-

peutic proteins by increasing tolerance to extended shelf

storage and drug loading.23 LBL nanoparticle platforms

have been applied for cancer active targeting,24 including

the delivery of CDDP alone or together with other drugs to

the tumor site.25,26

In our previous study, doxorubicin and curcumin were

co-delivered by polymeric nanocarriers.27 In this paper, we

developed a CDDP prodrug (CDDP-PLGA) and CUR co-

encapsulated, LBL, lipid-polymer hybrid nanoparticles

(CDDP-PLGA/CUR LBL NPs) for the combination therapy

of lung cancer to induce cooperative response, maximize the

therapeutic effect, overcome drug resistance, and reduce

adverse side effects. The in vitro and in vivo anticancer

effects of CDDP-PLGA/CUR LBL NPs were evaluated in

comparison with non-LBL polymeric nanoparticles. The

combination efficiency of CDDP-PLGA/CUR LBL NPs

was also investigated compared with single drug-loaded

LBL nanoparticles. CDDP-PLGA/CUR LBL NPs were

reported for the first time in the combination therapy of

lung cancer and was expected to be a novel promising system

for the synergetic treatment of lung carcinoma.

Materials and Methods
Materials
Poly (D,L-lactic-co-glycolic) (PLGA, 75:25, MW 17000)

was purchased from Shanghai ZZBIO Co., Ltd. (Shanghai,

China). CDDP, glyceryl monostearate (GMS), poly(vinyl

alcohol) (PVA), dimethyl sulfoxide (DMSO), coumarin-6

(Cou-6), and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetra-

zolium bromide (MTT) were obtained from Sigma–Aldrich

Co. (St. Louis, MO, USA). Fetal Bovine Serum (FBS) and

Roswell ParkMemorial Institute medium (RPMI 1640) were

purchased from Invitrogen Corporation (Carlsbad, CA).

Human NSCLC cell line: A549 and NCI-H1299 cells;

human lung epithelial cell line: BEAS-2B cells were

obtained from the American Type Culture Collection.

Female BALB/c nude mice (15–20 g) were purchased from

Beijing Vital River Laboratory Animal Technology Co., Ltd

(Beijing, China). All animal experiments should comply with

the ARRIVE guidelines and should be carried out in accor-

dance with the U. K. Animals (Scientific Procedures) Act,

1986 and associated guidelines, EU Directive 2010/63/EU

for animal experiments and were approved by the Animal

Ethics Committee of the First Affiliated Hospital of Xi’an

Jiaotong University.

Synthesis of PLGA Conjugated CDDP

Prodrug
PLGA conjugated CDDP prodrug (CDDP-PLGA) was

synthesized by amidation of the carboxyl groups of CDDP

with the amine groups of PLGA (Figure 1). CDDP-(COOH)2
was firstly prepared by adding H2O2 to CDDP (dissolved in

DMSO) to get CDDP-(OH)2, then succinic anhydride was

added to CDDP-(OH)2 and stirred for 10 h.28 EDC·HCl and

NHS were added into CDDP-(COOH)2 solution, followed by

adding PLGA-NH2 into the solution and stirred for 24 h to
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formCDDP-PLGA.29CDDP-PLGAwas then dialyzed against

water for 20 h and lyophilized. 1H-NMR and FTIR analysis

were applied to determine the structure of CDDP-PLGA.

Preparation of CDDP-PLGA/CUR LBL

NPs
CDDP-PLGA/CUR LBL NPs were prepared by a solvent

diffusion technique (Figure 2).26 Briefly, CDDP-PLGA

(200 mg) was dissolved in acetone and added into PVA

(2%, w/v) solution under gentle stirring. CUR (30 mg) and

GMS (100 mg) were dissolved in acetone solution and

added drop-by-drop into the CDDP-PLGA solution. To

remove the organic solvent, the mixture was stirred over-

night at room temperature.30 The final solution was cen-

trifuged at 15,000 rpm for 20 min and washed three times

with water for injection. To prepare CDDP (not prodrug)

and CUR co-encapsulated LBL, lipid-polymer hybrid

nanoparticles (CDDP/CUR LBL NPs), CDDP (30 mg)

and PLGA (170 mg) was used to replace CDDP-PLGA,

and CUR was excluded from the preparation process. To

prepare drug-free LBL, lipid-polymer hybrid nanoparticles

(LBL NPs), PLGA was used to replace CDDP-PLGA and

CUR was excluded from the preparation process. To pre-

pare single drug (CDDP or CUR) encapsulated LBL NPs

(CDDP LBL NPs or CUR LBL NPs), another drug (CUR

or CDDP) was excluded from the preparation process.

Characterization of CDDP-PLGA/CUR

LBL NPs
The prepared CDDP-PLGA/CUR LBL NPs were dispersed

air dried, stained with sodium phosphotungstate, and observed

on a JEM transmission electronic microscopy (TEM) micro-

scope (JEOL Ltd., Tokyo, Japan).31 The particle size, poly-

dispersity index (PDI) and zeta potential of LBL NPs were

determined with dynamic light scattering (DLS; Malvern

Instruments, Malvern, UK).32 To measure the drug encapsula-

tion and loading efficiency (EE and LE), LBL NPs samples

were added to 1 mL deionized water (pH 7.4), sonicated (10

min) and centrifuged (15,000 rpm, 10 min, 4°C). CDDP

concentration was measured by UV–visible spectrophoto-

metric method.33 LBL NPs samples were heated at 90°C for

30 min with o-phenylenediamine (OPDA) solution in

Figure 1 Synthesis route and 1H NMR spectrum of PLGA conjugated CDDP prodrug (CDDP-PLGA). CDDP-PLGA was synthesized by amidation of the carboxyl groups of

CDDP with the amine groups of PLGA.

Abbreviations: PLGA, poly(D,L-lactic-co-glycolic); CDDP, cisplatin.
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dimethylformamide (DMF) and estimated at 705 nm on the

UV–visible spectrophotometer (UV-1800, Shimadzu, Japan).

CUR concentration was measured with an HPLC method at

420 nm using Agilent 1260 Infinity LC (Agilent Technologies,

Santa Clara, CA).34 EE and LE were calculated using formu-

lations: EE (%) = weight of loading drugs/weight of feeding

drugs ×100; LE (%) =weight of loading drugs/weight of LBL-

NPs ×100.

In vitro Drug Release from CDDP-PLGA/

CUR LBL NPs
In vitro release of CDDP or CUR from LBL NPs was con-

ducted by dialysis bag diffusion method.35 Briefly, CDDP-

PLGA/CUR LBL NPs, CDDP/CUR LBL NPs, CDDP LBL

NPs, or CUR LBL NPs suspensions (1 mL) were sealed in

dialysis bags (Molecular weight cut-off 10 KDa), respec-

tively. Then, the bays were placed in degassed PBS solution

(pH 7.4, 10 mL) which was degassing with nitrogen in the

presence of NADPH (100 mM) for the entire period of the

release experiment to maintain the hypoxic condition under

constantly shaken (100 rpm).36 The release medium (0.5 mL)

was taken out at determined time intervals and the amount of

CDDP or CUR released was evaluated as the method in

“Characterization of CDDP-PLGA/CUR LBL NPs” section.

The same amount of fresh release medium (0.5 mL) was

added to maintain sink conditions. The normal condition

(non-hypoxic condition) was prepared using PBS (pH 7.4)

containing 100 mM NADPH without degassing as control.

In vitro Cytotoxicity of CDDP-PLGA/

CUR LBL NPs
In vitro cytotoxicity of LBL NPs on A549 cells was assessed

by the MTT assay.37 Briefly, A549 cells, NCI-H1299 cells, or

BEAS-2B cells (5×104 cells/mL, 200 µL) were seeded into

96-well plates and incubated with Roswell Park Memorial

Institute (RPMI) 1640 medium containing 10% FBS and

Penicillin-Streptomycin (100 μg/mL) for 24 h. Then, CDDP-

PLGA/CUR LBL NPs, CDDP/CUR LBL NPs, CDDP LBL

NPs, CUR LBLNPs, LBLNPs, free CDDP/CUR, free CDDP

and free CUR in different concentrations were added and

incubated for 72 h. MTT solution (5 mg/mL, 200 µL/well)

was added and incubated at 37°C for another 4 h. DMSO (150

µL) was added into eachwell after the removal of medium and

shaken for 10 min. A microplate reader was utilized to record

the absorbance at the wavelength of 570 nm.

Cellular Uptake of CDDP-PLGA/CUR

LBL NPs
Cou-6 was used as a fluorescent probe to determine the

cellular uptake efficiency of LBL-NPs.38 Cou-6 containing

LBL NPs were prepared using the method in section 2.3

using Cou-6 (0.5 mg) dissolved in acetone along with PLGA

or CDDP-PLGA. A549 cells, NCI-H1299 cells, or BEAS-2B

cells (1×106 cells/well) were seeded in 6-well culture plate and

incubated at 37°C for 24 h.39 CDDP-PLGA/CUR LBL NPs,

CDDP/CUR LBL NPs, CDDP LBL NPs, and CUR LBL NPs

(200 μg/mL) were added to the wells and incubated for 1

h. The cellular uptake efficiency of LBL NPs was visualized

using a fluorescent-inverted microscope. A flow cytometer

(BD Biosciences, Franklin Lakes, NJ) was applied to quanti-

tatively analyze cellular uptake of LBL NPs after the cells

were washed three times with D-Hank’s solution, collected

and centrifuged at 1500 rpm for 5 min.40

In vivo Anti-Tumor Efficacy of CDDP-PLGA/

CUR LBL NPs
A549 cells (2×106 cells/mouse) were subcutaneous

implanted into the right flank region of the BALB/c nude

Figure 2 Scheme and TEM image of CDDP-PLGA/CUR LBL NPs. CDDP-PLGA/CUR LBL NPs were prepared by a solvent diffusion technique.

Abbreviations: TEM, transmission electronic microscopy; CDDP, cisplatin; PLGA, poly(D,L-lactic-co-glycolic); CUR, curcumin; LBL, layer-by-layer; NPs, lipid-polymer

hybrid nanoparticles.
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mice and let the tumor volumes grow to about 50 mm3.41 The

tumor volumes were calculated using formulation: V (mm3)

= 1/2×(length)×(width)2.42 Then, the mice were randomized

into 8 groups (n = 6) and (1) 0.9% saline as a control, (2)

CDDP-PLGA/CUR LBL NPs, (3) CDDP/CUR LBL, (4)

CDDP LBL NPs, (5) CUR LBL NPs, (6) free CDDP/CUR,

(7) free CDDP, (8) free CUR (10 mg CDDP and/or CUR

per kg body weight) were intravenously injected on day 0, 4,

8, 12 and 16. The behaviors of mice were monitored every 12

h along with the tumor growth and tumor volumes were

measured with a vernier caliper every 3 days. After 21 days

of injection, mice were sacrificed by cervical decapitation

and the final tumor weight and body weight of mice were

recorded to calculate the anti-tumor activity.

In vivo Tissue Distribution of CDDP-PLGA/

CUR LBL NPs
Tumor-bearing BALB/c nude mice were randomly divided

into 3 groups (n = 6) and (1) CDDP-PLGA/CUR LBL NPs,

(2) CDDP/CUR LBL, (3) free CDDP/CUR (10 mg CDDP

and/or CUR per kg body weight) were intravenously

injected. Mice were sacrificed at 24 h after intravenous

injection.43 The tumor tissue, lung, heart, kidney, liver, and

spleen were harvested, decomposed on heating in nitric acid,

evaporated to dryness, and redissolved in acetonitrile and

water (50/50, v/v) solution.44 The distribution of CDDP and

CUR was evaluated as the method in “Characterization of

CDDP-PLGA/CUR LBL NPs” section.

Statistical Analysis
The data of the studies were expressed as the mean ±

standard deviation (mean ± SD) and statistical analysis

was performed using a post hoc test following ANOVA.

P < 0.05 was considered statistically significant (*).

Results
Synthesis of CDDP-PLGA
Figure 1 illustrates the 1H NMR spectrum of CDDP-PLGA

in accordance with the chemical structure. The peak (a) 2.35

ppm belongs to CDDP; and the peaks at (d) 5.31, (e) 6.85,

and (g) 11.18 ppm are marked on the PLGA structure. Peaks

(b) 2.83 and (f) 7.81 are the protons of CH2 next to the amide

linkage and the NH in the amide linkage. These peaks could

prove the existence of the CDDP, PLGA and amide linkage.

IR spectrum (ν/cm−1): peaks at 3282, 2933, and 1306 belong

to CDDP; PLGA have the peaks of 1763, 1427, and 1093.

The peak of 1661 is the evidence of the amide linkage.

Characterization of CDDP-PLGA/CUR

LBL NPs
TEM image of CDDP-PLGA/CUR LBL NPs exhibited

a core-shell morphology (Figure 2). The particle size,

zeta potential, EE and LE are summarized in Table 1.

CDDP-PLGA/CUR LBL NPs and LBL NPs showed simi-

lar sizes (about 180 nm), which means the encapsulation

of CDDP and CUR within LBL NPs did not change the

size of the system. The PDIs of LBL NPs ranged from

0.116 to 0.157. Zeta potential of LBL NPs was negative,

−29.9 ± 3.2 mV for CDDP-PLGA/CUR LBL NPs. EE of

CDDP and CUR in LBL NPs were over 80%.

In vitro Drug Release from CDDP-PLGA/

CUR LBL NPs
Different release profiles were observed in CDDP-PLGA

/CUR LBL NPs and CDDP/CUR LBL NPs systems

(Figure 3). Although both of them appeared sustained

drug release patterns, while CDDP released from CDDP-

PLGA/CUR LBL NPs in a more sustained manner. Nearly

complete release of CDDP-PLGA/CUR LBL NPs and

CDDP/CUR LBL NPs was observed at 72 h and 48 h,

Table 1 Characterization of LBL NPs (Mean ± SD, n=6)

Formulation CDDP-PLGA/CUR LBL NPs CDDP/CUR LBL NPs CDDP LBL NPs CUR LBL NPs LBL NPs

Particle size (nm) 179.6 ± 6.7 172.3 ± 5.3 177.9 ± 4.4 176.3 ± 4.2 175.1 ± 3.9

PDI 0.157 ± 0.031 0.143 ± 0.028 0.125 ± 0.021 0.131 ± 0.023 0.116 ± 0.018

Zeta potential (mV) −29.9 ± 3.2 −28.7 ± 3.6 −31.4 ± 3.5 −30.2 ± 3.1 −27.6 ± 2.5

EE of CDDP (%) 85.6 ± 3.9 89.1 ± 3.6 87.9 ± 3.2 N/A N/A

EE of CUR (%) 82.1 ± 2.8 81.6 ± 2.7 N/A 80.8 ± 2.3 N/A

LE of CDDP (%) 10.2 ± 0.9 11.3 ± 1.1 10.8 ± 0.8 N/A N/A

LE of CUR (%) 10.8 ± 1.1 11.8 ± 1.3 N/A 12.1 ± 1.4 N/A

Notes: This table summarized the particle size, zeta potential, EE and LE of LBL NPs.
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respectively. This could be the evidence that CDDP-PLGA

prodrug hindered the CDDP release and produced a more

sustained release behavior. The release of CUR from LBL

NPs was faster than that of CDDP, which may be

explained by the location of CUR is in the outer lipid

layer and may release easier than CDDP.

In vitro Cytotoxicity of CDDP-PLGA/

CUR LBL NPs
Figure 4 shows the viability of A549 cells, NCI-H1299 cells,

and BEAS-2B cells when incubated with CDDP-PLGA

/CUR LBL NPs and other formulas. Firstly, blank LBL

NPs did not exhibit significant cytotoxicity on these cells,

which means the materials used for the preparation of NPs

have good biocompatibility. On A549 and NCI-H1299 cells,

free drugs showed obvious cytotoxicity than the control

group, but not as good as their LBL NPs loaded counter-

parts, the latter illustrated more notable inhibition effect on

the cancer cells (P < 0.05). CDDP-PLGA/CUR LBL NPs

displayed the most remarkable cytotoxicity, which is better

than CDDP/CUR LBL NPs and others (P < 0.05). In con-

trast, free drugs and their LBL NPs loaded counterparts

showed similar cytotoxicity on BEAS-2B cells.

Cellular Uptake of CDDP-PLGA/CUR

LBL NPs
Cellular uptake efficiency of LBL NPs on A549 cells was

presented by the fluorescent images (Figure 5A) and flow

cytometry (Figure 5B). Images captured by fluorescence

microscopy and the quantitative results indicated that the

cellular uptake of LBL NPs was about 70%, indicating the

high cellular uptake of the carriers. The uptake efficiency

of LBL NPs on NCI-H1299 cells, and BEAS-2B cells

were summarized and compared with A549 cells in

Table 2. The A549 cells and NCI-H1299 cells exhibited

similar uptake efficiencies, which are higher than that of

BEAS-2B cells.

Figure 3 In vitro drug release profiles of CDDP or CUR from LBL NPs. In vitro release of CDDP or CUR from LBL NPs was conducted by dialysis bag diffusion method.

Data presented as mean ± SD, n = 3.

Abbreviations: CDDP, cisplatin; CUR, curcumin; LBL, layer-by-layer; NPs, lipid-polymer hybrid nanoparticles.
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Figure 4 The viability of A549 cells (A), NCI-H1299 cells (B), and BEAS-2B cells (C) when incubated with CDDP-PLGA/CUR LBL NPs, CDDP/CUR LBL NPs, CDDP LBL

NPs, CUR LBL NPs, LBL NPs, free CDDP/CUR, free CDDP and free CUR in different concentrations for 72 h. In vitro cytotoxicity of LBL NPs on A549 cells was assessed

by the MTT assay. Data presented as mean ± SD, n = 6. *means P < 0.05.

Abbreviations: NSCLC, non-small cell lung cancer; CDDP, cisplatin; CUR, curcumin; LBL, layer-by-layer; NPs, lipid-polymer hybrid nanoparticles; MTT, 3-[4,5-dimethylthia-

zol-2-yl]-2,5-diphenyltetrazolium bromide.

Figure 5 Cellular uptake efficiency of LBL NPs presented by the fluorescent images (A) and flow cytometry (B). Cou-6 was used as a fluorescent probe to determine the

cellular uptake efficiency of LBL NPs. Scale bar: 20 μm. Data presented as mean ± SD, n = 6.

Abbreviations: LBL, layer-by-layer; NPs, lipid-polymer hybrid nanoparticles.
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In vivo Anti-Tumor Efficacy of CDDP-PLGA/

CUR LBL NPs
In vivo anti-tumor efficacy of LBL NPs was evaluated on

NSCLC bearing mice, and tumor growth and body weight

curves are presented in Figure 6. Figure 6A shows that

CDDP and CUR encapsulated LBL NPs and free drugs

groups significantly suspend the tumor growth (P < 0.05).

The most remarkable anti-tumor efficiency was observed in

CDDP-PLGA/CUR LBL NPs group, which is obviously

higher than CDDP/CUR LBL NPs group and other groups

(P < 0.05). Among these groups, CDDP/CUR LBL NPs

group exhibited higher tumor inhibition efficacy than free

CDDP/CUR group and CDDP LBL NPs group (P < 0.05).

The tumor inhibition rates of CDDP-PLGA/CUR LBL NPs,

CDDP/CUR LBL NPs, and free CDDP/CUR groups were

76.7 ± 3.1, 56.4 ± 2.2 and 23.1 ± 1.5% (Table 3). Figure 6B

exhibits that the body weight of mice was not significantly

changed when administrated with drugs loaded LBL NPs but

slightly decreased with free drugs administration.

In vivo Tissue Distribution of CDDP-PLGA/

CUR LBL NPs
In vivo tissue CDDP or CUR distribution in tissues is differ-

ent (Figure 7). CDDP distribution in tumor of CDDP-PLGA

/CUR LBL NPs was higher than that of CDDP/CUR LBL

NPs (P < 0.05); the latter was higher than free CDDP/CUR (P

< 0.05) (Figure 7A). However, CUR distribution of CDDP-

PLGA/CUR LBL NPs and CDDP/CUR LBL NPs showed

no obvious different (Figure 7B). On the other hand, CDDP

and CUR distribution in the hearts and kidneys of mice were

remarkably reduced by drugs encapsulated LBLNPs than the

free drugs group (P < 0.05).

Discussion
In this paper, prodrug of CDDP (CDDP-PLGA) was synthe-

sized. Amino acid was selected as the connection and it is

a relatively weak linkage, under certain conditions the che-

mical bond would easily rupture and release CDDP.45 Using

amino acid as spacer could adjust the drug release behavior

and achieve better therapeutic efficiency.46 The LBL NPs

drug delivery platform enables ratiometric, synergistic, and

modular delivery of combinations of drugs, leading to syn-

thetic lethality and a level of effectiveness not achievable by

conventional anticancer drug delivery approaches.47 CDDP-

PLGA/CUR LBL NPs showed the size of about 180 nm.

Particle sizes smaller than 200 nm are conducive to drug

accumulation at the tumor site by the enhanced permeation

and retention (EPR) effect.48

The drug release behaviors of CDDP and CUR were

summarized. CDDP released from CDDP-PLGA/CUR LBL

NPs in a more sustained manner than CDDP/CUR LBL NPs,

which could be the evidence that CDDP-PLGA prodrug hin-

dered the CDDP release and produced a more sustained

release behavior. Longer time was needed to release CDDP

from CDDP-PLGA/CUR LBL NPs may slightly reduce the

systemic toxicity. In addition, the time-dependent drug release

could lead to stronger cytotoxicity to the cancer cells.49

The internalization and retention ability of nanoparti-

cles in cancer cells has a strong impact on the therapeutic

effects of the system.27 Cellular uptake research could

provide the evidence of the percentage of LBL NPs that

entered the cells. In this study, Cou-6 loaded LBL NPs

were applied to observe the uptake efficiency. The quanti-

tative results revealed that about 70% of NPs were uptake

by A549 cells and NCI-H1299 cells, which revealed that

the LBL NPs had excellent ability to enter cancer cells.

This characteristic could improve the therapeutic efficacy

of this system due to the high cancer cells uptake ability.

Anti-tumor efficiency of CDDP-PLGA/CUR LBL NPs

was evaluated in vitro and in vivo.29 Firstly, the viabilities of

A549, NCI-H1299, and BEAS-2B cells were applied to

determine the tumor cell inhibition ability of the LBL NPs

Table 2 The Uptake Efficiency of LBL NPs (Mean ± SD, n=6)

Formulation Uptake Efficiency (%)

A549

Cells

NCI-H1299

Cells

BEAS-2B

Cells

CDDP-PLGA/CUR LBL

NPs

71.3 ± 4.3 68.9 ± 4.1 50.3 ± 3.1

CDDP/CUR LBL NPs 72.5 ± 3.8 70.6 ± 3.8 52.7 ± 2.9

CDDP LBL NPs 69.7 ± 3.9 72.1 ± 3.9 51.6 ± 3.3

CUR LBL NPs 70.2 ± 3.5 71.7 ± 4.2 52.5 ± 3.5

Notes: This table summarized the tumor inhibition rates of CDDP-PLGA/CUR

LBL NPs, CDDP/CUR LBL NPs, and free CDDP/CUR groups.

Table 3 Tumor Inhibition Rates (Mean ± SD, n=6)

Formulation Tumor Inhibition Rates (%)

CDDP-PLGA/CUR LBL NPs 76.7 ± 3.1

CDDP/CUR LBL NPs 56.4 ± 2.2

CDDP LBL NPs 24.6 ± 1.9

CUR LBL NPs 16.1 ± 1.2

Free CDDP/CUR 23.1 ± 1.5

Free CDDP 17.8 ± 1.1

Free CUR 6.3 ± 0.8

Notes: This table summarized the tumor inhibition rates of CDDP-PLGA/CUR

LBL NPs, CDDP/CUR LBL NPs, and free CDDP/CUR groups.
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and the influence on normal cells. CDDP-PLGA/CUR LBL

NPs displayed the most remarkable cytotoxicity on cancer

cells, which is better than CDDP/CUR LBL NPs group and

other groups. This phenomenon may be explained by the

better efficiency of the CDDP prodrug that enhanced the

antitumor ability. CDDP/CUR LBL NPs illustrated better

cell inhibition efficiency than free CDDP/CUR group,

which may be explained by the protective effect of LBL

NPs that could reduce the degradation of CDDP and CUR

in blood circulation and increase the amount of drugs accu-

mulated within the tumor cells. In vivo antitumor study

showed that the tumor growth was more prominently inhib-

ited by CDDP-PLGA/CUR LBL NPs than the CDDP/CUR

LBL NPs, and free CDDP/CUR groups. These results are in

accordance with the results of the in vitro cytotoxicity and

could be the evidence that CDDP-PLGA/CUR LBL NPs

have better tumor inhibition efficiency. Higher tumor inhibi-

tion efficacy achieved by CDDP/CUR LBL NPs group than

CDDP LBL NPs group can be the proof of the combined

efficiency of CDDP and CUR.50

In vivo drug distribution of CDDP-PLGA/CUR LBL

NPs was evaluated and considered along with the body

weight changes of the mice.51 Higher CDDP concentration

in tumor tissue was observed in CDDP-PLGA/CUR LBL

NPs, which is higher than that of CDDP/CUR LBL NPs,

and free CDDP/CUR groups. This phenomenon could be

explained by the EPR effect at the tumor site.52 Due to

little or no lymphatic drainage in tumor tissues, NPs are

accumulation more in the tumor, termed the EPR effect.53

The size range (172.6–479.65 nm) reported by Mahmood

et al achieve EPR effect, which is in accordance with the

sizes in our study.54 This would better prove the better

ability of the prodrug-encapsulated system to the tumor

tissue. Lower CDDP and CUR distribution in the hearts

and kidneys were found in CDDP-PLGA/CUR LBL NPs

and CDDP/CUR LBL NPs groups in heart and kidney,

which could decrease the systemic toxicity during the

tumor therapy. Thus, it is safe and necessary for the

application of nanoparticles in the drug delivery

system.55 At day 21, mice treated with drugs loaded LBL

NPs showed no obvious changes in body weight, which

illustrated the well tolerance of the systems. Considering

the results along with the antitumor and tissue distribution

experiments, the resulting CDDP-PLGA/CUR LBL NPs

could be utilized as a safe and effective system for the

treatment of NSCLC.

Figure 6 In vivo anti-tumor efficacy of CDDP-PLGA/CUR LBL NPs evaluated on NSCLC bearing mice, tumor growth (A) and body weight (B) were presented. The tumor

volumes were calculated using formulation: V (mm3) = 1/2×(length)×(width)2. After 21 days of injection, mice were sacrificed by cervical decapitation and the final tumor

weight and body weight of mice was recorded. Data presented as mean ± SD, n = 6. * means P < 0.05.

Abbreviations: CDDP, cisplatin; CUR, curcumin; LBL, layer-by-layer; NPs, lipid-polymer hybrid nanoparticles; NSCLC, non-small cell lung cancer.
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Conclusion
CDDP-PLGA was synthesized and encapsulated along with

CUR into the LBL NPs. CDDP-PLGA/CUR LBL NPs

showed high uptake and remarkable tumor inhibition effi-

ciency with no obvious changes in body weight. CDDP-

PLGA/CUR LBL NPs were reported for the first time in the

combination therapy of lung cancer and was expected to be

a novel promising system for the synergetic treatment of lung

carcinoma. This LBLNPs systemmay also be used as delivery

vectors for the co-encapsulation of drugs and utilized for

various cancer therapies.
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